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Abstract: 

 

Understanding how proteins evolve under selective pressure is a longstanding challenge. The 

immensity of the search space has limited efforts to systematically evaluate the impact of 

multiple simultaneous mutations, so mutations have typically been assessed individually. 

However, epistasis, or the way in which mutations interact, prevents accurate prediction of 

combinatorial mutations based on measurements of individual mutations. Here, we use artificial 

intelligence to define the entire functional sequence landscape of a protein binding site in silico, 

and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By 

leveraging CCME, we are able to construct a comprehensive map of the evolutionary 

connectivity within this functional sequence landscape. As a proof of concept, we applied CCME 

to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We 

selected representative variants from across the functional sequence landscape for testing in 

the laboratory. We identified variants that retained functionality to bind ACE2 despite changing 

over 40% of evaluated residue positions, and the variants now escape binding and 

neutralization by monoclonal antibodies. This work represents a crucial initial stride towards 

achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation. 

 

 

Main Text: 

 

Protein evolution is a complex process that has shaped the diversity of life, and it is essential to 

understand because it impacts how our environment is likely to respond to climate change, how 

infectious diseases evolve, and how we can engineer proteins for industrial and therapeutic 

applications. One of the major challenges in studying protein evolution is the vastness of 

sequence space. The total number of possible amino acid sequences for a typical protein is 

astronomical 1, and it is currently impossible to explore all of this space experimentally or 

computationally. The functional sequence landscape of a protein can be defined as the set of all 

amino acid sequences that are able to carry out that protein's biological activity, and it is a 

substantially reduced search space when compared to the total possible sequence landscape. 

Therefore, the functional sequence landscape is more tractable to fully explore and is the focus 

of the work we report here. 

 

To date, methods to study the functional sequence landscape of a protein have largely relied on 

assessing the impact of individual mutations on activity 2. However, individual amino acid 

substitutions often interact non-linearly when combined. Thus, the effect of a mutation at one 

site in a protein depends on the sequence at other sites. Evaluating amino acid substitutions at 

a functional site must therefore be performed combinatorially to account for these effects, but 

this search space is still too vast for traditional computational or experimental approaches to 

fully enumerate. Here, we describe a novel computational approach utilizing automated 

reasoning artificial intelligence that we call Complete Combinatorial Mutational Enumeration 

(CCME) that is capable of enumerating a functional sequence landscape, and we use it to map 

the functional sequence landscape the protein which mediates human cell entry by the virus 

SARS-CoV-2. 

https://paperpile.com/c/HN8YeH/GUYN
https://paperpile.com/c/HN8YeH/XhZK
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To infect human cells, the SARS-CoV-2 spike (S) protein homotrimer must bind to its receptor, 

the angiotensin-converting enzyme 2 (ACE2) homodimer, on the host cell surface 3. The 

receptor binding domain (RBD) on the S protein contains all amino acids which directly contact 

ACE2, and blocking the ACE2:RBD interaction prevents the virus from infecting cells 4–6. Thus, 

the RBD is the target of most known neutralizing antibodies. We chose to focus our studies on 

the ACE2 binding site of the RBD from the L strain, which is the first strain of SARS-CoV-2, 

originally identified in December of 2019. 

 

Enumeration of functional sequence space 

 

CCME is performed using a 3D protein structure, a pairwise decomposable energy function, the cost 

function network prover toulbar2 7,8 and a dedicated sequence enumeration algorithm (Fig. S1).  

To begin, we used Rosetta to identify the interacting residues at the ACE2:RBD interface from 

the first high-resolution structure of this complex 4 (Fig. 1). We then evaluated all combinatorial 

mutations at the 27 interface residue positions on RBD, and simultaneously, we allowed the 25 

interface residues on ACE2 to explore alternative rotamers. This defines a search space of 

1.3×1035 sequences and more than 5×1087 side-chain conformations (because we allow for all 

common rotamers at each residue position). This is greater than the number of atoms in the 

observable universe, so full enumeration of this search space is not possible using naive brute-

force computation. Toulbar2 is able to find the best solution, prove its optimality and exhaustively 

enumerate all sequences with energy within a threshold of the optimum 9–11. Performing sequence 

enumerations with toulbar2 has several advantages. Whereas sampling methods would run 

multiple individual trajectories and gather as many different sequences as possible without any 

knowledge on the size of the functional sequence landscape, toulbar2 systematically discards 

all unfit sequences in order to retain the exact ensemble of all functional sequences. 

 

First, we assessed the binding energy between RBD and ACE2, which we approximated by the 

difference in kcal/mol between the bound and unbound RBD conformations, or ∆G. We used 

Pompd, a computational protein design program which uses toulbar2 for sequence 

enumeration 12, to compute an exhaustive list of all variant sequences capable of adopting an 

ACE2-bound conformation within 8 kcal/mol of the global energy minimum; this yielded over 91 

million sequences (Fig. S2). Next, we evaluated the impact of these sequence changes on RBD 

stability. To preserve the competent-for-binding structure of the RBD, we tolerate only minimally 

destabilizing mutations,  defined as a < 1 kcal/mole increase in energy. For binding, we required 

the ∆∆G, the difference of ∆G between the L strain model and the variant model, to be positive. 

The intersection of these two ensembles resulted in about 4.5 million sequence variants. To 

reduce the size of this sequence space, we analyzed the fitness landscape defined by our 4.5 

million variants, using ∆∆G as the fitness function and connecting two variants when they differ 

only by one mutation 13. In this landscape, we identified 3,272 locally optimal sequences, 

meaning that mutating to any of their neighbors wouldn’t improve the interface ∆∆G. Because 
we wanted to assess how distant from each other functional variants could be, we looked for the 

most diverse subset of local optimal sequences. We clustered these by sequence similarity with 

MMseqs2 (using maximum E-value of gap-corrected Karlin-Altschul statistics, minimum 

https://paperpile.com/c/HN8YeH/uts9m
https://paperpile.com/c/HN8YeH/wnuX+zH22c+GM2uB
https://paperpile.com/c/HN8YeH/Kc2N+xQyB
https://paperpile.com/c/HN8YeH/wnuX
https://paperpile.com/c/HN8YeH/wxuk+ypZu+OxZj
https://paperpile.com/c/HN8YeH/YpeM
https://paperpile.com/c/HN8YeH/OnuB
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coverage and sequence identity as criterions). We visually represented the spatial distribution of 

these clusters on a t-distributed stochastic neighbor embedding map (Fig. 2). We selected the 

medoid of each of the 59 clusters that we obtained for characterization in the wet laboratory, 

and we will refer to these sequences henceforth as the Potential Variants (PVs). 
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Figure 1. Computational workflow for 

Complete Combinatorial Mutational 

Enumeration Interface computation: 

Interface residues are computed on the 

ACE2/L strain RBD complex. 

Computational Protein Design: the global 

minimum energy conformation is computed. 

