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Abstract 

 A crisp step function is not an adequate threshold for studies of Markovian 

occurrence of large earthquakes, because it can lead to missing or pseudo links in an 

observed sequence that should be a Markov chain. A more realistic threshold is a fuzzy 

one where there is a magnitude band, located between those magnitudes that are too 

small for the earthquakes to be part of a Markovian process and those who are certainly 

large enough for the earthquakes to be part of it, where earthquakes may or may not be 

part of the process. This fuzzy threshold is described by a membership function that gives 

the probability of an earthquake with a given magnitude belonging to the process.  We 

propose a counting strategy to evaluate the empirical transition probabilities when 

considering a fuzzy magnitude threshold, and justify it through Monte Carlo simulations. 
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We also propose a membership function with probabilities in the transition band 

proportional to the seismic moment, and apply it to data from a seismic study of the 

Japan area. By comparing the results of three Markovianity measures for the observed 

data with those of Monte Carlo simulations, we find that a fuzzy threshold going from 

zero probability for magnitudes 𝑀 ≤ 6.9 to probability one for 𝑀 ≥ 7.2 is the best model 

for the study area. 

 

1. Introduction 

 The Heaviside step function is a mathematical concept and is not observed in 

natural phenomena, yet stepwise magnitude thresholds are a common feature of many 

seismological studies and in most cases they play a quasi-magical role: earthquakes with 

magnitudes above the threshold are the subject of the study and they are the source of 

information, while those with magnitudes below the threshold are discarded, which 

implies that they contain no valuable information. It would seem that earthquakes with 

magnitudes above the threshold are a different physical phenomenon from those with 

magnitudes below it, and yet in many cases the magnitude threshold is set because of data 

limitations (data may be incomplete for magnitudes below a given threshold, or not 

enough if only magnitudes above some other given threshold are considered), and in 

some cases may be set completely arbitrarily. 

 Another complication associated with step-wise thresholds is that seismic 

magnitude determination is subject to a large uncertainty due to factors such as radiation 

pattern, directivity, paths through different media, and many others, including measuring 

and even numerical errors; this uncertainty is the reason behind the customary rounding 

of magnitudes to ∆𝑀 = 0.1. And rounding complicates the issue, because an earthquake 

with unrounded magnitude 6.94999... (rounded to 6.9) would be discarded by a step-wise 

threshold 𝑀 ≥ 7.0, yet it cannot be physically very different from one with unrounded 

magnitude 6.9500... (rounded to 7.0). Considering the uncertainties, an earthquake with 

rounded magnitude �̃� (the tilde will denote rounded magnitudes henceforward) cannot, 

generally, be certainly very different from earthquakes with magnitudes �̃� ± 0.1. 
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 Also, when considering seismic magnitudes it is necessary to take into account 

that sometimes an earthquake with magnitude below the threshold may be accompanied, 

close in time and space, by large fore- and/or aftershocks having seismic moment releases 

that summed to that of the main event result in a moment release episode (Quinteros et 

al., 2014) with equivalent magnitude above the threshold, that should be considered as an 

event to be included among those earthquakes having magnitudes above it. 

 Hence, the commonly used Heaviside function threshold is clearly seen to be 

inappropriate when applied to magnitudes in seismic studies. 

 We will here consider the problem of magnitude thresholds as applied to 

Markovian studies of seismic hazard, because many seismic hazard studies consider 

Markovian systems (e.g. Nishioka and Shah, 1980; Patwardhan et al., 1980; Anagnos and 

Kiremidjian, 1988; Fujinawa, 1991; Alvarez, 2005; Nava et al., 2005; Herrera et al., 

2006; Votsi et al., 2010, 2013; Ünal and Celebioglu, 2011; Cavers and Vasudevan, 2014, 

2015). 

 

 The motivation for our study was an article by Gutiérrez et al. (2021) who made a 

Markovian study of the seismic hazard in an area around Japan, and we will use their 

results and data to illustrate our arguments.  

 Their system consists of four seismogenic regions (Figure 1), and is considered to 

change to a new state whenever a “large” earthquake, i.e. an earthquake with magnitude  

above a given threshold magnitude 𝑀𝑇, occurs within one of the regions, and the state 

corresponds to the region it occurred in, so that the system has 𝑁𝑠 = 4 states. The data set 

comprises  earthquakes with magnitudes in the  6.5 ≤ 𝑀 ≥ 9.2 range, occurred 

from June 2, 1905 to November 13, 2015, reported in the International Seismological 

Centre (ISC) catalog. The seismotectonics of the area and the reasons for choosing the 

four regions, are discussed in Gutiérrez et al. (2021), so that they will not be discussed 

here.  

