Aagaard T, Jensen SG (2013). Sediment concentration and vertical mixing under breaking waves. Mari Geo 336:146-159.https://doi.org/10.1016/j.margeo.2012.11.015
Abril G, Bouillon S, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Ochieng OF, Geeraert N, Deirmendjian L, Polsenaere P et al. (2015). Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosci 12(1):67-78.https://doi.org/10.5194/bg-12-67-2015
Ali W A, Clare H, Rafid MA, Ali A (2013). The Effects of Hydraulic Retention Time on the Sludge Characteristics and Effluent Quality in an ASSBR. Appl Eng
Chai C, Yu Z, Song X, Cao X (2006). The Status and Characteristics of Eutrophication in the Yangtze River (Changjiang) Estuary and the Adjacent East China Sea, China. Hydrobiologia 563(1):313-328.https://doi.org/10.1007/s10750-006-0021-7
Chen JA, Wang JF, Guo JY, Yu J, Zeng Y, Yang HQ, Zhang RY (2017). Eco-environmental Characteristics of Reservoirs in Southwest China and Their Research Prospects. Earth Environ 45(2):115-125.https://doi.org/
Chen JA, Wang JF, Guo JY, Yu J, Zeng Y, Yang HQ, Zhang RY (2018). Eco-environment of reservoirs in China. Prog Phys Geog 42(2):185-201.https://doi.org/10.1177/0309133317751844
Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ (2007). Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10(1):172-185.https://doi.org/10.1007/s10021-006-9013-8
Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra NJF, Powers SM, Dos Santos MA, Vonk JA (2016). Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. Biosci 66(11):949-964.https://doi.org/10.1093/biosci/biw117
Ding H, Zhu C, Zhang K, Xiao S, Cui X, Sun Y (2017). Source and composition of sedimentary organic matter in the head of Three Gorges Reservoir: a multiproxy approach using δ13C, lignin phenols, and lipid biomarker analyses. Acta Geochim 36(3):452-455.https://doi.org/10.1007/s11631-017-0189-8
Dittmar T, Lara RJ (2001). Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil). Geochim Cosmochim Acta 65(9):1417-1428.https://doi.org/10.1016/S0016-7037(00)00619-0
Feng M, Sexton JO, Channan S, Townshend JR (2015). A global, high-resolution (30m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm. Int J Digit Eearth 9(2):113-133.https://doi.org/10.1080/17538947.2015.1026420
Feng XJ, Feakins SJ, Liu ZG, Ponton C, Wang RZ, Karkabi E, Galy V, Berelson WM, Nottingham AT, Meir P (2016). Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore. J Geophys Res Biogeo 121(5):1316-1338.https://doi.org/10.1002/2016jg003323
Gudasz C, Bastviken D, Premke K, Steger K, Tranvik LJ (2012). Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnol Oceanogr 57(1):163-175.https://doi.org/10.4319/lo.2012.57.1.0163
Heathcote AJ, Anderson NJ, Prairie YT, Engstrom DR, del Giorgio PA (2015). Large increases in carbon burial in northern lakes during the Anthropocene. Nat Commun 610016.https://doi.org/10.1038/ncomms10016
Holgerson., Meredith A, Raymond PA (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9(3):222-226.https://doi.org/10.1038/ngeo2654
Huang C, Yao L, Zhang Y, Huang T, Zhang M, Zhu AX, Yang H (2017). Spatial and temporal variation in autochthonous and allochthonous contributors to increased organic carbon and nitrogen burial in a plateau lake. Sci Total Environ 603-604
Hwang J, Kim M, Manganini SJ, McIntyre CP, Haghipour N, Park J, Krishfield R, A., Macdonald RW, McLaughlin FA, Eglinton TI (2015). Temporal and spatial variability of particle transport in the deep Arctic Canada Basin. J Geophys Res Oceans 120(4):2784-2799.https://doi.org/10.1002/2014jc010643
Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014). Lignin biogeochemistry: from modern processes to Quaternary archives. Limnol Oceanogr 8746-59.https://doi.org/10.1016/j.quascirev.2013.12.028
John IH, Richard GK (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Mari Chem 49(2-3):81-115.https://doi.org/10.1016/0304-4203(95)00008-F
Li S, Bush RT, Santos IR, Zhang Q, Song K, Mao R, Wen Z, Lu XX (2018). Large greenhouse gases emissions from China's lakes and reservoirs. Water Res 147(15):13-24.https://doi.org/10.1016/j.watres.2018.09.053
Lima DL, Duarte AC, Esteves VI (2007). Solid-phase extraction and capillary electrophoresis determination of phenols from soil after alkaline CuO oxidation. Chemosphere 69(4):561-568.https://doi.org/10.1016/j.chemosphere.2007.03.025
Liu X, Lu XH, Chen YW (2011). The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation. Harmful Algae 10(3):337-343.https://doi.org/10.1016/j.hal.2010.12.002
Loh PS, Chen CTA, Anshari GZ, Wang JT, Lou JY, Wang SL (2012). A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia). J Asian Earth Sci 43(1):118-129.https://doi.org/10.1016/j.jseaes.2011.09.005
Marynowski L, Zatoń M, Simoneit BRT, Otto A, Jędrysek MO, Grelowski C, Kurkiewicz S (2007). Compositions, sources and depositional environments of organic matter from the Middle Jurassic clays of Poland. Appl Geochem 22(11):2456-2485.https://doi.org/10.1016/j.apgeochem.2007.06.015
Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 713603.https://doi.org/10.1038/ncomms13603
