Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M.K., Bharwana, S.A., 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environ. Sci. Pollut. Res. 22, 8148-8162.
Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Wijaya, L., Alam, P., 2018. Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255, 79-93.
Akladious, S.A., Mohamed, H.I., 2017. Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol. Hung. 68, 101-114.
Ando, Y., Nagata, S., Yanagisawa, S., Yoneyama, T., 2013. Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct. Plant Biol. 40, 89-100.
Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N.V., Wenzel, W.W., Rinklebe, J., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation - a review. Earth-Sci. Rev. 171, 621-645.
Benzarti, S., Mohri, S., Ono, Y., 2008. Plant Response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: Lettuce, Radish, and Alfalfa. Environ. Toxicol. 23, 607-616.
Cardoso-Silva, S., Ferreira, P.A.L., Moschini-Carlos, V., Figueira, R.C.L., Pompêo, M., 2016. Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ. Earth Sci. 75, 9.
CETESB - The Environmental Company of São Paulo, 2014. Guiding Values for Soil and Groundwater in the State of São Paulo. São Paulo, Brazil. Available online: https://cetesb.sp.gov.br/solo/wp-content/uploads/sites/18/2014/12/valores-orientadores-nov-2014.pdf, Accessed date: 02 October 2020 (In Portuguese).
Cioccio, S., Gopalapillai, Y., Dan, T., Hale, B., 2017. Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery. Environ. Toxicol. Chem. 36, 1110-1119.
Clemens, S., 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707-1719.
Clemens, S., Ma, J.F., 2016. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu. Rev. Plant Biol. 67, 12.1-12.24.
Correia, L., Marrocos, P., Montalván Olivares, D.M., Velasco, F.G., Luzardo, F.H.M., Mota de Jesus, R., 2018. Bioaccumulation of nickel in tomato plants: risks to human health and agro-environmental impacts. Environ. Monit. Assess. 190, 317.
Da Costa, M.V.J., Kevat, N., Sharma, P.K., 2020. Copper oxide nanoparticle and copper (II) ion exposure in Oryza sativa reveals two different mechanisms of toxicity. Water Air Soil Pollut. 231, 258.
EMBRAPA - Brazilian Agricultural Research Corporation, 1997. Manual of Chemical Analysis of Soils, Plants and Fertilizers. Embrapa Comunicação para Transferência de Tecnologia, Brasília (In Portuguese).
EPA-IRIS - Environmental Protection Agency’s Integrated Risk Information System, 1987a. Barium and Compounds; CASRN 7440-39-3. Integrated Risk Information System (IRIS) Chemical Assessment Summary, File First On-Line 01/31/1987. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0010_summary.pdf, Accessed date: 02 November 2020.
EPA-IRIS - Environmental Protection Agency’s Integrated Risk Information System, 1987b. Nickel, soluble salts; CASRN Various. Integrated Risk Information System (IRIS) Chemical Assessment Summary, File First On-Line 09/30/1987. Available online: https://cfpub.epa.gov/ncea/iris/iris_d ocuments/documents/subst/0271_summary.pdf, Accessed date: 02 November 2020.
FAO and WHO - Food and Agriculture Organization of the United Nations for the World Health Organization, 2011. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods. Fifth Session, The Hague, The Netherlands. Available online: http://www.fao.org/tempref/codex/Meetings/CCCF/CCCF5/cf05_INF.pdf, Accessed date: 27 October 2020.
Gee, G.W., Bauder, J., 2002. Particle-size analysis. In: Dane, J.H., Toop, G.C. (Eds.), Methods of Soils Analysis. Part 4: Physical Methods. Soil Science Society of America, Madison, WI, pp. 255-293.
Guo, X., Wei, Z., Penn, C.J., Xu, T., Wu, Q., 2013. Effect of soil washing and liming on bioavailability of heavy metals in acid contaminated soil. Soil Sci. Soc. Am. J. 77, 432-441.
Gupta, N., Yadav, K.K., Kumar, V., Kumar, S., Chadd, R.P., Kumar, A., 2019. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - A review. Sci. Total Environ. 651, 2927-2942.
