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Abstract

The explicit finite difference method is suggested in this publica-

tion to resolve pseudo-hyperbolic partial differential equations. An ex-

plicit finite difference scheme is developed for the suggested problem.

The estimated and exact solutions are compared to create the error

analysis table. The stability inequalities for this difference scheme are

demonstrated using matrix analysis. An example is illustrated as an

implementation of the finite difference scheme method. The results

show that the proposed method is very accurate and convenient. The

solutions are represented graphically. Other numerical methods can

be applied to investigate pseudo-hyperbolic partial differential equa-

tions.

Keywords: Pseudo-hyperbolic equation, explicit finite difference scheme,
stability, nonlocal initial condition, approximation solution.

1 Introduction

Linear and nonlinear hyperbolic partial differential equations are important in many areas of science,

including physics and engineering. Examples include the wave equation and the telegraph equation,

which model problems such as vibrating strings fixed at both ends, longitudinal vibrations, thermo-

dynamics, electrodynamics waves, electromagnetic waves, and sound wave propagation. Euler’s gas

dynamics equations are also hyperbolic partial differential equations. These physical phenomena can

be expressed mathematically as partial differential equations.

The implicit finite difference method for solving linear and nonlinear pseudo-parabolic equations

with Dirichlet boundary conditions was introduced in the early 1970s [2], [14]. The proposed problem

was first highlighted in [8] where they used the residual power series technique to present analytical

approximate solutions to the third-order linear pseudo hyperbolic partial differential equation with

non-local integral conditions.
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Theoretical research into pseudo-parabolic equations with non-local boundary conditions began

because of their implementations in complex problems in science and technology. The solutions

to the pseudo-parabolic partial differential equation of the third order were presented in [7]. Later,

many studies devoted to the modelling of dynamics using a pseudo-parabolic equation with non-local

boundary conditions were published.

Over the years, academics have consistently shown an interest in numerical approaches for

pseudo-parabolic and pseudo-hyperbolic equations with non-local boundary conditions. The pseudo-

hyperbolic partial differential equations with non-local conditions were taken into consideration by

the authors in [8]. By using an implicit finite difference technique, the linear pseudo-equivalent equa-

tions have been presented with a range of integral terms [9], [11], [13]. The implicit finite difference

techniques were effectively used by the authors in [3] for various problems. Pseudo-parabola imple-

mentations are displayed in [5, 6], [9]. In this manuscript, the following pseudo-hyperbolic partial

differential equations are taken into consideration:

uττ (y, τ)− λuσyy(y, σ)− uyy(y, σ)− f(y, σ) = 0, y ∈ (0, Y ), σ ∈ (0, T ), (1)

with

u(0, y) = V0(y), uσ(y, 0) = V1(y), y ∈ [0, Y ], (2)

u(σ, 0) = α(σ) +

Y
∫

0

u(y, σ)dy, σ ∈ [0, T ], (3)

u(σ, y) = β(σ) +

Y
∫

0

u(y, σ)dy, σ ∈ [0, T ]. (4)

The approximate numerical solution for the case of the parabolic equation was examined in [4]

using the implicit and explicit finite difference approach. The explicit finite difference solution to the

pseudo-parabolic equation was addressed in [10]. This study investigates the approximate solutions

of the pseudo-hyperbolic partial differential equations using the explicit finite difference technique,

as well as derives stability analysis for the given problem using the suggested method.

This study is divided into several sections: in the second section, explicit finite difference schemes

for pseudo-hyperbolic partial differential equations are defined. The stability estimates are presented

in the third section. The fourth section discusses utilizes the finite difference method to a pseudo-

hyperbolic equation. Finally, the last section discusses the main conclusion, which summarises the

findings of this study.
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2 Finite Difference Schemes

According to the methodology of [10], we write the three-layer schemes for equations (1.1)-(1.4), for

this goal. The explicit finite difference schemes can be constructed using (utxx) was first used for

pseudo-parabolic in [10].

We provide grids in standardised steps

wh = {yi : yi = ih, i = 0,M}, h =
Y

M
,

wσ = {σj : σj = jσ, j = 0, N}, σ =
T

N
,

wh = {y1, y2, . . . , yM−1}, wσ = {σ1, σ2, . . . , σN−1}. In [0,Y]×[0,T], we utilize grids w = wh ×

wσ, w = wh × wσ. We utilize U
j
i = U(yi, σj) to the function described on this grids wh × wσ.