  The system was expected to be Markovian based on the premise that large 

earthquakes liberate enough stress and strain to significantly modify the stress field in the 

N = 450
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area and locally influence the tectonic plates motion and, hence, the occurrence of future 

earthquakes in neighboring areas (e.g. Lehner et al., 1981; Tsapanos and Papadopoulou, 

1999; Márquez et al., 2002; Melbourne et al., 2002; Venkatamaran and Kanamori, 2004; 

Riga and Balocchi, 2016; Spagnotto et al., 2018).  

 

 

Fig. 1 Map of the study area. The dashed lines enclose the four regions corresponding to 

the four states of the system (modified from Gutiérrez et al. (2021))  

 

 Gutiérrez et al. (2021) obtained transition probability matrices for several 

threshold magnitudes using stepwise trial thresholds and, in order to evaluate the results 

for the different thresholds, they proposed measures of reliability, robustness and 

Markovianity (how much the hazard estimates differ from what would be expected from 

the stationary probabilities discussed below). They found that earthquakes with large 

magnitudes do occur in a Markovian way, and that Markovianity is larger for threshold 

magnitudes between 7.0 and 7.4, with a maximum around 7.1; they speculated that 
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Markovianity was low for magnitudes below 7.0 because data sets included too many 

events that were not large enough to influence the process and were not part of a 

Markovian chain, and above 7.4 because too many events that did influence the process 

were excluded. 

 

 Here, we propose that, even assuming magnitudes to be correctly estimated, 

earthquakes within a given magnitude range may or may not be part of a Markovian 

process, depending on the local distribution of stress and strength and, possibly, on 

characteristics of each particular rupture and other imponderables.  Hence the set of 

Markovian earthquakes will be fuzzy (Zadeh, 1965; Aziz and Parthiban, 1996), and the 

threshold should be a gradual membership function (Zadeh, 1988) instead of a crisp, 

stepwise one. We propose a way to estimate empirical transition probabilities for fuzzy 

Markovian thresholds, and use Monte Carlo methods to test the estimation method. 

 

2. Markovian systems and chains 

 We will now briefly review a few concepts of Markovian systems that will be 

useful for our study (extensive treatments are found in many texts, e.g. Parzen, 1960; 

Barucha-Reid, 1960; Gnedenko, 1962; Feller, 1968; Ching and Ng, 2006; Battaglia, 

2007, and many more). 

 A finite Markov process is a stochastic process, with a finite number 𝑁𝑠 of states, {𝑠𝑘;  𝑘 = 1,⋯ ,𝑁𝑠}, 𝑁𝑠 > 1, for which the probability of transition from the current state 

to a given state in the next trial depends only on the current state, i.e., the system has no 

memory about the states that occurred before the present one. Let the state at step m be 𝑠[𝑚] = 𝑠𝑖  and that at the next step be 𝑠[𝑚+1] = 𝑠𝑗 , then if the transition probabilities 

between these states are always the same, independently of the trial or time interval, the 

Markov process is homogeneous, and we can write 

 Pr[𝑠[𝑚+1] = 𝑠𝑗  | 𝑠[𝑚] = 𝑠𝑖] = �̂�𝑖𝑗
 
, (1) 
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where each �̂�𝑖𝑗 is an element of a square 𝑁𝑠 × 𝑁𝑠 transition probability matrix (TPM) �̂� 

that contains the true transition probabilities of the Markovian system. A sequence of 

state occurrences distributed according to �̂� is commonly referred to as a Markov chain, 

because each occurring state is linked to the previous one according to (1). 

 If the state at step m is 𝑠[𝑚] = 𝑠𝑖, then the probability that n steps later the system 

will be in state 𝑠[𝑚+𝑛] = 𝑠𝑗, the n-step transition probability, is given by 

 Pr[𝑠[𝑚+𝑛] = 𝑠𝑗  | 𝑠[𝑚] = 𝑠𝑖] = �̂�𝑖𝑗(𝑛), (2) 

where �̂�𝑖𝑗(𝑛) is an element of matrix �̂�𝑛 (Chapmann-Kolmogorov equation). 

 

 If �̂� is ergodic, then  

 

(3) 

 

where �̂� = [�̂�1, �̂�2, ⋯ , �̂�𝑁𝑠], ∑ �̂�𝑗 = 1𝑁𝑠𝑗=1 ; the elements of �̂�, called limiting or stationary 

probabilities, are the same for any initial state and depend only on the total relative 

number of times each state occurs. Hence, the stationary probabilities are not Markovian, 

yet are representative of what would be expected if the system were non-Markovian, and 

will be useful for comparison with the Markovianity measures presented below. 