Sequence enumeration: all sequences 

within a 8 kcal/mol threshold are 

enumerated. Side chain positioning: the 

energy of all sequences enumerated on the 

complex form is computed on the RBD apo 

form. Next, filters are applied in order to only 

keep sequences with stable apo 

conformation and good affinity towards 

ACE2. Fitness Landscape Analysis: the 

∆∆G mutational fitness landscape is 

analyzed and 3,272 local optima sequences 

are retained. 
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Figure 2. Clustering identification of the 59 SARS-CoV-2 potential variants (PVs). Spatial distribution 

of the 59 identified clusters on a t-distributed stochastic neighbor embedding (t-SNE) map. The L strain 

sequence is highlighted in black, the 59 PVs (i.e., medoids of each cluster) are highlighted in red, and the 

active potential variants (i.e., validated for Fc-Ace2 binding and/or infectivity) are highlighted in green. 
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Figure 3. Screening of the SARS-CoV-2 potential variants (PVs) for binding to Fc-ACE2 using 

yeast display. (A) The RBDs of the PVs were expressed on the surface of Saccharomyces cerevisiae 

cells as genetic fusions to the AGA2 surface protein. An anti-Myc antibody (Ab) and an anti-human 

secondary Ab labeled with different fluorophores were subsequently used to label the RBD-expressing 

cells and the cells bound to Fc-ACE2, respectively. (B) Saccharomyces cerevisiae cells displaying the 

indicated RBD PV were incubated with 40 nM Fc-ACE2. Binding to Fc-ACE2 was detected with an 

Alexa647-conjugated anti-human secondary Ab. The RBD variants highlighted with red arrows were 

chosen for further experimental characterization. 

 

 

 

The 59 PVs span a wide region of the sequence space. They each have 10 to 15 amino acid 

changes compared to the L strain, which in many cases is over half of all residues that interact 

with ACE2 (Fig. S3, Table S1). When compared to one another, the closest PVs have as few as 

4 amino acid differences, and the furthest have up to 15 differences (Table S1). Interestingly, 

some residue positions are highly conserved across PVs, while others are highly variable. 

Notably, aromatic residues in the L strain are more likely to be conserved between our PVs, and 

this is consistent with the variability observed in the GISAID database of clinical isolates (Fig. 

S4). Overall, our PVs exhibit higher sequence entropy than currently identified clinical isolates 

(Fig. S5). 

 

Potential variant RBDs bind ACE2 

 

We next sought to assess the fidelity of our in silico predictions using in vitro experiments. We 

obtained synthetic genes encoding the 59 PVs and expressed them from Saccharomyces 

cerevisiae as fusions to AGA2 on the cell surface. This system enabled us to rapidly evaluate all 

of the PV RBDs for the ability to bind their receptor ACE2 using yeast display and fluorescence 

activated cell sorting (Fig. 3A). We used the RBD from the L strain as the positive control, and 

the RBD from human coronavirus 229E, which binds to a different receptor, as a negative 



8 

control14. ACE2 was expressed, purified and used as an Fc fusion, as this construct 

recapitulates the dimer that this protein forms endogenously. 

 

From the 59 PVs, 11 showed binding at 40 nM Fc-ACE2 (Fig. 3B), which is the KD for the 

soluble RBD of the L strain, and 8 of these PV RBDs bound at levels comparable to the L strain. 

Some PVs exhibited binding at Fc-ACE2 concentrations as low as 1 nM (fig. S6). This result 

was encouraging, especially considering the high amount of protein sequence changes. 

 

We obtained mammalian expression constructs for the 8 PV RBDs that showed best binding, as 

well as the L strain and 229E. RBDs from seven PVs could be purified with yields similar to 

those of the L strain. PV35 was not able to be expressed in this system. We used biolayer 

interferometry (BLI) to measure the binding affinity of each RBD to Fc-ACE2. Binding to the L 

strain RBD was concordant with previously reported affinities 15,16, and the PV RBDs bound to 

Fc-ACE2 with varying affinities (Fig. 4). PV30 bound with the tightest affinity, which was similar 

to that of the L strain. No binding was detectable for PV25. 

 

 

https://paperpile.com/c/HN8YeH/2Zms
https://paperpile.com/c/HN8YeH/dXm9+B3Dh
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Figure 4. Binding affinities of the SARS-CoV-2 potential variants (PVs) for the Fc-ACE2 receptor 

three neutralizing antibodies as measured by biolayer interferometry (BLI). Binding affinities of the 

indicated RBD to Fc-ACE2 and the neutralizing antibodies as analyzed by biolayer interferometry (BLI).  

 

Potential variant pseudoviruses 

 

We sought to confirm whether functional sequences identified using CCME could form 

infectious viruses. We used non-infectious pseudovirus particles to model viral cell entry, as this 

approach is safe and has been demonstrated to reliably recapitulate this stage of the viral life 

cycle17. We produced SARS-CoV-2 S-pseudotyped lentiviral particles in which the different PV 

RBDs replace the L strain RBD (Fig. 5A). Following purification, we quantified the pseudovirus 

particles using real-time PCR (fig. S7), and equal amounts were used to transduce both ACE2-

negative (ACE2-) and ACE2-expressing (ACE2+) HEK293 cells (fig. S8). Not surprisingly, the 

pseudotyped viral particles expressing the six PVs that recognized Fc-ACE2 in BLI experiments 

were also able to transduce ACE2+ cells. The PV with the lowest Fc-ACE2 affinity, PV49, 

showed the least efficient transduction (fig. 5B). Interestingly, PV35, which could not be 

expressed as a soluble RBD (see above), was able to efficiently transduce ACE2+ cells, 

suggesting that it can be stably expressed in the context of the S protein. 

 

https://paperpile.com/c/HN8YeH/4gpqs
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Figure 5. Infectivity of Ace2-expressing cells by the SARS-CoV-2 PVs and neutralization by 

neutralizing antibodies. (A) Fluorescent lentivirus pseudotyped with the SARS-CoV-2 S protein 

containing the different RBD potential variants (PV) were used to transduce ACE2-expressing HEK293 

cells. In this setup, cell entry is dependent on ACE2 expression and cell fluorescence can be measured 

as a read-out for lentivirus transduction. (B) Equal amounts of lentivirus expressing the different PVs were 

used to transduce ACE2-expressing (ACE2+) and wild-type (ACE2-) HEK293 cells. Cell fluorescence was 

measured by flow cytometry and normalized by the % of cells transduced by lentivirus pseudotyped with 

the L strain. Data from 3 biological replicates is shown. (C) To assess the neutralization capacity of the 

indicated therapeutic antibodies, IC50s were first determined for neutralization of the L strain.  (D) Ten-

fold excess of the estimated IC50 concentrations of each antibody were pre-incubated with the different 

pseudotyped lentivirus variants before adding them to ACE2+ cells. Fluorescence values are normalized 

by the no IgG control. P-values < 0.05 as compared to the L strain RBD lentiviral particles are shown: 

n.s.: no significant. *, **, ***, ****: p values < 0.05, 0.005, 0.0005, 0.00005, respectively. 
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Neutralizing antibody escapeçlol 

 

Next, we assessed how efficacious the current FDA-approved neutralizing monoclonal antibody 

therapeutics would be for treating infection by a forecasted PV. We expressed and purified the 

two antibodies from the Regeneron cocktail (Regn-10933 and Regn-1098718,19), as well as Eli 

Lilly Ly-CoV01619, which recognizes an overlapping but not identical epitope on the RBD 20. We 

used BLI to measure the binding of these antibodies to purified RBD. While all three antibodies 

bound the L strain RBD, the PVs exhibited substantially diminished binding. All tested PVs 

escape Ly-CoV016, while only PV51 is recognized by the Regn10933 antibody at a very low 

affinity. In addition, only two PVs (PV21 and PV53) are recognized by the Regn10987 antibody, 

but also at a decreased affinity compared to the L strain RBD (fig. 4). Finally, we evaluated the 

neutralization capacity of the therapeutic antibodies on the pseudovirus particles expressing the 

different PVs. In addition to Regn10933, Regn10987 and Ly-CoV016, we included the 

neutralizing antibody 4A8, which neutralizes SARS-CoV-2 infection by binding to the NTD of the 

S protein 21. The neutralization capacity of the Regn10933, Regn10987 and Ly-COV016 

antibodies decreased for pseudovirus particles expressing all PVs in comparison to those 

expressing the RBD of the L strain (Fig 5C, D). In contrast, the 4A8 antibody was still able to 

neutralize most of the PVs, as expected. Together, these data indicate that forecasted receptor 

binding sites on viral cell entry proteins are capable of forming infectious virions that evade 

extant therapeutics. 

