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The Feynman-Vernon influence functional formalism which is adequate in the study of the dissi-
pative dynamics, is used to describe weakly coupled circuits. The classical behavior of the system
formed by resistance, electric and magnetic polarizations is characterized by the influence functional
approach whose behavior although is linear in some sense, is not representable by systems of perfect
oscillators. In addition, linear combinations of complex q-exponentials are used in representation
of nonlinear circuits in which the solution of the correspondent nonlinear differentials equations are
mapped in modified differentials equations for a new deformed variable.

I. INTRODUCTION

The Feynman-Vernon influence functional approach
(FVA) is well-known to study the dissipative dynamics[1–
5], being also a useful tool in the context of nonlinear
transport in interacting nanojunctions. The integration
over the degrees of freedom of the thermal reservoir en-
ables to obtain an exact path-integral representation for
the current of a general system connected to several leads.
Thus, in the FVA influence functional, a functional of the
system paths, accounts exactly for the effects of the leads
on the system’s dynamics.

On the other hand, the study of nonlinear equations
(NL) in science and engineering is an important subject
since much time ago due to their ability to explain many
complex behaviors in the nature [6–22] as in the theory of
circuits with chaotic behavior[23]. In this last, the Duff-
ing’s equation that corresponds to the forced damped
mechanical oscillator with addition of a cubic term on
the Hook’s law, presents an electrical analogous that is
represented by the RLC circuit in series with nonlinear
capacitance[24]. Moreover, nonlinear equations are im-
possible to solve analytically. The essential difference is
that linear systems obey to the superposition principle
and can be broken down into parts, where each part can
be solved separately and finally recombined to get the
final answer. This idea allows a large simplification of
several problems however, many things in nature do not
obey this behavior. In general, whenever parts of the
system interfere (or compete), there are nonlinear inter-
actions going on and hence, the principle of superposition
breaks down [23].

In this work, we represent simple circuits like the non-
linear chaotic LC circuit and forced RLC circuit using q-
exponentials functions, where the nonlinearity is loaded
in the parameter q. The plan of this paper is the follow-
ing. In section II, we use the Feynman-Vernon approach
to describe the weakly coupled circuit. In section III,
we study the damped driven oscillator in an RLC cir-
cuit using q-exponentials and derive the correspondent
differential and propose a generalized equation for the
nonlinear forced RLC circuit. In section IV, we present

our conclusions and final remarks.

II. FUNCTIONAL INFLUENCE APPROACH

FOR THE WEAKLY COUPLED CIRCUIT

In general, linear systems that are lossless and those
that contain certain kinds of loss can be represented by
distributions of oscillators. For an interaction system
q linearly coupled to the test system Q, the total La-
grangian for the system is expressed as L = L1(Q̇,Q, t)+
L2(q̇, q, t)+Lint(Q, q), where Lint(Q, q) = γqQ, L(q̇, q, t)
is the part involving the q system above. The situation
is represented in Fig. (1).
Influence Phase: The interaction between Q and q can
be represented by the influence phase given by

φ(Q,Q′) =
1

2π

∫ ∞

0

dω

{

Q′(ω)[Q(−ω)−Q′(−ω)]

iωZ(ω)

+
Q(−ω)[Q(ω)−Q′(ω)]

iωZ(−ω)

}

, (1)

where φ(Q,Q′) is determined by studying the properties
of q alone. Q(ω) is the Fourier transform of γ(t)Q(t) and
Z(ω) is the classical impedance that relates the reaction
of q to an applied force. Z(ω) is found by taking the
classical system corresponding to Q and finding the re-
sponse of the coordinate Q to a driving force g(t), which
is derived from the potential g(t)Q(t). g(t) is considered
to be applied at zero temperature subject to the initial
conditions Q(0) = Q̇(0) = 0. The impedance is defined
by Z(ω) = g(iωQ(ω)), where

g(ω) =

∫ ∞

0

g(t)e−iωtdt. (2)

Being, the classical behavior of a system formed by re-
sistance, electric and magnetic polarizations can be char-
acterized by the influence functional whose behavior al-
though linear in some sense, is not representable by sys-
tems of perfect oscillators. Even though, the behavior of
these quantities are constant and independent of the ap-
plied field, these approximation fail when the magnitude
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FIG. 1. (Above) Interaction between a system Q and q cou-
pled by a potential V (Q, q, t).(Under) Interaction system of a
resistor and inductor at finite temperature T when the coordi-
nate associated with the resistor is the charge flowing through
it.