Han, C., Wu, L., Tan, W., Luo, Y., 2013. Bioavailability and accumulation of cadmium and zinc by Sedum plumbizincicola after liming of an agricultural soil subjected to acid mine drainage. Commun. Soil Sci. Plant Anal. 44, 1097-1105.
Hänsch, R., Mendel, R.R., 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259-266.
Hladun, K.R., Parker, D.R., Trumble, J.T., 2015. Cadmium, copper, and lead accumulation and bioconcentration in the vegetative and reproductive organs of Raphanus sativus: implications for plant performance and pollination. J. Chem. Ecol. 41, 386-395.
Jolly, Y.N., Islam, A., Akbar, S., 2013. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2, 385.
Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants. fourth ed. CRC Press, Boca Raton.
Kendziorek, M., Klimecka, M., Barabasz, A., Borg, S., Rudzka, J., Szczęsny, P., Antosiewicz, D.M., 2016. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes. BMC Genomics 17, 625.
Lavres Junior, J., Reis, A.R., Nogueira, T.A.R., Cabral, C.P., Malavolta, E., 2011. Phosphorus uptake by upland rice from superphosphate fertilizers produced with sulfuric acid treatments of Brazilian phosphate rocks. Commun. Soil Sci. Plant Anal. 42, 1390-1403.
Lavres, J., Rabêlo, F.H.S., Capaldi, F.R., Reis, A.R., Rossi, M.L., Franco, M.R., Azevedo, R.A., Abreu-Junior, C.H., Nogueira, N.L., 2019. Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. Ecotox. Environ. Safe. 170, 578-589.
Li, K., Cao, C., Ma, Y., Su, D., Li, J., 2019. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Sci. Total Environ. 692, 1022-1028.
Long, S.P., Bernacchi, C.J., 2003. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 4, 2393-2401.
Macedo, F.G., Bresolin, J.D., Santos, E.F., Furlan, F., Lopes da Silva, W.T., Polacco, J.C., Lavres, J., 2016. Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Front. Plant Sci. 7, 1358.
Macedo, F.G., Santos, E.F., Lavres, J., 2020. Agricultural crop influences availability of nickel in the rhizosphere; a study on base cation saturations, Ni dosages and crop succession. Rhizosphere 13, 100182.
Melo, L.C.A., Silva, E.B., Alleoni, L.R.F., 2014. Transfer of cadmium and barium from soil to crops grown in tropical soils. R. Bras. Ci. Solo 38, 1939-1949.
Meng, Y., Zhang, L., Wang, L., Zhou, C., Shangguan, Y., Yang, Y., 2019. Antioxidative enzymes activity and thiol metabolism in three leafy vegetables under Cd stress. Ecotox. Environ. Safe. 173, 214-224.
Morishita, T., Yamaguchi, A., Ohta, Y., 1983. Sulphur accumulation by tomato and rice root in relation to transport of heavy metals. Soil Sci. Plant Nutr. 29, 219-225.
Moya, J.L., Ros, R., Picazo, I., 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth. Res. 36, 75-80.
Myrvang, M.B., Gjengedal, E., Heim, M., Krogstad, T., Almås, Å.R., 2016a. Geochemistry of barium in soils supplied with carbonatite rock powder and barium uptake to plants. Appl. Geochem. 75, 1-8.
Myrvang, M.B., Bleken, M.A., Krogstad, T., Heim, M., Gjengedal, E., 2016b. Can liming reduce barium uptake by agricultural plants grown on sandy soil? J. Plant Nutr. Soil Sci. 179, 557-565.
Nelson, D.W., Sommer, L.E., 1982. Total carbon, organic carbon, and organic matter. In: Page, A.L. (Ed). Methods of soil analysis. American Society of Agronomy, Madison, WI, pp. 539-579.
Nogueira, T.A.R., Abreu-Junior, C.H., Alleoni, L.R.F., He, Z., Soares, M.R., Vieira, C.S., Lessa, L.G.F., Capra, G.F., 2018. Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. J. Environ. Manage. 221, 10-19.