 

 The empirical Markovian transition probabilities from state i to state j are usually 

estimated as  

 

(4) 

 

where 𝜃𝑖𝑗  is the observed number of transitions from state i to state j, and 

(5) 

is the 
𝜉𝑖 =∑𝜃𝑖𝑗𝑁𝑠

𝑗=1  

𝑝𝑖𝑗 = 𝜃𝑖𝑗𝜉𝑖  , 

lim𝑛→∞ �̂�𝑛 = �̂� = [�̂�⋮�̂�] 
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total number of transitions that originated from state i. The empirical Markovian 

transition probabilities are expressed as a square 𝑁𝑠 ×𝑁𝑠 TPM P 

 

3. Missing and pseudo links 

 Picture a geographic area under study, where earthquakes are being generated 

according to a Markovian process and the sequence of these earthquakes constitutes a 

Markovian chain; however, other earthquakes not forming directly part of the Markovian 

process are concurrently occurring in the area. Hence, the sequence of all earthquakes 

from the area will be a combination of events constituting the links of the chain, minus 

missing links, events missing from the chain possibly because they were discarded for 

being below some threshold or because of the uncertainties in magnitude determination, 

or for other reasons, plus pseudo links that are events extraneous to the chain. 

 Missing or pseudo links will influence the estimation of the Markovian transition 

probabilities as follows: 

 A missing link, has two effects: if a segment of the true chain is ⋯ , 𝑠𝑖, 𝑠𝑗 , 𝑠𝑘, ⋯, 

then when counting transitions both 𝜃𝑖𝑗 and 𝜃𝑗𝑘 will be correctly increased by 1 each, but 

if state 𝑠𝑗  is missing, the resulting sequence is ⋯ , 𝑠𝑖, 𝑠𝑘, ⋯,  which will result in 𝜃𝑖𝑘 

incorrectly increased by 1, and in 𝜃𝑖𝑗 and 𝜃𝑗𝑘 incorrectly not increased. 

 On the other hand, if the true chain is ⋯ , 𝑠𝑖, 𝑠𝑘, ⋯, then when counting transitions 𝜃𝑖𝑘  will be correctly increased by 1, but if a pseudo state 𝑠𝑗  occurs in between, the 

observed sequence will be ⋯ , 𝑠𝑖, 𝑠𝑗 , 𝑠𝑘, ⋯ and both 𝜃𝑖𝑗  and 𝜃𝑗𝑘  will be each incorrectly 

increased by 1, and 𝜃𝑖𝑘 will be incorrectly not increased. 

 The error caused by missing (A) and pseudo (B) links for a typical 𝑁𝑠 = 4 TPM 

and a 𝑁 = 450 long series is illustrated in Figure 2; it is clear that the mean error per 

transition probability is significant even for small ratios of missing or pseudo links to the 

number of data, and that errors due to pseudo links are larger than those due to missing 

links. 
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Fig. 2  Average error per transition probability vs. proportion of missing (A) or pseudo 

(B) links; the blue thick line is the mean error for 225 Monte Carlo realizations and the 

thin lines are the mean plus/minus one standard deviation  

 

4. Fuzzy thresholds and the membership function 

 We will use fuzzy magnitude thresholds in order to model the mixture of 

Markovian and non-Markovian events that can be expected in real seismicity, and will 

propose a counting strategy, based on the fuzzy threshold, to diminish the effects of 

missing or pseudo links in the estimation of transition probabilities. 

 

 The magnitude fuzzy thresholds will be defined by a membership function 𝑉(𝑀)  
(Zadeh, 1988), which is the probability that an event with magnitude M belongs to the 

Markovian set. 

 Because magnitude data in seismic catalogs are usually rounded to ∆𝑀 = 0.1, we 

will characterize all thresholds by two rounded magnitudes: �̃�𝐾0  and �̃�𝐾1 , such that 

events with rounded magnitudes �̃� ≤ �̃�𝐾0  are definitely too small to be part of a 

Markovian chain and events with rounded magnitudes �̃� ≥ �̃�𝐾1  are definitely large 

enough to be links in a Markovian chain. Since from a physical point of view it is 

reasonable to define a membership function in terms of unrounded magnitudes, and since 

we will need such a function for the Monte Carlo simulation of catalogs with fuzzy 

thresholds, we note that the above limits correspond to unrounded limits 𝑀𝐾0𝑈 ≡ �̃�𝐾0 +
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∆𝑀/2 and 𝑀𝐾1𝑈 ≡ �̃�𝐾1 − ∆𝑀/2. These limits define a transition range where events with 

unrounded magnitudes 𝑀𝐾0𝑈 < 𝑀 < 𝑀𝐾1𝑈  may stochastically belong to the Markovian set, 

or not, with probability given by the membership function in that range.  

 The threshold bandwidth 

 

(6) 

 

is the number of DM  intervals spanned by the threshold. For �̃�𝐾1 = �̃�𝐾0 + 0.1, 𝜔 = 0, 

the threshold becomes a “crisp” step function. 