 

Mapping the functional sequence landscape 

 

A major advantage of CCME is that it enables mapping of protein sequence space, and this can 

be used to identify sequences to target for improved therapeutics and vaccines. To do this, we 

need to evaluate the probability of all mutational paths through the accessible sequence 

landscape, i.e., the series of amino acid substitutions that a protein may accrue over time. When 

a protein’s function is absolutely required for an organism's fitness, as is the case with viral 

spike proteins, it is reasonable to assume that non-functional sequences are highly unlikely to 

propagate. Furthermore, an important consequence of DNA encoding is that some amino acid 

substitutions are more likely to occur than others 22, and this also depends on the genome GC 

contents (the SARS-CoV2- genome is 62% AU/AT  rich). We therefore derived amino acid-level 

mutation probabilities from RNA mutation probabilities. This was preferred over a BLOSUM based 

estimation or an estimation that could be derived from a large protein language model because 

these estimations are not specialized for the considered organism (with its high AU/AT 

contents 23). Also, these estimations all capture fitness for function. In our case, fitness for 

function is represented in ∆∆G and we need a purely physical probability of the mutation event. 

 

Based on these assumptions, we constructed a graph of the sequence fitness landscape where 

edges between nodes are weighted by mutational probability (Fig. 6). We looked for the most 

probable mutational paths from the L strain to several PVs in the ∆∆G fitness landscape. For all 

of them, we found paths with lengths varying from 7 to 16 single mutations, in which all 

intermediates remain in the functional sequence landscape (Table S3). To have a higher-order 

view of the viral functional variant graph topology, we computed communities, which are 

https://paperpile.com/c/HN8YeH/Oh2F7+nTGej
https://paperpile.com/c/HN8YeH/nTGej
https://paperpile.com/c/HN8YeH/soHIJ
https://paperpile.com/c/HN8YeH/Zl72H
https://paperpile.com/c/HN8YeH/lnS3
https://paperpile.com/c/HN8YeH/hmP8
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subsets of tightly connected variants. Such communities are separated from the others by a few 

edges that must be traversed in order to reach them. For the SARS-CoV-2 RBD, the resulting 

community graph shows three isolated “sequence islands.” Thus, it is highly unlikely that the 

virus will be able to mutate across the gap between islands. Only four communities are strongly 

connected to the L strain community (Fig 4). One of our active PVs (PV30) lies in the L strain 

community and another (PV51) belongs to a neighboring community. Therefore, one way to 

confine viral evolution could be to design vaccines that protect against the most probable and 

infectious variants linking the L strain community to these neighboring communities. 

 

Limitations and future outlook 

 

The novel betacoronavirus SARS-CoV-2 emerged in late 2019 and caused a global pandemic 

that has resulted in more than 6 million deaths thus far 24. While effective vaccines 25 and 

therapeutics 26 were developed with unprecedented speed, this wasn’t sufficient to keep up with 

the pace of viral evolution. New strains quickly emerged that were able to infect vaccinated 

persons and escape neutralizing monoclonal antibody treatments 27–29. Inevitably, SARS-CoV-2 

will continue to evolve 30. 

 

All current vaccines and therapeutics for infectious diseases work by targeting pathogen 

virulence factors that already exist. For example, our response to endemic pathogens like 

influenza is to continuously develop and administer seasonal vaccines to protect against newly 

emerged variants 31. Similarly, it is all too common for monoclonal antibody treatments for 

infectious disease to decline in efficacy as pathogens inevitably evolve resistance 32. Much like 

we do with weather, humanity needs the ability to forecast pathogen evolution and predict 

amino acid changes to virulence factor proteins long before they occur. A first step towards this 

goal is to be able to map the functional mutational landscape of a pathogen’s virulence factor 

proteins. This ability could enable the design of vaccines and therapeutics which are able to 

retain their efficacy against novel variants and prevent them from spreading. 

 

The work presented here represents an important first step towards anticipation of pathogen 

evolution. Still, improvements remain to be made and additional factors have to be included. 

First, many drivers of selective pressure during evolution such as antibody escape are not taken 

into account here. Second, the false-positive prediction rate must improve, as many PVs did not 

bind to ACE2 in our experiments. Third, the false-negative rate must also improve. We 

performed these studies before the emergence of the Omicron variant, and retrospective 

analysis revealed that 4 out of the 7 sampled Omicron mutations did not appear in our 

enumerations, even if epistasis is taken into account, including Q498R and N501Y. The Q498R 

and N501Y mutations have a significantly higher energy than their wild-type counterparts in our 

calculations, due to steric clashes (Fig. S9). Proteins are not static molecules, and solving these 

challenges will likely require accounting for protein dynamics during enumeration, as well as 

enumerating a larger number of residues at one time to account for long-range epistatic effects 

that are not directly part of the functional site. 

 

https://paperpile.com/c/HN8YeH/Oa1P
https://paperpile.com/c/HN8YeH/FXlD6
https://paperpile.com/c/HN8YeH/QrDnh
https://paperpile.com/c/HN8YeH/AoENg+SRfB6+wp0LH
https://paperpile.com/c/HN8YeH/XVz4h
https://paperpile.com/c/HN8YeH/hraF
https://paperpile.com/c/HN8YeH/VZ62
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In contrast to other approaches 33,34, CCME enumerates the entire sequence space of a 

functional protein site. Longitudinal genetic sequencing is not required, so CCME can be applied 

immediately after a novel pathogen is discovered. A unique and important advantage of this 

approach is its ability to predict epistatic effects (Table S5). This enabled us to identify several 

highly-mutated PVs that support viral fitness, yet are evolutionarily isolated by non-functional 

sequences on an inaccessible sequence island. This indicates that myriad functional protein 

sequences exist that are largely inaccessible to life via Darwinian evolution.  

 

CCME is a promising path towards computationally designed vaccines that would need to be 

updated less frequently, and may enable near complete eradication of rapidly evolving viruses 

like coronavirus and influenza to the same degree that humanity was able to achieve for slowly 

evolving viruses like pox or polio.   

https://paperpile.com/c/HN8YeH/gVoB+8TqKa
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Figure 6. Sequence community graph. Each node represents a community of sequences. The red 

node represents the community that contains the L strain variant and blue nodes represent communities 

that contain tested PVs. Nodes with thick circles represent communities that contain active PVs. 

Thickness of red edges shows how connected the L strain community is.  
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Materials and Methods 

 

 

Protein models preparation 

The crystal structure of the SARS-CoV-2 spike receptor-binding domain (RBD) bound to the 

ACE2 receptor was retrieved from the Protein Databank (pdb code 6M0J) and used as a 

starting point for protein models preparation. Two protein models were derived from this crystal 

structure : the RBD/ACE2 complex form and the RBD unbound form. Both structures were 

relaxed 100 times using rosetta modeling suite version 3.12 35,36 and the lowest scoring models 

were kept. The relaxations were made with coordinate constraints ensuring that the models do 

not deviate by more than 0.15 Angstroms from the initial crystal structure 37. Additional flags 

were set in order to account for glycosylated amino acid residues. 