of this applied field become too large. Hence, for the
range of weak field, the linear analysis of these systems
is valid and we can find the influence functional of this
system[1].
Influence Functional Approach for the LC Circuit: In
general, for a test system Q coupled to a LC circuit,
whose inductance is L and the characteristic frequency
is ω and the charge is q, the Lagrangian is defined as
L = K − U , where K is the kinetic energy and U is
potential energy for q and Q, which can be written as

L(Q, Q̇, t) =
Lq̇2

2
−

Lω2q2

2
+Qq. (3)

If Q is assumed in zero temperature T , then to within a

normalizing constant χi(q) = e−Lωq2/2~, where we have
made ~ = 1. The final state of q is assumed to be arbi-
trary and thus, summed over. The influence functional
at T = 0 is defined as

F(Q,Q′) =

∫

K(qτ , qς)K
∗(q′τ , q

′
ς)e

−Lω/2(q2τ+q2ς )

×δ(qτ − q′ς)dqς · · · dq
′
τ , (4)

where −Qq and q′Q′ are the interaction potentials acting
on q and q′ respectively. Consequently, for the LC circuit,

we have

KQ(qτ , qς) = N (ω, τ, t) exp

{

(iω/2) sin(ω(t− τ)) cos(ω(t− τ))

−2qτqς + (2qt/ω)

∫ T

τ

qt sin(ω(t− τ))dt

+(2qτ/ω)

∫ T

τ

qt sin(T − t)dt− (2/ω2)

×

∫ T

τ

∫ T

τ

QτQs sin(ω(T − t)) sin(ω(s− τ))dsdt

}

,

(5)

where N is a normalizing factor. Thus, by starting with
the Lagrangian of the unperturbed LC circuit, we add
to it the potential term given by f(t)q(t), where the re-
sponse of q to a force has nothing to do with the system
Q outside of the type of coupling involved that is the
alternating tension.

III. DAMPED DRIVEN OSCILLATOR IN AN

RLC CIRCUIT

We consider the effective current of a nonlinear cir-
cuit written in terms of the combination of q-exponentials
given by

iq(t) = iqωζqe
iωt
q − qωξqe

−iωt
q , (6)

where here, q ∈ R is the nonadditivity parameter and
q ∈ (1, 2). Moreover, iq(t) = dQq(t)/dt is the effec-
tive current, being Qq(t) is the effective charge of the
circuit parameterized by the q-index. ζq and εq are con-
stant coefficients that depend upon the initial conditions,
Qq(0) = Q0 and iq(0) = 0. The complex q-exponential
function eixq , presents the properties [eixq ]∗ = [e−ix

q ],
where exq is a deformation of the standard exponential
parameterized by the q-index[25, 26]

exq =

{

[1 + (q − 1)x]
1

q−1 ,−∞ < x ≤ 0, q ∈ [1, 2)

[1 + (1− q)x]
1

1−q , 0 ≤ x < ∞, q ∈ (0, 1].
(7)

The inverse of the q-exponential function is the q-
logarithm function lnq(x), defined as

lnq(x) =











xq−1−1
q−1 , 0 < x ≤ 1, q ∈ (1, 2]

x1−q−1
1−q , 1 ≤ x < ∞, q ∈ (0, 1].

01/(1−q) if q ̸= 1 and 1 + (1− q)x ≤ 0.

(8)

These are a set of probability distributions that are em-
ployed for characterising of anomalous diffusion[25, 26].
The combination of q-exponentials functions given above,
Eq. (6), is the solution of the following differential equa-
tion for the effective current iq(t) given by

Fq(ω)

(

diq(t)

dt

)
1
q′

+
1

LC

∫

iq(t)dt = −
1

2LC
ξq(t), (9)
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where q′ = 2q − 1 and

Fq(ω) =

[

(−1)
1− 1

q′ ζ
1− 1

q′

q + (−1)
1− 1

q′ ξ
1− 1

q′

q

]

2q
1
q′ ω

−2+ 2
q′

, (10)

where we can make z = iωt and ω > 0. Then we have
−∞ < z ≤ 0, q′ ∈ [1, 3), with 0 < z < ∞, q′ ∈ (−1, 1].
However, as z = ±iωt in Eq. (6), we must have the in-
terval of q′ as q′ ∈ (−1, 3) in the equation above. Eq. (6)
could be applied to the different branches described by
an equation in the form θ̇ = ω + a sin θ, where ω and a
are constants, as electronics (phase-locked loops); biology
(oscillating neurons, firefly flashing rhythm, human sleep-
wake cycle) and mechanics (damped pendulum driven by
a constant torque). The second term in the above dif-
ferential equation eliminates the anomalous terms that
emerged due the nonlinearity of the first term (exponent
1/q′ in the first term). However, as q ∈ R, the first term
can be expanded in an infinite series using the binomial
theorem