 It is not known what 𝑉(𝑀) is like in the transition band, but to have a transition 

with a physical meaning, we heuristically propose that it is not unreasonable to suppose 

the membership probability to be proportional to the released seismic moment 𝑀0, related 

to the moment magnitude 𝑀𝑊 (Hanks and Kanamori, 1979) as  

 log10𝑀0 = 16.5 + 1.5𝑀𝑊  ; (7) 

in what follows we will suppose that all magnitudes are moment magnitudes and 

represent them by simply M. Thus, the moment membership probability is given by 

 

 

(8) 

 

 

illustrated in Figure 3. 

 

𝑉(𝑀) = {  
  0,𝑀 ≤ 𝑀𝐾0𝑈101.5𝑀 − 101.5𝑀𝐾0𝑈101.5𝑀𝐾1𝑈 − 101.5𝑀𝐾0𝑈1,𝑀 ≥ 𝑀𝐾1𝑈

;   𝑀𝐾0𝑈 < 𝑀 < 𝑀𝐾1𝑈  

𝜔 = (�̃�𝐾1 − �̃�𝐾0)/∆𝑀 − 1 = (𝑀𝐾1𝑈 −𝑀𝐾0𝑈 )/∆𝑀 
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Fig. 3 The moment fuzzy threshold membership probability function with an  w = 3  

transition band. The dashed horizontal lines represent the average probabilities for each 

magnitude step in the transition range  

 

 Other possible membership functions may have physical significance, like a 

transition band proportional to magnitude, or could be just handy commonly used 

threshold functions, such as the widely-used S-shaped cosine-based function which gives 

a reasonable and smooth gradual threshold without discontinuities or sharp changes in 

slope. Different membership functions can be tried to find which one gives best results 

for a particular data set and thus represents best what is actually happening in a given 

region. Here we will use only the moment threshold membership function. 

 

5. A counting strategy for fuzzy thresholds 

 Since when analyzing an observed sequence it is not known a priori which events 

with magnitudes in the transition range belong to the Markovian set, we will propose a 

way of reducing the effects of missing or pseudo links for a given trial threshold. Next, 

we will try different trial thresholds to find which gives the best results and thus 

represents best what is the actually threshold. We will now present our counting strategy 

and later discuss how to measure and compare results. 
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 We assume that the magnitude of each event in a catalog has been rounded to ∆𝑀, 

and let the rounded magnitude be denoted by �̃�; since the original unrounded magnitude 

can have any value in the [�̃� − ∆𝑀/2, �̃� + ∆𝑀/2)  range we will consider the 

probability of and event with magnitude �̃� belonging to the Markovian set to be the 

average of the probabilities within the range 

 

(9) 

 

shown as dashed horizontal lines in Figure 3. Thus, the m’th event of the sequence will be 

characterized by its observed state 𝑠[𝑚], its rounded magnitude �̃�[𝑚], and its Markovian 

membership probability 𝑣[𝑚] = 𝑣(�̃�[𝑚]). 
 The counting strategy for events with rounded magnitudes consists of four points: 

 I. Each transition between consecutive events will be counted according to the 

joint probability of both starting and ending states belonging to the Markovian set 

 𝑤[𝑚,𝑚+1] = 𝑣[𝑚]𝑣[𝑚+1]. (10) 

Obviously only events with non-zero probabilities need be considered. 

 II. When 𝑣[𝑚+1] = 1 the transition is achieved, whatever the value of 𝑤[𝑚,𝑚+1], 
but if 𝑣[𝑚+1] < 1 then there is the possibility that state 𝑠[𝑚+1] is not a true link, and that 

the Markovian transition is really from state 𝑠[𝑚] to state 𝑠[𝑚+2] with probability 

 𝑤[𝑚,𝑚+2] = 𝑣[𝑚](1 − 𝑣[𝑚+1])𝑣[𝑚+2] ,  

because for this transition to be a link it is necessary to include the probability that event 𝑚 + 1 is not Markovian and, hence, not a link. 

 In general, transitions between non-consecutive states will have a probability 

given by the product of probabilities of the first and last events times the non-occurrence 

probabilities of all intermediate events 

 𝑤[𝑚,𝑚+𝑛] = 𝑣[𝑚](1 − 𝑣[𝑚+1])⋯ (1 − 𝑣[𝑚+𝑛−1])𝑣[𝑚+𝑛]. (11) 

𝑣(�̃�) = 1∆𝑀 ∫ 𝑉(𝑀) d𝑀 ,�̃�+∆𝑀/2
�̃�−∆𝑀/2  
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 It is clear from (11) that there cannot be a path that has a true link as an 

intermediate event. 