After relaxation, the RBD/ACE2 interface residues were computed on the complex form using 

Rosetta scripts and the InterfaceByVector residues selector with default settings. 27 and 25 

residues were selected respectively on the RBD and ACE2 side. 

 

Computational protein design and exhaustive sequence enumeration 

Computational protein design and exhaustive suboptimal sequence enumeration tasks were 

performed on the RBD/ACE2 complex protein model using POMPd 12. POMPd relies on 

PyRosetta to compute energy matrices. PyRosetta version r245 was used in this project. 

Mutable, flexible and rigid residues were defined as follows: the 27 interface residues on the 

RBD side were mutable, the 25 interface residues on the ACE2 side were flexible and all other 

residues were rigid. Mutable residues are allowed to mutate to any of the 20 natural amino acid 

types, flexible residues can reorient their side chain without changing their amino acid type and 

rigid residues are completely frozen. The Dunbrack 2010 rotamer library 38 was used to define 

the conformational search space. The basic level of rotamer discretization was used, no extra 

rotamers were added on chi angles. The Rosetta genpot energy function was used, and 

additional flags were set in order to account for glycosylated amino acid residues. For design, 

POMPd calls toulbar2 with flags “-dee: -hbfs: -m -A -s --cpd“. For enumeration the additional 

flags “--scpbranch -a -ub <Emax>” are added. All calculations were performed on the CALMIP 

high performance computing cluster, using Intel Skylake 6140 2.3 Ghz CPUs. 

 

Calculations on the RBD/ACE2 complex form 

A side chain positioning task was performed on the L strain structure in order to compute its 

optimal energy, which was determined to be -1694.57 kcal/mol. The Global Minimum Energy 

Conformation (GMEC), the optimal sequence using our settings, was computed. The GMEC 

was found to have an energy of -1704.42 kcal/mol. An exhaustive enumeration of suboptimal 

sequences was then performed using an energy threshold of 8 kcal/mol above the GMEC. 

91,056,763 different sequences satisfying the threshold were identified. The energy threshold of 

8 kcal/mol was determined to be the maximum value for which results could be obtained in one 

day time with the computational resources used approximately 400 gigabytes of RAM, and 

given that the number of sequences grows exponentially with the size of the enumeration 

https://paperpile.com/c/HN8YeH/LURD+p27E
https://paperpile.com/c/HN8YeH/yei3
https://paperpile.com/c/HN8YeH/YpeM
https://paperpile.com/c/HN8YeH/fADP
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threshold (Fig S2). The L strain sequence is not present in the enumerated sequences, it is 

located at 9.85 kcal/mol from the global optimum. 

 

Calculations on the RBD unbound form 

A side chain positioning task was performed on the L strain RBD unbound form using toulbar2. 

Its optimal energy, using our settings, was determined to be -386.74 kcal/mol. 

For each one of the 91 million sequences found in the enumeration, the RBD unbound form 

energy was also computed by solving 91 million NP-complete side chain positioning problems to 

optimality. The 27 interface residues were defined as flexible and all other residues were kept 

rigid. The computation was performed using a parallel implementation MPI-based variant of 

toulbar2. It was completed in less than 2 days on 200 CPU cores. 

 

∆∆G fitness landscape 𝛥𝛥𝛥𝛥𝛥𝛥 values were computed as  

 𝛥𝛥𝛥𝛥𝛥𝛥 =  𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛥𝛥𝛥𝛥𝑤𝑤𝑚𝑚 =  (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐
) − (𝐸𝐸𝑤𝑤𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑤𝑤𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐) 

 

where 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐

 are the energies of each mutant in the enumeration, respectively in 

complex and apo forms, 𝐸𝐸𝑤𝑤𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐸𝐸𝑤𝑤𝑚𝑚𝑎𝑎𝑐𝑐𝑐𝑐 are the energies of the L strain  respectively in 

complex and apo forms. Prior to computing the fitness landscape, the 91 million sequences 

were filtered in order to retain only sequences having a sufficiently stable RBD unbound form, 

with energy less than 1 kcal/mol worse than the L strain and a negative 𝛥𝛥𝛥𝛥𝛥𝛥 energy (with 

increased predicted affinity towards ACE2). The remaining 6,390,176 sequences were further 

filtered in order to remove all mutants exhibiting unpaired cysteine mutations. The final set 

includes 4,507,187 different sequences. The fitness landscape was computed on the final set of 

sequences, using a Hamming distance of 1 as neighborhood and 𝛥𝛥𝛥𝛥𝛥𝛥 energy as the fitness 

function. We could include the L strain variant in the fitness landscape since it is a neighbor of 

two sequences. 

 

Local optima cluster representatives calculation 

The fitness landscape contained 3,272 local optima, which were clustered with mmseqs using a 

sequence identity threshold of 80%: 

 

mmseqs easy-cluster in_fasta  out_clusters tmp --min-seq-id 0.8 

 

The clustering produced 59 clusters. Each cluster medoid was then identified, and the 59 

corresponding sequences were selected for experimental analysis. A sequence logo 

representing all local optima was computed using Weblogo39. 

 

Most probable paths from the L strain to active potential variants 

We calculated shortest paths between the L strain and active potential variants in the 𝛥𝛥𝛥𝛥𝛥𝛥 

fitness landscape graph in which edges were weighted by mutational probabilities. We used 

nucleic acid level mutation rates estimated by maximum likelihood using MEGA 40 with the 

https://paperpile.com/c/HN8YeH/vrWU
https://paperpile.com/c/HN8YeH/C3WE
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General Time Reversible model (best fit under AIC and BIC regularization) extracted from 41 on 

coronavirus genomic sequences. From this, we computed a transition probability matrix at the 

nucleic acid level using matrix exponentiation, with a time parameter adjusted to get an 

expected number of nucleic acid mutations of around one mutation over the designed RBD 

region (with 27 residues). Matrix exponentiation was computed using the Pade approximation 

available in Python scikit as the scipy.linalg .expm function. The resulting transition matrix gives 

access to transition probabilities 𝑃𝑃(𝑀𝑀|𝑊𝑊) that a given nucleic acid base 𝑊𝑊 (in the L strain) will 

mutate to a base 𝑀𝑀 in the next time-slice. To compute the amino acid level mutation rates 

induced by this nucleic acid transition matrix, we first computed a codon to codon transition 

probability matrix, assuming independent identically distributed mutation rates given by the 

previous matrix. For a given amino acid 𝐴𝐴, let 𝑙𝑙𝑙𝑙(𝐴𝐴) be the set of synonymous codons 

representing amino acid 𝐴𝐴, the a priori probability that a given codon 𝑙𝑙 in 𝑙𝑙𝑙𝑙(𝐴𝐴) is used to 

represent 𝐴𝐴 is simply 𝑓𝑓(𝑙𝑙)  =  𝑟𝑟(𝑙𝑙)/|𝑙𝑙𝑙𝑙(𝐴𝐴)| where 𝑟𝑟(𝑙𝑙) is the Relative Synonymous Codon Usage 

(RSCU) of the synonymous codon 𝑙𝑙, as computed for SARS-CoV-2 coronavirus42. The 

probability for an amino acid 𝑊𝑊, represented by a latent codon variable, to mutate in an amino 

acid 𝑀𝑀 (represented by any of its synonymous codon) is then 

 𝑃𝑃(𝑀𝑀|𝑊𝑊)  =  ∑𝑐𝑐𝑊𝑊∈ 𝑐𝑐𝑐𝑐(𝑊𝑊) 𝑓𝑓(𝑙𝑙𝑊𝑊) ∑𝑐𝑐𝑀𝑀∈𝑐𝑐𝑐𝑐(𝑀𝑀) 𝑃𝑃(𝑙𝑙𝑀𝑀|𝑙𝑙𝑊𝑊) 

 

The negated logarithm of the above transition probability matrix was used to weight the edges 

connecting two sequences in our variant landscape. The weight of a minimum cost path 

between two variants then defines a most likely path from the source variant to the target 

variant. Dijkstra’s algorithm was used to compute the shortest paths from the L strain to active 

potential variants. 