Miguel AG, Mark B Y, Robie W, Macdonald RW, Timothy IE (2000). Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mari Chem 71(1-2):23-51.https://doi.org/10.1016/S0304-4203(00)00037-2
Miguel AG, Shelagh M (2000). Alkaline CuO Oxidation with a Microwave Digestion System: Lignin Analyses of Geochemical Samples. J Asian Earth Sci 72(14):3116-3121.https://doi.org/10.1021/ac991316w
Ni J, Luo DH, Xia J, Zhang ZH, Hu G (2015). Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth 6(3):799-810.https://doi.org/10.5194/se-6-799-2015
Nunes AN, de Almeida AC, Coelho COA (2011). Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl Geogr 31(2):687-699.https://doi.org/10.1016/j.apgeog.2010.12.006
Osidele OO, Beck MB (2004). Food web modelling for investigating ecosystem behaviour in large reservoirs of the south-eastern United States: lessons from Lake Lanier, Georgia. Ecol Model 173(2-3):129-158.https://doi.org/10.1016/j.ecolmodel.2003.06.003
Park JH, Nayna OK, Begum MS, Chea E, Hartmann J, Keil RG, Kumar S, Lu XX, Ran LS, Richey JE et al. (2018). Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges. Biogeosci 15(9):3049-3069.https://doi.org/10.5194/bg-15-3049-2018
Qiu JD, Liu J, Saito YSK, Yang ZG, Yue BJ, Wang H, Kong XH (2014). Sedimentary evolution of the Holocene subaqueous clinoform off the southern Shandong Peninsula in the Western South Yellow Sea. J Ocean U China 13(5):747-760.https://doi.org/10.1007/s11802-014-2227-z
Raquel M, Roger A M, David C, Charles V, Peter R, Lars J T, Sebastian S (2017). Organic carbon burial in global lakes and reservoirs. Nat Commun 8:1694.https://doi.org/10.1038/s41467-017-01789-6
Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C et al. (2013). Global carbon dioxide emissions from inland waters. Nature 503(7476):355-359.https://doi.org/10.1038/nature12760
Rezende CE, Pfeiffer WC, Martinelli LA, Tsamakis E, Hedges JI, Keil RG (2010). Lignin phenols used to infer organic matter sources to Sepetiba Bay – RJ, Brasil. Estuar Coast Shelf S 87(3):479-486.https://doi.org/10.1016/j.ecss.2010.02.008
Rowe OF, Dinasquet J, Paczkowska J, Figueroa D, Riemann L, Andersson A (2018). Major differences in dissolved organic matter characteristics and bacterial processing over an extensive brackish water gradient, the Baltic Sea. Mari Chem 202:27-36.https://doi.org/10.1016/j.marchem.2018.01.010
Salim S, Pattiaratchi C (2020). Sediment resuspension due to near-bed turbulent coherent structures in the nearshore. Cont Shelf Res
Sánchez GL, de Andrés JR, Martín-Rubí JA, Louchouarn P (2009). Diagenetic state and source characterization of marine sediments from the inner continental shelf of the Gulf of Cádiz (SW Spain), constrained by terrigenous biomarkers. Org Geochem 40(2):184-194.https://doi.org/10.1016/j.orggeochem.2008.11.001
Sebastian S, Edith D-K, Roland Z, Nuttakan W (2009). Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243-2254.https://doi.org/10.4319/lo.2009.54.6.2243
Sebastian S, Voss BM, Wickland KP, Aiken GR, Striegl RG (2004). Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol.https://doi.org/10.1046/j.1529-8817.2003.00721.x
Shi KY, Liu Y, Chen P, Li Y (2020). Contribution of Lignin Peroxidase, Manganese Peroxidase, and Laccase in Lignite Degradation by Mixed White-Rot Fungi. Waste Biomass Valor https://doi.org/10.1007/s12649-020-01275-z
Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41(18):6396-6402.https://doi.org/10.1002/2014gl060641
Vonk JE, Giosan L, Blusztajn J, Montlucon D, Graf Pannatier E, McIntyre C, Wacker L, Macdonald RW, Yunker MB, Eglinton TI (2015). Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochim Cosmochim Acta 171:100-120.https://doi.org/10.1016/j.gca.2015.08.005
Voss BM, Wickland KP, Aiken GR, Striegl RG (2017). Biological and land use controls on the isotopic composition of aquatic carbon in the Upper Mississippi River Basin. Glob Biogeochem Cycles 31(8):1271-1288.https://doi.org/10.1002/2017gb005699
Wang FS, Wang YC, Wang BL (2009). The water environmental response of river damming interception comes from geochemical perspective. Resources and Environment in the Yangtze Basin(in Chinese)
Wang XC, Chen X, F. R, Gardne., B. G (2004). Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Mari Chem 89(1-4):241-256.https://doi.org/10.1016/j.marchem.2004.02.014
West WE, Creamer KP, Jones SE (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnol Oceanogr 61(1):51-61.https://doi.org/10.1002/lno.10247
Winterfeld M, Laepple T, Mollenhauer G (2015). Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone. Biogeosci 12(12):3769-3788.https://doi.org/10.5194/bg-12-3769-2015
Yao S, Lu J (2011). Research on water and sediment transport characteristics downstream the Three Gorges reservoir before and after its impoundment. J Hydroelectric Engineering 30(3):10.3354/cr00999(in Chinese)
Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2014). A global boom in hydropower dam construction. Aqua Sci 77(1):161-170.https://doi.org/10.1007/s00027-014-0377-0
Zhang Y, Wu Z, Liu M, He J, Shi K, Zhou Y, Wang M, Liu X (2015). Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).Water Res 75:249-258.https://doi.org/10.1016/j.watres.2015.02.052