Additionally, then we define the vectors U = (U0, U1, . . . , UM)σ and U = (U0, U1, . . . , UM−1)
σ. At

any point of (σj, yi) ∈ w, we have

(uσyy)
j
i = (uyyσ)

j
i =

1

h2

(

(uσ)
j
i−1 − 2(uσ)

j
i + (uσ)

j
i+1

)

+O(h2),

we create explicit finite difference schemes for third order derivative (uxxt) as follows:

(uσyy)
j
i =

1

h2

(

u
j
i−1 − u

j−1
i−1

σ
− 2

u
j+1
i − u

j
i

σ
+

u
j
i+1 − u

j−1
i+1

σ
+O(σ)

)

+O(h2)

=
1

σ

(

u
j
i−1 − 2uj+1

i + u
j
i+1

h2
−

u
j−1
i−1 − 2uj

i + u
j−1
i+1

h2

)

+O(
1

h2
+ h2). (5)

Now, we write the three-layer finite difference schemes for the problems (1.1)–(1.4), as

U
j+1
i − 2U j

i + U
j−1
i

σ2
=

1

σ

(

U
j
i−1 − 2U j+1

i + U
j
i+1

h2
−

U
j−1
i−1 − 2U j

i + U
j−1
i+1

h2

)

+
U

j
i−1 − 2U j

i + U
j
i+1

h2
+ F

j
i , (6)

U
j
0 = L(U

j
) + V

j
1 , tj ∈ wσ, (7)

U
j
M = L(U

j
) + V j

r , tj ∈ wσ, (8)

U0
i = (V0)i, yi ∈ wh, (9)

U1
i = (V1)i, yi ∈ wh, (10)
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here, L(U
j
) = U

j
0 + U

j
M

h
2
+
∑M−1

i=1 U
j
i h. According to the use of the three-layer layout, it should

assess a supplement condition on the first layer. We should implement an implicit two-layer difference

scheme in the first step of certainty O(σ2 + h2) [10]. Then, we obtain

σ2F
j
i = U

j+1
i − 2U j

i + U
j−1
i −

σλU
j+1
i

h2
+

2σλU j
i−1

h2
−

σλU
j
i+1

h2
+

σλU
j−1
i−1

h2

−
2σλU j

i

h2
+

σλU
j−1
i+1

h2
−

σ2U
j
i−1

h2
+

2σ2U
j
i

h2
−

σ2U
j
i+1

h2
. (11)

Considering (2.1), we obtain the difference problem (2.2)–(2.6) the convergence of the (1.1)-(1.4)

conditionally via O(σ2 + h2 + σ
h2 ) as σ = O(h2). If λ = 0, then Equation (6) is conditionally con-

sistent via an explicit finite difference scheme with O(σ2 + h2 + σ2

h2 ) for the unconditionally stable

Dirichlet boundary conditions for the second order parabolic equation [10].

We construct the three-layer FDS (2.2)–(2.6) to two-layer system like in [8]. First, we consider

(2.3) and (2.4) as a linear system by U
j
0 and U

j
M , and

U
j
0 = γ̃0L̃(U

j) + Ṽ
j
1 , U

j
M = γ̃1L̃(U

j) + Ṽ j
r , (12)

where

γ̃0 =
1

d
, γ̃1 =

1

d
, L̃(U j) =

M−1
∑

i=1

U
j
i h, d = 1− h,

Ṽ
j
1 =

V
j
1 + hcj

d
, Ṽ j

r =
V j
r + hcj

d
, cj =

V j
r − V

j
1

2
.

Here, d > 0 for h < 1 and d < 0 if h is small enough (h > 1) . Substituting the expressions (2.8) in

(2.7), we can rewrite finite difference scheme (2.2)–(2.4) for each j = 1, N − 1 as

AU j+1 +BU j + CU j−1 = σ2F j. (13)

3 Matrix Stability for Finite Difference Schemes

Assume that h = X
M

for x−axis and σ = T
N

for t−axis as grid mess, then we acquire

xi = ih; i = 0, 1, 2, . . . ,M, tj = jσ; j = 0, 1, 2, . . . , N,
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for the pseudo hyperbolic partial differential equation (1.1), we create the difference schemes by

three-layer FDS (2.2), as






























































U
j+1

i −2Uj
i +U

j−1

i

σ2 = 1
σ

(

U
j
i−1

−2Uj+1

i +U
j
i+1

h2 −
U

j−1

i−1
−2Uj

i +U
j−1

i+1

h2

)

+
U

j
i−1

−2Uj
i +U

j
i+1

h2 + F
j
i .