 III. The transition probabilities of all possible paths leading to an event with 

unitary probability should be considered and counted, because it is not known which was 

the one that actually was followed; there are 2𝑛−1 different possible paths from an initial 

state 𝑠𝑚 to a final state 𝑠𝑚+𝑛. 

 IV. Each transition from a state 𝑠[𝑚] to a state 𝑠[𝑚+𝑛] will be counted as 

 𝜃𝑠[𝑚]𝑠[𝑚+𝑛] = 𝜃𝑠[𝑚]𝑠[𝑚+𝑛] + 𝑤[𝑚,𝑚+𝑛]. (12) 

Now 𝜃𝑖𝑗 will not be the number of observed transitions between states i and j, it will be 

the sum of the probabilities corresponding to each observed possible transition from state 

i to state j, calculated according to (11).  After all transitions have been taken into 

account, the transition probabilities will be estimated according to (4). 

 

6. Monte Carlo validation of the counting strategy for fuzzy thresholds and 

exploration of three Markovianity measures 

 We will use Monte Carlo methods in order to explore the effects of a fuzzy 

threshold on Markovian studies, by generating a large number, 𝑁𝑟 , of realizations of 

synthetic catalogs consisting of sequences of “events” each one characterized by a 

magnitude and a state.  

 As mentioned above, we will illustrate the application of fuzzy thresholds and the 

counting scheme using the same Markovian system used by Gutiérrez et al. (2021), 

which consists of  𝑁𝑠 = 4 states, a sequence of 𝑁 = 450 earthquakes with 6.5 ≤ 𝑀 ≥9.2 . From all earthquakes reported by the same ISC catalog for the same period 

mentioned before, we determined a G-R b-value 𝑏 = 0.928 for use in (14). 

 

 For each realization, we first generate a sequence of N Gutenberg-Richter 

distributed unrounded magnitudes, 

 log10𝑁𝐶(𝑀) = 𝑎0 − 𝑏(𝑀 −𝑀𝐾0𝑈 ), (13) 
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where 𝑁𝐶(𝑀) is the number of earthquakes with magnitudes ≤ 𝑀, so that 

 Pr(𝑀) = 𝛽e−𝛽(𝑀−𝑀𝐾0𝑈 );   𝑀 ≥ 𝑀𝐾0 𝑈 ,  (14) 

where 𝛽 = 𝑏 ln 10.  

 Events with unrounded magnitudes below the transition range are considered to 

be non-Markovian, and events with unrounded magnitudes above the transition range are 

automatically included in the Markovian set. 

 For each unrounded magnitude in the transition range a uniformly distributed 

pseudo-random number in the (0,1) range is generated using the Matlab rand.m function; 

if according to the membership function (8) the magnitude’s probability of belonging to 

the Markovian set is greater than the random number, then the corresponding event is 

accepted as belonging to the Markovian set; otherwise it is deemed non-Markovian. 

 Non-Markovian events are randomly assigned any state, with uniform probability. 

 Each event in the Markovian set is assigned a state according to the state of the 

previous Markovian event and a postulated “true” TPM �̂�, so that the Markovian events 

in the set constitute a Markov chain (the state before the first Markovian event is chosen 

randomly). We present results using as �̂�  for each postulated 𝜔  and 𝑀𝐾0  the 

corresponding observed P for the Gutiérrez et al. (2021) data set, because we felt they 

would be the more appropriate to interpret the real data analysis and were adequate to test 

the counting strategy. The counting strategy was also tested using other �̂� TPMs with 

uniformly satisfactory results. 

 When constructing a synthetic catalog it is known which events are Markovian, so 

for each realization a reference “empirical” TPM 𝑃𝑅 is built according to (4) using only 

and all events in the Markovian chain. According to Borel’s law of large numbers, 𝑃𝑅 

should tend to �̂� when the chain length tends to infinity but, due to the relatively short 

span covered by seismic catalogues, observed sequences of large earthquakes cannot be 

very long, so that 𝑃𝑅 will not, in general, equal �̂�, yet it is the best possible estimation 

obtainable from a given sequence, since it includes all events in the Markovian set and no 

events outside it. Hence, 𝑃𝑅 will be used as the reference to evaluate the performance of 
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the counting strategy that does not “know” which events in the transition band are links 

and which are not. 

 Finally, magnitudes are rounded to one decimal place, as usual in seismological 

catalogs, and one realization of a synthetic catalog is ready to be analyzed in the same 

way as a real catalog.  

 For each model, consisting of given bandwidth 𝜔, �̃�𝐾0, and “true” TPM �̂�, 𝑁𝑟 =1,000 realizations of a synthetic catalog were generated, each realization consisting of 𝑁 = 450 events with magnitudes that after rounding were in the [6.5, 9.2] range; the 

upper limit is the magnitude of the great 11 March 2011 Tohoku earthquake, the largest 

earthquake recorded in the area. Each realization was analyzed, using the counting 

strategy described above, for each of the trial bandwidths 𝜔𝑇 = 0,1,2,3, and for trial 

lower bounds �̃�𝐾0𝑇 = 6.4,6.5,⋯ ,7.0,7.1.  