 

Sequence community graph 

The community graph was calculated from 4,507,188 sequences (including L strain variant). It 

was partitioned using the Leiden algorithm and modularity as a quality measure. Each node in 

the graph represents a community of sequences. Edges between the nodes were weighted with 

mutational probabilities described previously. The size of the nodes is proportional to the log of 

the size of communities. The thickness of edges connecting the L strain community is 

proportional to the log sum of all L strain community outgoing edges weights. All nodes with a 

degree smaller than 3 were removed. Self edges were removed and the graph was made 

undirected. The Leiden algorithm was run for 50 iterations and appears to be stable with a 

modularity of 0,93. Calculations were done using python leidenalg library. The partition was 

computed with the following command: 

 

la.find_partition(g, weights = 'weights', partition_type=la.ModularityVertexPartition, 

n_iterations=50) 

 

 

 

Theoretical affinity of antibodies towards L strain RBD and potential variants.  

Three different antibodies in complex with L strain RBD were used for ∆∆G calculations (pdb 

codes : 6XDG and 7C01). These complexes were relaxed 100 times using rosetta modeling 

https://paperpile.com/c/HN8YeH/2p1a
https://paperpile.com/c/HN8YeH/SNTY
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suite version 3.12 (genpot scoring function) and the lowest scoring models were kept. 

Coordinate constraints were set in order to ensure that the models do not deviate by more than 

0.15 Angstroms from the initial crystal structure. Additional flags were set in order to account for 

glycosylated amino acid residues. The energy of each of these complexes was calculated. 

The energies of the potential variants in complex with antibodies were obtained by side chain 

positioning calculations. 

 

Identification of matching natural RBD sequences 

We downloaded natural spike protein sequences from GISAID (https://www.gisaid.org/), using 

the spikeprot0125.tar archive containing 7,352,708 and only kept the 7,241,769 sequences with 

length above 1620, representing putative full-length sequences (possibly containing wildcard 

characters ‘X’). Identifying the subset of our 4,507,187 RBD motifs that appears in the database 

would require more than 20,000 billions pairwise alignments. Suspecting that only few of these 

would appear in the natural diversity, we exploited the gap structure of the motifs to look for 

matches of partial dense sub-motifs in the GISAID set. The submotif defined by the 18 last 

residues of our RBD motif contains only short gaps (the longest being 7 residues long). Our 

4,507,187 RBD motifs contain only 152,487 different combinations of these 18 residues. We 

sorted this set alphabetically and divided it into 50 subsets. Exploiting the fact that any finite 

language is regular, we built a regular expression containing the disjunction of the motifs 

appearing in it and compiled it to a Deterministic Finite State Automata (DFA). By bringing 

similar motifs closer together, sorting before splitting increases the likelihood that the automata 

size will be small. Search was performed only in the subregion of the full sequences starting at 

position 451 and ending at position 519. DFA compilation and search was performed using 

Google’s re2 library (https://github.com/google/re2), as available in the Python API pyre2 

(https://pypi.org/project/pyre2/). The sets of RBD motifs that yielded no hit were discarded and 

the same process of division in subsets, disjunction, automata compilation and search repeated 

recursively until singleton sequences with hits in GISAID were identified. We then selected full 

RBDs containing one of these 18-residue motifs with GISAID-hits and repeated the same 

search process. We found no occurrence of these in the GISAID sequences. We therefore 

repeated the same overall process, allowing this time for precisely one mismatch. With this 

added matching flexibility, our set of designed RBDs had 4,905,597 hits in GISAID (67.7%), 

covering the L strain, Delta and Lambda VOCs (Variants Of Concern), from a total of 51 

designed RBDs (see Table S5-GISAID matches). With one extra mismatch allowed, the Alpha, 

Kappa, Eta and Iota VOCs are also covered. 

 

Extraction of 27-residues RBD motifs from GISAID 

From all sequences of the spike protein in the spikeprot0125.tar archive, we kept the 7,241,769 

sequences with length above 1,620, representing putative full-length sequences (possibly 

containing wildcard characters ‘X’). From each sequence, we extracted the region from position 

454 to 555 that was expected to contain the RBD design region (positions 404 to 505 in the L 

strain). We removed all sequences containing ‘X’ and removed duplicate sequences. A multiple 

sequence alignment was computed with mafft, using the L strain protein S sequence  as a 

reference, preserving length (using mafft flags --6merpair --thread -1 --keeplength --

addfragments). The 27 residues of interest were extracted from each sequence, resulting in a 

https://www.gisaid.org/
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set of 826 different 27-mers. All sequences with remaining gaps were removed, resulting in a 

set of 774 unique gapless 27-mers. A sequence logo was computed from this set using 

Weblogo. 

 

2D map of ∆∆G local minima landscape 

We projected the 𝛥𝛥𝛥𝛥𝛥𝛥 local minima landscape on a 2D map using t-distributed stochastic 

neighbor embedding (t-SNE) as implemented in the python sk-learn package. We defined a 

customized distance metric in order to ensure that local minima clusters computed with 

mmseqs2 are correctly identified by t-SNE: 

 𝑑𝑑(𝑠𝑠1, 𝑠𝑠2)  =  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑠𝑠1, 𝑠𝑠2)  +  𝜆𝜆 𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑟𝑟(𝑠𝑠1, 𝑠𝑠2) 

 

Where 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 is the Hamming distance between two sequences (i.e., number of mutations), 𝑆𝑆𝐻𝐻𝐻𝐻𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑟𝑟 is a function which returns 1 if two sequences belong to the same cluster and 0 

otherwise, and 𝜆𝜆 is a control parameter (𝜆𝜆 = 20 in our calculations). The t-SNE algorithm was 

run for 1000 iterations with a learning rate of 50, a perplexity value of 6 and an early 

exaggeration value of 12.  

 

Sequence entropy 

The sequence entropy of the 27 residues of the RBD interface were computed on the 3272 local 

optima of the 𝛥𝛥𝛥𝛥𝛥𝛥 fitness landscape, as well as on the 774 unique sequences extracted from 

GISAID. The Shannon entropy was calculated after normalizing the frequency of occurrence of 

each amino acid type at each position by the natural frequency of occurrence of amino acids as 

estimated in the literature 43. 

 

Yeast display experiments 

DNA sequences encoding for the receptor binding domains (RBDs) of L strain SARS-CoV-2, the 

human coronavirus 229E and the 59 potential variants (PVs) were synthesized by Twist 

Bioscience. Next, they were amplified by PCR to introduce 50 nucleotides long flanking 

sequences complementary to the yeast display plasmid (RRID:Addgene_41522). The amplified 

DNA sequences and the linearized yeast display plasmid were transformed into Saccharomyces 

cerevisiae cells (Strain EBY100; ATCC) so that the yeast homologous recombination machinery 

ligated the DNA sequences encoding for the RBDs at the N-terminal of the Myc tag. 