Pereira, B.F.F., Rozane, D.E., Araújo, S.R., Barth, G., Queiroz, R.J.B., Nogueira, T.A.R., Moraes, M.F., Cabral, C.P., Boaretto, A.E., Malavolta, E., 2011. Cadmium availability and accumulation by lettuce and rice. R. Bras. Ci. Solo 35, 645-654.
Petrosino, V., Motta, G., Tenore, G., Coletta, M., Guariglia, A., Testa, D., 2018. The role of heavy metals and polychlorinated biphenyls (PCBs) in the oncogenesis of head and neck tumors and thyroid diseases: a pilot study. Biometals 31, 285-295.
Pinto, F.A., Alleoni, L.R.F., 2018. Extractors for barium, cadmium, copper, nickel, and zinc in tropical soils. Commun. Soil Sci. Plant Anal. 49, 2478-2495.
Piotto, F.A., Carvalho, M.E.A., Souza, L.A., Rabêlo, F.H.S., Franco, M.R., Batagin-Piotto, K.D., Azevedo, R.A., 2018. Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. Environ. Sci. Pollut. Res. 25, 27535-27544.
Raij, B. van, Quaggio, J.A., Silva, N.M., 1986. Extraction of phosphorus, potassium, calcium and magnesium from soils by an ion‐exchange resin procedure. Commun. Soil Sci. Plant Anal. 17, 547-566.
Raij, B. van, Cantarella, H., Quaggio, J.A., Furlani, A.M.C., 1996. Fertilization and liming recommendations for the State of São Paulo. 2nd edition. Agronomic Institute of Campinas, Campinas (IAC Technical Bulletin, 100) (In Portuguese).
Raij, B. van, Andrade, J.C., Cantarella, H., Quaggio, J.A., 2001. Chemical Analysis to Evaluate Fertility of Tropical Soils. Agronomic Institute of Campinas, Campinas (In Portuguese).
Rauser, W.E., Dumbroff, E.B., 1981. Effects of excess cobalt, nickel and zinc on the water relations of Phaseolus vulgaris. Environ. Exp. Bot. 21, 249-255.
Riesen, O., Feller, U., 2005. Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J. Plant Nutr. 28, 421-430.
Rieuwerts, J.S., 2007. The mobility and bioavailability of trace metals in tropical soils: a review. Chem. Spec. Bioavailab. 19, 75-85.
Rucińska-Sobkowiak, R., 2016. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 38, 257.
SAS Institute, 2008. SAS User's Guide: Statistics. Version 9.2, Cary, NC, USA. Available online: http://support.sas.com/software/92/, Accessed date: 02 October 2020.
Seregin, I.V., Kozhevnikova, A.D., 2020. Low‑molecular‑weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynth. Res. 10.1007/s11120-020-00768-1.
Shahbaz, A.K., Lewinska, K., Iqbal, J., Ali, Q., Mahmood-ur-Rahman, Iqbal, M., Abbas, F., Tauqeer, H.M., Ramzani, P.M.A., 2018. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J. Environ. Manage. 218, 256-270.
Singh, A., Sharma, R.K., Agrawal, M., Marshall, F.M., 2010. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop. Ecol. 51, 375-387.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J., 2012. Heavy metals toxicity and the environment. Mol. Clin. Environ. Toxicol. 101, 133-164.
Trujillo-Reyes, J., Majumdar, S., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2014. Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? J. Hazard. Mater. 267, 255-263.
USEPA - United States Environmental Protection Agency, 2007. Method 3051A - Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. United States Environmental Protection Agency, Washington, DC. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf, Accessed date: 10 November 2020.
van der Ent, A., Vinya, R., Erskine, P.D., Malaisse, F., Przybyłowicz, W.J., Barnabas, A.D., Harris, H.H., Mesjasz-Przybyłowicz, J., 2020. Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper–cobalt belt in Northern Zambia. Metallomics 10.1039/c9mt00263d.
Yamaji, N., Ma, J.F., 2014. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci. 19, 556-563.