 For each realization, the “observed” TPM P was estimated according to the 

counting strategy, and the root-mean-square difference between P and 𝑃𝑅, ∆𝑟𝑚𝑠𝑃, was 

estimated; this difference is a measure of how well the counting strategy is performing.   

 

 Three of the Markovianity measures used by Gutiérrez et al. (2021) were also 

evaluated for each realization, to test their usefulness in identifying characteristics of the 

model. The considered measures are: 𝑀6, which is the power to which a TPM has to be 

elevated to converge to stationary state probabilities, ie. to have all rows equal, to 6 

decimal places; the difference between the Shannon (1948) entropies of the system and 

of the reference probability distribution 𝛱 = [𝜋1, 𝜋2, ⋯ , 𝜋𝑁𝑠]𝑇 (3), defined as 

 𝑆 = 𝑆𝑃 − 𝑆Π, (15) 

where 

 

(16) 

 

and  

𝑆𝑃 = −∑∑𝑝𝑖𝑗 log2 𝑝𝑖𝑗𝑁𝑠
𝑗=1

𝑁𝑠
𝑖=1  
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(17) 

 

and the mean Relative Entropy or Kullback-Leibler Distance (Kullback and Leibler, 

1951), between the probability distribution and the reference probability distribution 𝛱: 
 

(18) 

 

which is always well-defined because Π has no null elements; 𝜅 = 0 when P and 𝛱 are 

identical. The other two measures in Gutiérrez et al. (2021) were not evaluated here 

because they are closely related to S and 𝜅. 

 Mean values of the above mentioned measures, obtained from the analysis of the 𝑁𝑟  realizations, are used to see how well the Markovianity measures identify the 

characteristics of the different thresholds. 

 

 Here, for reasons of space, we will show in Figures 3 to 6 only the results for the 

postulated thresholds that best agree with the results for the real data. In each figure the 

postulated threshold is shown at top left in (a) and other graphs show mean values of the 

results of the 𝑁𝑟 realizations for each trial 𝑀𝐾0𝑇 ; graph (b) shows ∆𝑟𝑚𝑠𝑃, and graphs (A) 

to (D) show measures corresponding to those resulting from the analyses of real data: 𝑁𝐾0, 𝑀6, S, and 𝜅, respectively. 

 Graph (b) is very important, because it shows in Figures 4 to 6 that for all actual 

fuzzy thresholds, the counting strategy, applied to the rounded magnitudes series, for 

which it is not known which events are links in the chain and which are not, results, for 

the right combination of 𝜔 and 𝑀𝐾0𝑇 , in the best mean estimate, i.e. the one closest to the 

optimal, which indicates that this strategy is indeed working as it should. 

 

 

𝑆𝑃 = −∑∑𝑝𝑖𝑗 log2 𝑝𝑖𝑗   ;𝑁𝑠
𝑗=1

𝑁𝑠
𝑖=1  

 𝜅 = 1𝑁𝑠∑∑𝑝𝑖𝑗 log2 (𝑝𝑖𝑗𝜋𝑗 )𝑁𝑠
𝑗=1

𝑁𝑠
𝑖=1  
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Fig. 4 Results of Monte Carlo simulation of a crisp, 𝜔 = 0 threshold at �̃�𝐾0 = 7.0  (a) 

for 𝑁𝑟 = 500 realizations of 𝑁 = 450 events each; mean values for 𝑁𝑟  realizations are 

shown for ∆𝑟𝑚𝑠𝑃 (b), 𝑁𝐾0 (A), 𝑀6 (B), S (C), and 𝜅 (D), plotted versus the trial �̃�𝐾0𝑇 . The 

different lines correspond to different trial threshold bandwidths 𝜔 as indicated in the 

legends  
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 Results for an actual crisp 𝜔 = 0 threshold at 𝑀𝐾0 = 7.0 are shown in Figure 4, 

where trial 𝜔𝑇 = 0 has a clear peak for  𝑀𝐾0𝑇 = 7.0 for all measures, which is to be 

expected because both threshold and measure are crisp. The response for wider 

bandwidths is not so clear because the wider the bandwidth, the more links are being 

discarded. The general behavior for all measures confirms the speculation of Gutiérrez et 

al. (2021) that trial thresholds with too low 𝑀𝐾0𝑇   include too many pseudo links, while 

too large 𝑀𝐾0𝑇  loses too many real links. The asymmetric behavior on the sides of the 

peak shows that the effect of pseudo links is larger than that of missing links. 