Transformed cells were selectively grown in tryptophan-free minimal (SD-Trp-Ura) media 

(6.7g/L Yeast Nitrogen Base, 5.0g/L Casamino acids, 1.065 g/L MES acid, and 2% w/v 

dextrose) for 24 h at 30 C, with shaking. Next day, cell media was changed to SG-CAA media 

(2% Galactose, 0.67% Yeast Nitrogen Base, 0.5% Casamino Acids, 0.54% Sodium Phosphate 

Dibasic, 0.856% Sodium Phosphate Monobasic Monohydrate) to induce RBD expression for 24 

h at 30 C, with shaking. Next day, induced cells were spun down for 2 mins at 2,000 x g, 

resuspended in HBS blocking buffer (20 mM Hepes 7.4, 150 mM NaCl, 1% (w/v) BSA) and 

incubated with recombinant Fc-ACE2 for 45 mins at RT, with shaking. Next, plates were washed 

twice with HBS blocking buffer and incubated with 1:250 diluted FITC-conjugated anti c-Myc 

(Immunology Consultants Lab, CMYC-45F) and Alexa647-conjugated anti-human- antibodies 

for 30 mins at RT, with shaking. Cells were washed twice with HBS blocking buffer and cell 

https://paperpile.com/c/HN8YeH/6NlY
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fluorescence was measured using an IntelliCyt high throughput flow cytometer. Cells were 

gated to exclude non-single cells, FITC labeling was used to select RBD-expressing cells, and 

Alexa647 labeling was used to quantify Fc-ACE2-binding cells. Fc-ACE2-binding is reported as 

percentage within the FITC+ population and was gated according to the Alexa647 signal of the 

positive (L strain RBD) and negative (229e RBD) controls. 

 

Expression and purification of recombinant soluble proteins 

The DNA constructs for the RBDs of L strain SARS-CoV-2, the human coronavirus 229E and 

the eight PVs that showed Fc-ACE2 binding in yeast experiments were codon-optimized for 

mammalian cell expression, synthesized by Twist Bioscience and cloned into a mammalian 

expression vector as C-terminal genetic fusions to a 10xHis, a siderocalin module and a 3C 

protease cleavage site. The DNA construct encoding Fc-ACE2 was acquired from Addgene 

(#164222) and the DNA constructs encoding the four neutralizing antibodies were synthesized 

by Genscript. 24 μg of the respective DNA constructs were used to transfect 30 ml of 

suspension Expi293F (Thermo Scientific) cells at a density of 2.5E6 cells/ml in Expi293 media 

(Thermo Scientific) and cells were grown at 37 C in a humidified 8% CO2 incubator, with 130 

rpm shaking. After 24 h, cells were feeded with 3 mM valproic acid and 0.45% glucose. After 5 

days, cells were harvested for 10 mins at 1,000 x g. All RBD variants were purified using a 

sepharose Ni-IMAC resin (Pierce, Thermo Scientific) and eluted by 3C protease cleavage. The 

expressed IgG and Fc-ACE2 were purified using a protein A resin and eluted with 150 mM 

NaCl, 100 mM glycine (pH 2.8). 

 

Kinetic analyses by biolayer interferometry (BLI) 

BLI experiments were performed using an Octet 8-channel system (Sartorius) using HBS 

blocking buffer supplemented with 0.05% (w/v) Tween-20. 30 nM Fc-ACE2 or 20 nM of the 

three tested therapeutic antibodies were immobilized on Octet protein A biosensors. The 

biosensors were dipped into wells containing purified L strain RBD, 229E or the respective PV 

at 2000, 1000, 500, 250, 125, 62.5 and 31.3 nM concentrations for 200 seconds, and 

subsequently dipped into wells  containing HBS blocking buffer supplemented with 0.05% (w/v) 

Tween-20 for 200 seconds. Data were reference-subtracted, and curves were fitted using the 

GraphPad Prism association dissociation model 

(https://www.graphpad.com/guides/prism/latest/curve-

fitting/reg_equaton_association_then_disso.htm). 

 

ACE2-expressing HEK293 cell lines 

All transduction and neutralization experiments were performed using an Ace2-negative (Ace2-) 

HEK293 cell line, and two different Ace2-positive (Ace2+) HEK 293 cell lines. One ACE2+ cell 

line was transiently transfected with an ACE2 plasmid (Addgene #141185) followed by three 

rounds of hygromycin selection. Next, ACE2 expression was validated by binding of an anti-Myc 

antibody (Fig S.10). The other ACE2+ cell line was created by lentiviral transduction and 

previously published (Wu et al. 2021). Significant differences were not observed in the results 

obtained with both cell lines. 

 

Production of spike-pseudotyped lentivirus 

https://www.graphpad.com/guides/prism/latest/curve-fitting/reg_equaton_association_then_disso.htm
https://www.graphpad.com/guides/prism/latest/curve-fitting/reg_equaton_association_then_disso.htm
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To produce lentiviral particles pseudotyped with the spike (S) protein, the RBDs of the chosen 

PVs were cloned in the context of the S protein into the Addgene # 145032 plasmid.  

Subsequently, 3 μg of the corresponding spike plasmid, 12 μg of a lentiviral backbone 
expressing neonGreen (Addgene #162034) and 9 μg of a 2nd generation lentiviral packaging 

plasmid (Addgene #122600) were used for triple-transfections of 30 ml Exp293F cells. After 24 

hours, cells were feeded with 3 mM valproic acid and 0.45% glucose, and lentivirus production 

proceeded for 4 additional days. After that, cells were pelleted for 5 mins at 1,000 x g and 

supernatants were filtered using 0.45 um filters (Sartorius) and stored at 4C. 

The generated lentiviral particles were quantified by RT–PCR using a commercial kit (Biovision 

cat. No. K1471) that includes lysis buffer, reverse transcriptase, DNA polymerase and oligos 

annealing to the lentiviral scaffold. A standard curve was built with the provided standards and 

used to quantify the lentivirus amounts. Serial 10-fold dilutions of all pseudotyped lentivirus were 

run. 

 

Pseudotyped lentiviral particles transduction assays 

Ace2+ and Ace2- HEK293 cells were seeded in 96 well plates at 5x10E4 cells per well in 

DMEM media supplemented with 10% FBS and incubated at 37 C. After 24 h, media was 

removed and replaced by equal amounts of all pseudovirus diluted in fresh DMEM media. After 

18 hours, cell media was removed and cells were washed three times with HBS blocking buffer. 

Next, viral transduction was measured as neonGreen fluorescence using an IntelliCyt high 

throughput flow cytometer. Uninfected controls and the lentiviral particles expressing the RBD of 

the L strain were used to set the gates. All experiments were done in technical replicates and 

repeated in 3 different days, and statistical significances were calculated by unpaired t tests 

using the GraphPad Prism software version 9.0. 