εq(t) = −ζ
1− 1

q′

q ξ
1
q′

q e−iωt
q − ξ

1− 1
q′

q ζ
1
q′

q eiωt
q + · · ·. (11)

We make εq(t) = −Rq(t), where Rq(t) is the rest of
terms that emerges from series resultant of the binomial
expansion of the first term of the equation. We find that
in the limit q → 1, the first term do not present the
exponent 1/q′ and hence, we do not have residuals terms
anymore (the rest of terms of the series, Rq(t)). In the
limit q → 1, Rq(t) = 0, and we recuperate the standard
equation of the LC circuit.

d2Q(t)

dt2
+

1

LC
Q(t) = 0. (12)

The nth derivative of the q-exponential function is given
as [27, 28]

dn

dxn
exq = Qn−1(q)

(

exq
)nq−(n−1)

(n ≥ 1), (13)

where Qn(q) := 1 · q(2q− 1)(3q− 2) · · · [nq− (n− 1)]. For
n = 2 we have

d2

dx2

(

eixq
)

= −q(eixq )2q−1, (14)

where L is the self-inductance, C the capacitance and ω
the angular frequency ω = 1√

LC
. From Eq. (6), we obtain

Qq(0) = ζqe
0
q + ξqe

0
q = ζq + ξq = Q0,

iq(0) = iqωζq(e
0
q)

q − iqωξq(e
0
q)

q = iqωζq − iqωξq = 0,

(15)

and therefore, ζq = εq = Q0

2 . In addition, we can write
the solution, Eq. (6) in terms of cosq(x) and sinq(x) func-
tions, defined in terms of complex q-exponentials, given
by

e±ix
q = cosq(x)± i sinq(x), (16)

consequently

Qq(t) = Qq cosq(ωt+ φ0), (17)

where φ0 is a phase shift, given by

φ0 = arccosq

(

Qq(0)

Qq

)

= arccosq

(

Q0

Qq

)

. (18)

For pure imaginary ix, the complex q-exponential func-
tion eixq is defined as the principal value of [16, 29]

e±ix
q = [1± (1− q)ix]

1
1−q ; eix1 ≡ eix (19)

where

cosq(x) = ρq(x) cos

{

1

q − 1
arctan[(q − 1)x]

}

, (20)

sinq(x) = ρq(x) sin

{

1

q − 1
arctan[(q − 1)x]

}

, (21)

ρq(x) = [1 + (1− q)2x2]1/[2(1−q)]. (22)

The formulae Eq. (7) is true only for q ∈ (0, 1], where
the complete definitions can be given in two equivalent
ways: either changes the full expression of the q-deformed
functions appropriately and uses the interval q ∈ (0, 1]
only as in the equation above or we can consider a unique
expression and change the deformation parameter inter-
val [26].

A. Generalized Forced RLC Circuit

We have the equation for the chaotic nonlinear elec-
trical circuit where the flow of current in the circuit is
governed by the elementary laws of electricity, where the
current i, measured in amperes (A), is a function of time
t. The resistance R is in ohms (Ω), the capacitance C in
farads (F ), and the inductance (L) in henrys (H) are all
positive constant. The impressed voltage V (t) in volts
(V ) is a given function of time. Another quantity that
enters is the charge on capacitor at time t. Q that is
expressed in coulombs (C) We have that effective charge
Qq(t) obeys an Equation in the form

L
d2Qq

dt2
+R

dQq

dt
+

Qq

C
= V (t), (23)

where we take V (t) as the real part of a complex V̂ (t):

V (t) = Re
{

V̂ (t)
}

. The second derivative on time of Q̂q

is d2Q̂q/dt
2 = −q(iω)2(eiωt

q )2q−2Q̂q. Thus, we transform
the Eq. (23) in the form
[

−Lq(iω)2(eiωt
q )2q−2 +R(iω)(eiωt

q )q−1 +
1

C

]

Q̂q = V̂ ,

Q̂q =
V̂

[

−Lq(iω)2(eiωt
q )2q−2 +R(iω)(eiωt

q )q−1 + 1
C

] ,

Q̂q =
V̂

[

Lqω2(eiωt
q )2q−2 +R(iω)(eiωt

q )q−1 + 1
C

] ,

(24)
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where Γ = R/L. Since that îq = dQ̂q/dt =

iω(eiωt
q )q−1Q̂q, we have

îq(t) =
V̂

[

Lq(iω)(eiωt
q )q−1 +R+ 1

iωC(eiωt
q )q−1

] ,

V̂ =

[

iqωL(eiωt
q )q−1 +R+

1

iωC(eiωt
q )q−1

]