 

 Figure 5 shows results for an actual threshold bandwidth 𝜔 = 1 and 𝑀𝐾0 = 7.0; 

all measures show the largest extreme values for 𝑀𝐾0𝑇 = 𝑀𝐾0 + 0.1  for all trial 

bandwidths, except for 𝑀6, where 𝜔𝑇 = 2 and 𝜔𝑇 = 3 peak at 𝑀𝐾0𝑇 = 𝑀𝐾0. The peaks in 

Markovianity measures are larger for 𝜔𝑇 = 0 than for larger bandwidths, including the 

correct 𝜔𝑇 = 1.  

 

 For 𝜔 = 2 and 𝜔 = 3, shown in Figures 6 and 7, respectively, both for 𝑀𝐾0 =6.9, all measures peak at 𝑀𝐾0𝑇 > 𝑀𝐾0, indicating that their peak values are not useful for 

identifying 𝑀𝐾0 and suggesting that the measure feature that identifies the correct 𝑀𝐾0 

might be an inflection point rather than a (positive or negative) peak. 
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Fig. 5 Results of Monte Carlo simulation of a 𝜔 = 1 threshold at �̃�𝐾0 = 7.0 (a) for 𝑁𝑟 =500 realizations of 𝑁 = 450 events each; mean values for 𝑁𝑟 realizations are shown for ∆𝑟𝑚𝑠𝑃 (b), 𝑁𝐾0 (A), 𝑀6 (B), S (C), and 𝜅 (D), plotted versus the trial �̃�𝐾0𝑇 . The different 

lines correspond to different trial threshold bandwidths 𝜔 as indicated in the legends  
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Fig. 6 Results of Monte Carlo simulation of a 𝜔 = 2 threshold at �̃�𝐾0 = 6.9 (a) for 𝑁𝑟 =500 realizations of 𝑁 = 450 events each; mean values for 𝑁𝑟 realizations are shown for ∆𝑟𝑚𝑠𝑃 (b), 𝑁𝐾0 (A), 𝑀6 (B), S (C), and 𝜅 (D), plotted versus the trial �̃�𝐾0𝑇 . The different 

lines correspond to different trial threshold bandwidths 𝜔 as indicated in the legends  

 



 20 

 

 

Fig. 7 Results of Monte Carlo simulation of a 𝜔 = 3 threshold at �̃�𝐾0 = 6.9 (a) for 𝑁𝑟 =1,000 realizations of 𝑁 = 450 events each; mean values for 𝑁𝑟  realizations are shown 

for ∆𝑟𝑚𝑠𝑃  (b), 𝑁𝐾0  (A), 𝑀6  (B), S (C), and 𝜅  (D), plotted versus the trial �̃�𝐾0𝑇 . The 
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different lines correspond to different trial threshold bandwidths 𝜔 as indicated in the 

legends 

 

7. Application of the counting strategy to a real catalog 

 Figure 8 shows the results of applying our counting strategy to the data set used in 

Gutiérrez et al. (2021) for the same trial bandwidths and thresholds employed above; as 

mentioned above, the set comprises N = 450  earthquakes with magnitudes in the  6.5 ≤𝑀 ≥ 9.2 range. The lines for 𝜔 = 0 correspond to those of Figure 4 of Gutiérrez et al. 

(2021), who used only a crisp threshold; trial threshold magnitudes, 𝑀𝑇, are equivalent to 

our �̃�𝐾1𝑇 = �̃�𝐾0𝑇 + 1. 

 

Fig. 8 Application of the counting strategy to real data from Japan. 𝑁𝐾0, is shown in (A); 𝑀6, S, and 𝜅 are shown in (B), (C), and (D), respectively, plotted versus the trial �̃�𝐾0𝑇 . 
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The different lines correspond to different trial threshold bandwidths 𝜔𝑇 indicated in the 

legends 

 

 The problem now is how to interpret the results shown in Figure 8; comparison 

with Figures 4 to 7 show similar overall behaviors, except for �̃�𝐾0𝑇 < 6.7 where values 

are small but trends are different, but there is not a clear resemblance for higher �̃�𝐾0𝑇  that 

could directly and conclusively identify the actual threshold. 

 It should be emphasized at this point that the data represent only one (very short) 

realization of a stochastic process, so that the results will not necessarily conform to those 

for means shown above for the synthetics. Hence, we will use the means as guides and 

take into account the deviations from them found during the Monte Carlo simulations. 

 Figures 9 to 12 show, each for a given bandwidth 𝜔 and for the corresponding 

best fitting �̃�𝐾0, a comparison between the observed measures and the synthetic means 

together with their standard deviations. 