 

Neutralization assays 

First, we estimated the IC50 of the four purified neutralizing antibodies on pseudotyped 

lentiviruses carrying the L strain RBD (fig. 3C), and then used a concentration corresponding to 

10 x the respective IC50s for the neutralization experiments. To estimate the IC50s of the 

neutralizing antibodies with pseudotyped lentivirus expressing the RBD of the L strain, 10-fold 

dilutions of the antibodies were incubated with L strain pseudotyped lentivirus for 1 hour at 37 C 

and subsequently added to ACE2+ HEK293 cells. NeonGreen fluorescence was analyzed using 

an IntelliCyt high throughput flow cytometer and the data from 4 different experiments were 

used to estimate the IC50 values using the Graphpad Prism version 9.0. For the neutralization 

experiments, equal amounts of the lentivirus pseudotyped with the L strain or the corresponding 

PV variants were pre-incubated with 10 x IC50 concentrations of the 4 antibodies for 1 hour at 

37 C and subsequently added to ACE2+ cells. Technical duplicates and at least 3 biological 

replicates of each sample were performed. Statistical significance was calculated by unpaired t 

tests using the GraphPad Prism software version 9.0. 
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SUPPLEMENTARY INFORMATION 

 

 

 
Figure S1. Toulbar2 sequence enumeration algorithm. High level description of the proof 

mechanisms used by toulbar2 for fast enumeration of sequences with at least one energy 

conformation below a threshold Emax.  

 

A. Initially asked to find all sequences which can have an energy less than Emax, toulbar2 

proceeds instead ad absurdo, trying to prove that all sequences must have energy 

above Emax in all their possible geometries and collects sequence counter-examples as 

the proof proceeds. The proof relies on efficient massive inference (symbol ⊢) by local 

consistencies and variable elimination 44. Alone, these proof systems are only able to 

solve relatively simple problems. When the proof is out of reach, an assumption on the 

identity or geometry of a yet undecided side-chain is made. This makes the problem 

simpler and eventually solvable. If, instead, the local proof can be directly achieved, this 

branch of the proof is done and previous assumptions are reconsidered. 

 

https://paperpile.com/c/HN8YeH/E0I0I
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B. For sequence enumeration 9, the proof is built in two layers. In the first layer, only side-

chain identities are decided. Once this is done, side-chain geometries (rotamers) are 

explored. As soon as a geometry of energy below Emax is found, a counter example (and 

a suitable sequence) is found and pending geometry assumptions explorations are 

canceled. toulbar2 therefore limits the combinatorial explosion of the protein sequence 

fitness landscape explored thanks to two proof pruning mechanisms: massive local 

inference (“Done” nodes) and counter-example based geometry pruning (“Canceled” 

nodes). Local inferences are also used to guide the search for counter-examples: when 

an assumption needs to be made, toulbar2 selects the assumption for which the last 

local inference was the farther away from the Emax target. 

  

https://paperpile.com/c/HN8YeH/wxuk
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Figure S2. Energy distribution of all 91 million enumerated sequences. Non-cumulative 

energy distribution of sequences enumerated within 8 kcal/mol of the global minimum on the 

ACE2/RBD complex. The scale on the y axis is logarithmic.  
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Figure S3. Sequence alignment of the main natural variants of concern and potential 

variants validated in this study.  Sequence alignment of the L strain, alpha, delta and omicron 

variants of concern together with the PVs showing the best binding to Fc-ACE2. RBD interface 

positions are highlighted in green, residues that differ from the L strain are shown in red. Most 

omicron mutations are not found in our predicted PVs. However, this is likely due to the fact that 

we only sampled the 27 RBD residues that contact Ace2, and other residues away from the 

interface might also contribute to RBD stability and indirectly to Ace2 binding. Also, the other 

spike domains play important roles in the viral life cycle, and viral fitness consists of a complex 

combination of factors that go beyond the spike. In the future, we will consider additional factors 

to improve our algorithm.  
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Figure S4. Sequence logos of GISAID variants and ∆∆G fitness landscape local minima. 

RBD interface residues sequence logo representations of 774 unique GISAID sequences (A) 

and ∆∆G fitness landscape local minima sequences (B). 
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Figure S5. Shannon entropy of GISAID variants and ∆∆G fitness landscape local minima. 

Amino acid composition entropy of RBD interface residues for 774 unique GISAID sequences 

(blue) and 3272 local optima sequences (yellow).  
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Figure S6. Dose response curves of yeast cells displaying the indicated RBD potential 

variants (PV) and Fc-ACE2 at decreasing concentrations. Relative binding is shown as the 

% of RBD-expressing cells. 

 

 

 

 

 

 

 



36 

 
 

Figure S7. Quantification of pseudotyped lentiviral particles by real time-PCR. The viral 

titers were quantified by real time PCR and normalized to use equal amounts of all RBD 

variants in the transduction experiments. The obtained viral titers are consistent with these from 

Cronshaw et al. 2020. 
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Figure S8. Validation of the Ace2+ transient cell line. To obtain the ACE2+ transient 

cell line, HEK293 cells were transiently transfected with a mammalian expression 

plasmid encoding for human ACE2 with an N-terminal Myc tag (Addgene #141185).  

Thus, ACE2 expression could be validated by staining HEK293 with a FITC-conjugated 

anti-Myc antibody. 
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Figure S9. Per residue score breakdown of the L strain and omicron  RBD/ACE2 

complex form. Scoring was done on the initial backbone of the L strain RBD/ACE2 

complex. Mutable interface residues are shown. 
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Table S1. Distance matrix of the 59 PVs. Pairwise Hamming distances between all potential variants.
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With local minimas 

(3,272) 

With all predicted RBDs 

(4,507,187) 

Variant RBD (27 AAs) 

Min. # of 

mutations # of matches 

Min. # of 

mutations 

# of 

matches 

Beta, V2 (B.1.351) 

GDNVGYYLFYAGKFNYQSYGQT

YGVGY 6 2 3 1 

Alpha, V1 (B.1.1.7) 

GDKVGYYLFYAGEFNYQSYGQT

YGVGY 5 2 2 4 

Gamma, V3 (P.1) 

GDTVGYYLFYAGKFNYQSYGQTY

GVGY 6 2 4 40 

Delta (B.1.617.2) 

GDKVGYYLFYAGEFNYQSYGQT

NGVGY 4 2 1 2 

Kappa (B.1.617.1) 

GDKVGYYLFYAGQFNYQSYGQT

NGVGY 5 5 2 8 

Eta (B.1.525) 

GDKVGYYLFYAGKFNYQSYGQT

NGVGY 5 2 2 2 

Iota (B.1.526) 

GDKVGYYLFYAGKFNYQSYGQT

NGVGY 5 2 2 2 

Lambda (C.37) 

GDKVGYYLFYAGEFNYQSYGQT

NGVGY 4 2 1 2 

Mu (B.1.621) 

GDKVGYYLFYAGKFNYQSYGQT

YGVGY 6 2 3 4 

Omicron (BA.1) 

GDNVGYYLFYAGAFNYRSYSRTY

GVGH >8 None (<=8)  7 21 

Omicron (BA.2) 

GNNVGYYLFYAGAFNYRSYGRTY

GVGH >8 None (<=8) 6 2 

L strain (WT) 

GDKVGYYLFYAGEFNYQSYGQT

NGVGY 4 2 1 2 

 

Table S2. Distances between variants of concern, local minima and potential variants in 

the filtered fitness landscape. 
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Potential 

Variant (PV) Mutations on the path 

Distance 

from wild 

type Path length 

PV49 V503E,V445F,S494A,Y505W,T500A,N501A,K417W 7 7 

PV30 V503E,S494P,V445E,E484Q,K417L,Y453F,Y473F 7 7 

PV53 

V503E,T500A,V445L,L445W,Y453F,S494P,K417L,N501A,Q4

93V 8 9 

PV21 

V503E,D405G,G504E,K417R,V445L,T500A,L445W,S494P,Q

498V,L455M,Q493L,Y473F,Y453F,R417L,N501A,V498Q 12 16 

PV22 

V503E,D405G,S494P,K417E,G405R,V445E,Y505W,L455K,Q

493L,R405S,Y453F,E417V,Y473F 10 13 

PV51 

V503E,D405G,G504E,T500A,S494A,V445D,Q498H,K417E,N

501T 9 9 

PV25 

V503E,S494P,V445E,Y495F,K417E,Y505W,L455K,Q493L,Q

498T,N501A,E417A 10 11 

 

Table S3. Most probable mutational paths from L strain to antibody escaping PVs. For 

each PV, we show all mutations on the most probable path in the order in which they appear as 

well as the Hamming distance from the L strain and the path length. 
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Mismatch 

pos. 