îq(t) = Ẑq(t)̂iq(t),

(25)

where we have the quantity

Ẑq(t) = −iqωL(eiωt
q )q−1 +R+

1

iωC(eiωt
q )q−1

(26)

is defined as the modified complex impedance. For q → 1,
we obtain the standard complex impedance. Moreover,
we can write the Eq. (23) in terms of iq(t) as

L
diq(t)

dt
+Riq +

1

C

∫

iq(t)dt = V (t). (27)

So, we obtain the relation between the complex tension
V̂ and the effective current îq give by V̂ = Ẑq îq, with

Ẑq a more complicated quantity than standard complex
impedance. We obtain the equation correspondent to
above solution, as well

Q̂q(t) = Q̂q(ω)e
i(ωt+φ)
q , q ∈ R. (28)

By substitution in Eq. (27), we find

Q̂q(ω, t) =
ε0e

−iφ
q

{

−Lω2q[e
i(ωt+φ)
q ]2q−2 + iωR(e

i(ωt+φ)
q )q−1 + 1

C

} .

(29)

Q̂q(ω, t) =
ε0e

−iφ
q [e

−i(ωt+φ)
q ]2q−2

−Lω2q

{

1− iR

Lωq(e
i(ωt+φ)
q )q−1

− 1

LCω2q(e
i(ωt+φ)
q )2q−2

} ,

(30)

where Qq(ω, t) = Re
{

Q̂q(ω, t)
}

. Hence

Qq(ω, t) =
ε0 cosq(φ)[cosq(ωt+ φ)]2q−2

−Lω2q
+O(· · ·)

(31)

This very complicated series becomes difficult to express
the solution of Eq. (27) in form of Eq. (28) on contrary
of standard forced RLC circuit.

B. Existence and Uniqueness

We investigate the existence and uniqueness of solu-
tions for the nonlinear differential equations by utilizing
the well-known fixed point theorems, which we obtain

the sufficient conditions for the uniqueness and existence
of solutions [30]. We write the Eq. (6) in the form

i̇q = Gq(Qq, t), (32)

and

Gq(Qq, t) =

(

−ζqQq(t)

LC

)2q−1 [

1 +
εq(t)

2Qq(t)

]2q−1

. (33)

When q = 1 + δ, 0 ≤ δ ≪ 1 and we consider Gq(Qq, t)
as a smooth function. Such equation represents a small
perturbation of the linear electrical oscillator Q̈+Q = 0
and is hence a weakly nonlinear electrical oscillator. In
this case Gq(Qq, t) in the equation above can be approx-
imated as

Gq(Qq, t) ≈

(

−1ζqQq(t)

LC

)2q−1 {

1 + (2q − 1)
εq(t)

2Qq(t)

}

.

(34)
However, the function Gq(Qq, t) does not depend upon

the iq variable and the phase point in the diagram i̇q
vs. iq does not move. Consequently, from the existence
and uniqueness theorem, we find that if Gq(Qq, t) and
dGq(Qq, t)/dQq are continuous on an open interval R on
iq-axis, and suppose that i0 is a point in R, then the

initial value problem i̇q = Gq(Qq, t), iq(0) = i0 has a
solution iq(t) in some open interval (−τ, τ) about t =
0, and this solution is unique. We find that Gq(Qq, t)
in Eq. (33) is a smooth enough function that, from the
existence and uniqueness theorem, the solution exists and
is unique.

IV. SUMMARY

In brief, we use the influence functional formalism
of Feynman-Vernon[1] to study the classical behavior
of systems formed by resistance, electric and magnetic
polarizations whose behavior although linear in some
sense, is not representable by a system of perfect os-
cillators. Furthermore, we study classical chaotic RLC
circuit with nonlinear element, modeling its nonlinear-
ity using q exponentials functions defined in the NSM
theory[16]. The subject addressed here can be of inter-
est in many branches of science and engineering due to
the several phenomena associated with the nonlinearity.
We use combinations of deformed q-exponential functions
to describe the nonlinearity of nonharmonic oscillations.
In a general way, q-exponential functions are equivalent
to q-trigonometric functions, where the nonlinearity is
loaded in the parameter q, where in the limit q → 1, the
standard solution of the linear differential equations, that
describe the linear electrical oscillations are reobtained.
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