U
j
0 = L(U

j
) + V

j
1 ,

U
j
M = L(U

j
) + V j

r ,

U0
i = (V0)i,

U1
i = (V1)i,

(14)

where L(U
j
) = U

j
0 + U

j
M

h
2
+
∑M−1

i=1 U
j
i h.

We can rewrite equation (3.1) as


























































σ2F
j
i = U

j+1
i − 2U j

i + U
j−1
i −

σλU
j+1

i

h2 +
2σλUj

i−1

h2 −
σλU

j
i+1

h2 +
σλU

j−1

i−1

h2

−
2σλUj

i

h2 +
σλU

j−1

i+1

h2 −
σ2U

j
i−1

h2 +
2σ2U

j
i

h2 −
σ2U

j
i+1

h2 .

U
j
0 = L(U

j
) + V

j
1 ,

U
j
M = L(U

j
) + V j

r ,

U0
i = (V0)i,

U1
i = (V1)i.

(15)

Utilizing the initial conditions, (3.2) yields:















































































AU j+1 +BU j + CU j−1 = σ2F j

σ2F
j
i =

(

1 + 2σλ
h2

)

U
j+1
i +

(

− 2− 2σλ
h2 + 2σ2

h2

)

U
j
i +

(

− σλ
h2 − σ2

h2

)

U
j
i+1 +

(

− σλ
h2 − σ2

h2

)

U
j
i−1 + U

j−1
i +

σλU
j−1

i−1

h2 +
σλU

j+1

i−1

h2 .

U
j
0 = L(U

j
) + V

j
1 ,

U
j
M = L(U

j
) + V j

r ,

U0
i = (V0)i,

U1
i = (V1)i,

(16)

where F
j
i = F (xi, tj), and U

j
i = U(xi, tj) and
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A =

























Z 0 0 . . . 0 0

0 Z 0 . . . 0 0

0 0 Z . . . 0 0
...

...
...

. . . 0 0

0 0 0 . . . Z 0

0 0 0 . . . 0 Z

























(M−1)×(M−1),

where Z =

(

1 + 2σλ
h2

)

,

B =

























p k 0 0 . . . 0

g p k 0 . . . 0

0 g p k . . . 0

0 0
. . . . . . . . . 0

...
... . . . g p k

0 0 . . . 0 g p

























(M−1)×(M−1),

where p =

(

− 2− 2σλ
h2 + 2σ2

h2

)

, k =

(

− σλ
h2 − σ2

h2

)

and g =

(

− σλ
h2 − σ2

h2

)

,

C =

























1 a 0 0 . . . 0

a 1 a 0 . . . 0

0 a 1 a . . . 0

0 0
. . . . . . . . . 0

...
... . . . a 1 a

0 0 . . . 0 a 1

























(M−1)×(M−1),

where a =

(

σλ
h2

)

. We write

∥A∥ = ∥A∥∞ max
1≤i≤(M−1)

{

∑M−1
i=1 |ajm|

}

, where A = [ajm](M−1)×(M−1), and I is unit matrix.

If −2− 2σλ
h2 + 2σ2

h2 > 0, then ∥A−1B∥ ≤ 3.
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Proof:

∥A−1B∥ ≤ ∥A−1∥∥B∥ ≤
1

min
1≤i≤(M−1)

| amm | −

{

∑M−1
i=1 ajm

}∥B∥

≤
| −2− 2σλ

h2 + 2σ2

h2 | + | −σλ
h2 − σ2

h2 | + | −σλ
h2 − σ2

h2 |

| 1 + 2σλ
h2 |

=
2 + 2σλ

h2 − 2σ2

h2 + 2σλ
h2 + 2σ2

h2

1 + 2σλ
h2

=
3(1 + 2σλ

h2 )

1 + 2σλ
h2

−
1

1 + 2σλ
h2

= 3−
1

1 + 2σλ
h2

< 3.

∥A−1C∥ = 1.

Proof:

∥A−1C∥ ≤ ∥A−1∥∥C∥ ≤
1

min
1≤i≤(M−1)

| amm | −

{

∑M−1
i=1 |ajm|

}∥C∥

=
1 + 2 | σλ

h2 |

| 1+2σλ
h2 |

= 1.

If ∥A−1B∥ ≤ 3 and ∥A−1C∥ = 1, then, the equation (3.3) is stable.

Proof: Applying the same procedure of [12], and applying Lemmas 3.1 and 3.2 the proof of the

theorem is completed.

4 Numerical Experiments

For this aim, we provide the finite difference method applications to the pseudo hyperbolic partial

differential equation. We take into consideration

utt(x, t)− λutxx(x, t)− uxx(x, t)− et(2− λ) sin x = 0, x ∈ (0, π), t ∈ (0, 1), (17)

with the initial conditions

u(0, x) = sin x, ut(x, 0) = − sin x, x ∈ [0, π], (18)

and the boundary conditions

u(t, 0) =

π
∫

0

u(x, t)dx− 2e−t, t ∈ [0, 1],
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u(t, π) =

π
∫

0

u(x, t)dx− 2e−t, t ∈ [0, 1].

Solution. The exact solution is presented as u(t, x) = e−t sin x. We apply difference schemes

method to investigate the problem (4.1) depends on initial condition (4.2). For difference

equations, we employ a modified Gauss elimination strategy. The numerical solution’s maximum

norm of the mistake:

ε = max
i=0,1,...,M
j=0,1,...,N

|u(t, x)− u(tj, xi)|.

Where u
j
i = u(ti, xj) is the approximate solution, u(t, x) is the exact solution and ε is the error

analysis. In the following table, we explain the approximate solution, the exact solution and error

analysis of the difference scheme (2.2).

Utilizing Matlab programming, we can obtain the following simulations.

Figure 1: Shows the exact solution of equation (4.1), for N = 400, M = 20, and λ = 0.0000001
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Figure 2: Gives the approximate solution of equation (4.1), for N = 400, M = 20, and λ =

0.0000001

Figure 3: Exact solution of equation (4.1), for N = 400, M = 10, and λ = 0.01
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Figure 4: Gives the approximate solution of equation (4.1), for N = 400, M = 10, and λ = 0.01

Figure 5: gives the comparison between the approximate and exact solution of equation (4.1), for

N = 400, M = 20, and λ = 0.01 and 0 ≤ t ≤ 1
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Figure 6: Comparison between the approximate and exact solution of equation (4.1), for N =

900, M = 30, and λ = 0.01 and 0 ≤ t ≤ 1

It can be seen from the above figures that the exact solution and the approximate solutions are close

to each other. However, we give the following error analysis table to make a definite distinction.

Table 1: Numerical Results
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σ = 1
N
, h = π

M
λ Error(ε)

N = 100, M = 10 λ = 0.5 0.028107430087899

λ = 0.1 0.007909466520303

λ = 0.01 0.002181874884325

N = 400, M = 20 λ = 0.5 0.248458473959889

λ = 0.1 0.006794799568062

λ = 0.01 0.001040060956417

N = 900, M = 30 λ = 0.5 0.026761174233341

λ = 0.1 0.006592582475333

λ = 0.01 0.060663970068598

N = 1600, M = 40 λ = 0.5 0.026688764570917

λ = 0.1 0.006522117686502

λ = 0.01 7.6528× 10−4

N = 2500, M = 50 λ = 0.5 0.026655292283168

λ = 0.1 0.006489557803639

λ = 0.01 7.3248× 10−4

λ = 0.001 1.2604× 10−4

λ = 0.0001 7.1181× 10−5

5 Conclusion

In this study, nonlocal boundary value conditions are used to examine pseudo-hyperbolic partial

differential equations. The explicit finite difference techniques were developed for this equation. A

matrix stability method was used to demonstrate stability estimations for this difference scheme

method. The algorithm of this problem is written for the numerical solution. Matlab programme

was used for the numerical solutions. The numerical solutions were created using Matlab software.

The test problem shows the effectiveness and suitability of this approach for approximating the

solution of pseudo-hyperbolic partial differential equations. The simulations for this problem are

displayed both the exact and approximate solutions.

Based on data analysis table 1. Generally, there is good agreement between the absolute error

results produced using the explicit finite difference technique for various values of λ and the values

chosen by M and N . When we choose λ = 0.0001, λ = 0.001, λ = 0.01, λ = 0.5, M = 50, and

12



N = 2500, the error analysis is excellent because the precise and approximate solutions are then

closer to one another.

The exact solution in figure 1 and the approximate solution in figure 2 for λ = 0.0000001, M = 20

and N = 400 are quite similar, as can be seen from the graphical representation of the solutions.

Additionally, for λ = 0.01, M = 20 and N = 400, the exact solution in Figure 3 and the

approximate solution in Figure 4 are close to one another, Figures 5. and 6., which compare the

exact and approximate solutions to equation (4.1), can be observed to be in the same line for the

values of N = 400, M = 20, and λ = 0.01 and 0 ≤ t ≤ 1,

N = 900, M = 30, and λ = 0.01 and 0 ≤ t ≤ 1, respectively. The tabular descriptions and

graphical representations provided above indicate the effectiveness of the technique used.
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