 Comparison for the crisp threshold for �̃�𝐾0 = 7.0 shown in Figure 9, shows that 

for S and 𝜅 the observed measures peak for the same �̃�𝐾0𝑇  as the synthetics, but peak 

values are at the end of the standard deviation bands, and for �̃�𝐾0𝑇  below 6.9 observed 

values range outside the bands. 

 For 𝜔 = 1 and �̃�𝐾0 = 7.0 (Fig. 10) there were not enough observed data to go 

beyond �̃�𝐾0𝑇 = 7.0; S and 𝜅 fit reasonably well for �̃�𝐾0𝑇  between 6.7 and 7.0, but 𝑀6 does 

not fit as well. 

 Figure 11 shows 𝜔 = 2 and �̃�𝐾0 = 6.9 and it seems that measures for �̃�𝐾0𝑇 = 7.0 

were determined from too few data, but fit is acceptable for most of the �̃�𝐾0𝑇  range. 

 Our widest bandwidth 𝜔 = 3 is shown in Figure 12 for �̃�𝐾0 = 6.9; it was only 

possible to measure up to �̃�𝐾0𝑇 = 6.9 and S and 𝜅 fit fairly well, but  𝑀6 does not. 

 Considering the above, we find that 𝜔 = 2 results in the best fit, followed closely 

by 𝜔 = 1; more data would be needed to make a reliable choice. 
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Fig. 9 Comparison of observed measures, blue lines with circles in (B) to (D), with 

synthetic means, thick black lines, and means plus/minus one standard deviation, thin 

black lines, for the synthetic threshold (a) with 𝜔 = 0 and �̃�𝐾0 = 7.0  
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Fig. 10 Comparison of observed measures, blue lines with circles in (B) to (D), with 

synthetic means, thick black lines, and means plus/minus one standard deviation, thin 

black lines, for the synthetic threshold (a) with 𝜔 = 1 and �̃�𝐾0 = 7.0  
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Fig. 11 Comparison of observed measures, blue lines with circles in (B) to (D), with 

synthetic means, thick black lines, and means plus/minus one standard deviation, thin 

black lines, for the synthetic threshold (a) with 𝜔 = 2 and �̃�𝐾0 = 6.9  
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Fig. 12 Comparison of observed measures, blue lines with circles in (B) to (D), with 

synthetic means, thick black lines, and means plus/minus one standard deviation, thin 

black lines, for the synthetic threshold (a) with 𝜔 = 3 and �̃�𝐾0 = 6.9   
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8. Discussion and conclusions 

 It is unreasonable to suppose that the threshold between seismic magnitudes that 

constitute a Markovian process and those that do not can be adequately modeled by a 

crisp step-function, particularly when considering the uncertainties in magnitude 

determination and the effects of rounding. Hence it is necessary to use fuzzy thresholds to 

model the process. We heuristically propose a membership function with probability 

proportional to seismic moment in the transition band. 

 The usual method for evaluating empirical transition probabilities assumes all 

events in the observed sequence are links in a Markov chain; we propose a counting 

strategy for fuzzy thresholds based on the probabilities of being Markovian of the events 

in the sequence, and justify the strategy through Monte Carlo simulations. The counting 

strategy can be applied to any membership function. 

 The results from the real data show features resembling some of the simulations, 

but do not correspond closely and unequivocally to any one of them; which is not 

surprising since the observed data constitute only one very short realization of a random 

process, so that large differences can be expected from realization to realization, and any 

one realization can be expected to differ from the mean of many realizations.  Taking the 

above into account, we find that the empirical results resemble most the simulations for 𝑀𝐾0 = 6.9  and 𝜔 = 2 ; so we conclude that, within the limitations of the data, the 

Markovian behavior of the seismicity in the Japanese area is best modeled by a fuzzy 

threshold 0.2 magnitude units wide above 𝑀𝐾0 = 6.9.  

 Use of this model to estimate the Markovian seismic hazard in the Japan area 

instead of the Gutiérrez et al. (2021) crisp threshold model, changes the Markovian 

transition probabilities from their 

𝑃𝐺 = [0.20833 0.479170.36667 0.26667 0.14583 0.166670.18333 0.183330.30000 0.200000.20000 0.40000 0.33333 0.166660.08571 0.31429] 
to 
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𝑃 = [0.24568 0.433390.32478 0.27180 0.15040 0.170520.18293 0.220480.27301 0.221850.26966 0.42882 0.41513 0.090010.04776 0.25376] . 
 The largest changes are +0.08180 for 𝑝3 3  and -0.07665 for 𝑝3 4 , which make 

region 3 the most likely to have repetitions of large earthquakes, and the mean absolute 

change over all transition probabilities is 0.03627. The significance of these changes is 

apparent when considering that they are 0.3272, 0.3066, and 0.1451, respectively, of the 

uniform probability 0.25.  
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