Potential PV in the filtered fitness 

landscape 

# of hits in 

GISAID Comment 

494 

GDKVGYYLFYAGEFNYQAYGQTNGDG

Y 7  

498 

GDKVGYYLFYAGEFNYQSYGVTNGLG

Y 8  

498 

GDKVGYYLFYAGEFNYQSYGVTNGDG

Y 7  

498 

GDKVGYYLFYAGEFNYQSYGVTNGAG

Y 48  

498 

GDKDGYYLFYAGEFNYQSYGVTNGVG

Y 7  

405 

GGKVGYYLFYAGEFNYQSYGQTNGVE

Y 1  

445 

GDKEGYYLFYAGEFNYQSYGQTNGAG

Y 48  

445 

GDKHGYYLFYAGEFNYQSYGQTNGAG

Y 48  

445 

GDKEGYYLFYAGEFNYQSYGQTNGDG

Y 7  

445 

GDKHGYYLFYAGEFNYQSYGQTNGD

GY 7  

445 

GDKMGYYLFYAGEFNYQSYGQTNGD

GY 7  

445 

GDKEGYYLFYAGEFNYQSYGQTNGLG

Y 8  

445 

GDEEGYYLFYAGEFNYQSYGQTNGVG

Y 29  

503 

GAKVGYYLFYAGEFNYQSYGQTNGEG

Y 14  

503 

GDAVGYYLFYAGEFNYQSYGQTNGEG

Y 1  

503 

GDEVGYYLFYAGEFNYQSYGQTNGEG

Y 29  

503 

GDKAGYYLFYAGEFNYQSYGQTNGEG

Y 187  

503 

GDKDGYYLFYAGEFNYQSYGQTNGEG

Y 7  

503 GDKDGYYLFYAGEFNYQSYGQTNGH 7  
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GY 

503 

GDKFGYYLFYAGEFNYQSYGQTNGEG

Y 218  

503 

GDKFGYYLFYAGEFNYQSYGQTNGSG

Y 218  

503 

GDKGGYYLFYAGEFNYQSYGQTNGE

GY 6  

503 

GDKIGYYLFYAGEFNYQSYGQTNGEG

Y 211  

503 

GDKIGYYLFYAGEFNYQSYGQTTGEG

Y 1  

503 

GDKLGYYLFYAGEFNYQSYGQTNGEG

Y 2  

503 

GDKSGYYLFYAGEFNYQSYGQTNGEG

Y 1  

503 

GDKVGFYLFYAGEFNYQSYGQTNGEG

Y 5  

503 

GDKVGYYLFFAGEFNYQSYGQTNGEG

Y 44  

503 

GDKVGYYLFYAGEFNYQAYGQTNGDG

Y 148  

503 

GDKVGYYLFYAGEFNYQAYGQTNGEG

Y 148  

503 

GDKVGYYLFYAGEFNYQAYGQTNGHG

Y 148  

503 

GDKVGYYLFYAGEFNYQAYGQTNGSG

Y 148  

503 

GDKVGYYLFYAGEFNYQPFGQTNGEG

Y 1  

503 

GDKVGYYLFYAGEFNYQPYGQTNGEG

Y 7 268  

503 

GDKVGYYLFYAGEFNYQPYGQTNGSG

Y 7 268  

503 

GDKVGYYLFYAGEFNYQPYGQTTGEG

Y 6  

503 

GDKVGYYLFYAGEFNYQSFGQTNGEG

Y 1  

503 

GDKVGYYLFYAGEFNYQSYGQANGEG

Y 14  

503 

GDKVGYYLFYAGEFNYQSYGQTNGEG

W 18  
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503 

GDKVGYYLFYAGEFNYQSYGQTNGEG

Y 4 884 812 L/Delta/Lambda 

503 

GDKVGYYLFYAGEFNYQSYGQTNGSG

Y 4 884 812 L/Delta/Lambda 

503 

GDKVGYYLFYAGEFNYQSYGQTTGEG

Y 4 593  

503 

GDKYGYYLFYAGEFNYQSYGQTNGEG

Y 1  

503 

GDMVGYYLFYAGEFNYQSYGQTNGE

GY 16  

503 

GDNVGYYLFYAGEFNYQPYGQTNGEG

Y 2  

503 

GDNVGYYLFYAGEFNYQSYGQTNGEG

Y 7 817  

503 

GDQVGYYLFYAGEFNYQSYGQTNGE

GY 4  

503 

GDRVGYFLFYAGEFNYQSYGQTNGEG

Y 2  

503 

GDRVGYYLFYAGEFNYQSYGQTNGEG

Y 70  

503 

GDSVGYYLFYAGEFNYQSYGQTNGEG

Y 1  

503 

GGKVGYYLFYAGEFNYQSYGQTNGEG

Y 96  

 Total unique hits at distance 1 4 905 597  

 

Table S4. Number of GISAID RBD sequences that would fit in the filtered fitness 

landscape. List of all predicted RBDs from the filtered sequence landscape having a match 

within at most one mutation in the spike protein GISAID database, filtered for complete 

sequences. A total of 4,905,597 GISAID sequences would fit in our filtered sequence 

landscape, representing 67.7% of all GISAID sequences. 
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Variant Sequence Changes in ACE2 affinity according to DMS 

PV21 GGLWGYFMFFAGEFNYLPYGQAAGEEY -87 

PV22 GSVEGYFKFFAGEFNYLPYGQTNGEGW nd 

PV30 GDLEGYFLFFAGQFNYQPYGQTNGEGY -3.7 

PV35 GDAEGYYKFFAGEFNYLAFGQTNGEGW nd 

PV49 GDWFGYYLFYAGEFNYQAYGQAAGEGW -11.7 

PV51 GGEDGYYLFYAGEFNYQAYGHATGEEY -162.18 

PV53 GDLWGYFLFYAGEFNYVPYGQAAGEGY -7.24 

 

 

Table S5. Deep Mutational Scanning (DMS) misses some of the mutations 

contained in the identified PVs, since it does not consider epistatic effects. 

DMS identified the single-point mutations contained in some of our infective PVs (e.g. 

PV30, PV53). However, the mutations found in e.g. PV21 and PV51 are highly 

detrimental to ACE2  binding according to DMS, while we showed that these PVs are as 

infectious as the L strain. Single mutation effects were obtained from Bloom lab’s github 

repository: https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS, and each PV was 

scored by summing up the values of each individual mutation. A negative value means 

weaker predicted binding for human ACE2. PV22 and PV35 could not be scored 

because at least one of their mutations was not observed in the DMS libraries. 

 

 

 

 

 

 

 

https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS

