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Abstract
Background/Objectives

Obesity is associated with functional and structural brain alterations. Less is known about the mechanisms
behind such associations. This study investigates whether hippocampus volume and resting state function
are associated with a dyslipidemia pro�le based on high-density lipoprotein, low-density lipoprotein, and
triglyceride levels within obese and non-obese adults. A whole-brain analysis was also conducted to examine
the effect of dyslipidemia on resting state function across the brain.

Subjects/Methods

A total of 554 UK Biobank participants comprised three groups based on body mass index (BMI) rankings:
adults with obesity with a higher ranked BMI (OHigh, n=185, ), a second obese group with a lower ranked BMI
(OLow, n=182, ), and non-obese controls (n=187). T1-weighted magnetic resonance imaging (MRI) and
functional MRI (fMRI) data were accessed. The fMRI data were reconstructed as the fractional amplitude of
low-frequency �uctuations (fALFF) maps to re�ect resting-state brain activity. A lipid health score was created
using principal component analysis. Linear models tested for associations between the lipid health score and
hippocampal volume/fALFF, accounting for age, sex, hemoglobin A1c, total grey matter, and white matter
volume.

Results

With a higher lipid health factor corresponding to a lower dyslipidemia risk, we observed a positive correlation
between hippocampal volume with the lipid health factor exclusively in group OLow (P=0.01). Meanwhile, we
found a positive association between the lipid health factor and hippocampal fALFF in group OHigh (P=0.02).
Additional whole brain voxel-wise analysis to group OHigh also implicated the premotor cortex, amygdala,
thalamus, subcallosal cortex, temporal fusiform cortex, and middle temporal gyrus brain regions.

Conclusion

This study examined three distinct and well-matched groups and highlighted associations between lipids and
regional brain volume/resting state function with a primary focus on the hippocampus. These �ndings
support the obesity and brain literature with novel �ndings regarding the sub-group anthropomorphic
differences.

Introduction
Obesity is a chronic disease characterized by excessive accumulation of adipose tissue, which is associated
with both structural and functional brain alterations1. Past neuroimaging literature has shown that obesity is
associated with both structural and functional brain alterations. Body mass index (BMI) is inversely related to
subcortical grey matter volume and cortical thickness at midlife2,3,4. Brain functional connectivity may be
altered in the default mode network, the frontoparietal network, the executive control network, and the salience
network among obese adults relative to non-obese controls5,6,7. These earlier �ndings support the use of brain
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imaging to characterize obesity-related changes that may contribute to neurodegeneration8,9. The
hippocampus is a crucial brain region involved in memory, spatial learning, and mood10. Hippocampal
atrophy is also associated with the early development of Alzheimer’s disease11. Investigations that link
obesity and hippocampal function have been mixed. For instance, data from UK Biobank and Norway report
that higher total body fat is correlated with lower hippocampus volume12. In contrast, another study found no
association between measures of obesity (i.e., BMI, waist-to-hip ratio: WHR) and hippocampus volume (both
before and after accounting for global grey matter atrophy)13. As the mechanistic insight on drivers of
hippocampal changes among obese individuals remains elusive, more research is needed to understand
hippocampal and body relationships across different anthropomorphic subgroups, both structurally and
functionally.

Obesity is one of the main causes of metabolic syndromes that can lead to dyslipidemia14. Both obesity and
dyslipidemia are associated with cognitive impairments and brain functional decline15. Adiposity-associated
dyslipidemia is characterized by lower high-density lipoprotein cholesterol (HDL-C), higher low-density
lipoprotein (LDL) particles, and higher triglyceride (TG) levels15,16,17. Although the blood-brain barrier restricts
the exchange between lipoproteins and the brain, peripheral circulating levels of lipids are still associated with
brain health18,19. Examples across brain diseases are summarized here. Lower HDL-C levels, increased LDL,
and increased TG are all risk factors for Alzheimer’s disease20. Lower HDL-C level was also a risk factor for
stroke within obese adults, and the association is strengthened by increasing BMI21. Thus, there is a need to
consider participant subgroups based on distinct different BMI levels.

Blood oxygenation level-dependent (BOLD) based contrast is used to probe the brain’s innate function through
resting-state functional MRI (rs-fMRI). The fractional amplitude of low-frequency �uctuation (fALFF) is one
form of rs-fMRI feature mapping that has a proven value and represents the BOLD low-frequency oscillations
in the 0.01Hz – 0.1 Hz range that re�ect spontaneous regional brain activity22,23. The fALFF value is between
0 and 1 since it is de�ned as BOLD �uctuations over a low-frequency (0.01Hz – 0.1 Hz) range relative to the
total amplitude in the entire frequency range23. Recent FDG positron-emission tomography imaging supports
that the fALFF map is a viable brain function metric since it correlates with brain glucose utilization, cerebral
blood volume, and cerebral oxygen metabolism24. Another advantage of the rs-fMRI fALFF map is that the
low-frequency band may contain less physiological noise due to respiration and cardiac sources and appears
to be a better choice compared to the ALFF metric23,25.

In the current study, we investigated circulating levels of HDL-C, LDL, and TG extracted from non-obese and
obese groups. We test whether these lipid variables can uniquely explain regional variance in fALFF maps.
Our primary focus was the hippocampus; we hypothesized that a lipid factor of dyslipidemia (HDL-C, LDL,
and TG) would be inversely related to hippocampus volume and fALFF. We test the ability to create a lipid
factor containing multiple lipid-related variables (HDL-C, LDL, and TG) using principal component analysis
(PCA). We also run a sensitivity analysis using the triglyceride-to-HDL (TG/HDL) ratio for comparison. By
design, we consider the BMI groups in separate analyses after constructing well-powered and matched
samples. In addition to the hippocampal fALFF region-of-interest analysis, we examined lipid to fALFF
association in a voxel-wise analysis to look for other regions of brain with functional alterations that happen
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along with the hippocampus at resting state. The study would expand the current understanding of how lipid
metabolism and dyslipidemia are associated with brain function.

Method

Study population and design
UK Biobank (UKB) is a population-based biomedical initiative that aims to collect data from 500 thousand
United Kingdom adults between 38 and 73 years of age26. In November 2021, raw and tabular data were
accessed using an approved UK Biobank project. Figure 1 summarizes aspects of the current experimental
design, namely how individuals were screened for eligibility to the current study. Participants were included if
the following were available: T1-weighted MRI, resting-state functional MRI (rs-fMRI), ICD-10 medical history
report, and blood biochemistry test reports. Individuals were excluded if required data were incomplete,
previous medical reports indicating diabetes, head injury, or ‘unspeci�ed brain disease,’ MRI scans were not
available/collected, or failed MRI image quality as identi�ed by the UK Biobank.

The following describes the methodology to create three groups based on obesity screening to match for age,
sex, medical history, HbA1c, grey matter volume, and white matter volume, as well as nearly equal and large
sample sizes (see Fig. 1). A total of N = 988 adults met study eligibility. Participants were initially sorted based
on BMI > 30 and BMI < 30 (controls). The BMI > 30 individuals (n = 393) were split into two subgroups based
on the sorted BMI ranking, and the �rst n = 200 with higher BMI ranks were assigned to the Group OHigh, while
the remaining n = 193 were assigned to the Group OLow. The third group had a normal BMI, and n = 200 was
randomly chosen from a list of 595 control participants. Some participants were later removed when the MRI
quality check was deemed poor quality (e.g., raw MR image data were corrupted, incomplete, missing). We
collected demographic information for each participant who passed screening, including age, sex, BMI, WHR,
frequency of alcohol consumption, and medical history. We collected lipid-related data, including HbA1c, HDL-
C, LDL, and TG, through each participant's blood biochemistry report. Finally, brain volume was estimated by
adding total grey and white matter volumes from T1-weighted MRI.

Blood biochemistry data acquisition and lipid health factor
creation
Peripheral HDL-C, LDL, TG, and HbA1c were measured from participant blood samples during the 2012–2013
assessment visit to the UK Biobank. TG level was measured using a standard clinical biochemistry assay
(glycerol-3-phosphate (GPO)-peroxidase (POD) chromogenic method). In contrast, HDL-C was measured using
the enzymatic selective protection method, HbA1c was measured using high-performance liquid
chromatographic, and the LDL level was measured using the enzyme immunoinhibition method. A detailed
UK Biobank biochemistry protocol is available to download at https://www.ukbiobank.ac.uk/

media/oiudpjqa/bcm023_ukb_biomarker_panel_website_v1-0-aug-2015-edit-2018.pdf.

We used blood biochemistry records (UK Biobank Data �eld 30760, 30780, and 30870 for HDL-C, LDL, and
TG, respectively) from the �rst-repeat assessment visit data (estimated year of collection: 2012–2013). An
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omnibus principal component analysis (PCA) was performed using HDL-C, LDL, and TG data from all three
groups. A singular principal component was used to create a lipid health score. The eigenvalue and the
percentage-variance explanation were noted. The TG/HDL ratio was calculated for each participant as well.

Structural and functional MRI acquisition
We accessed rs-fMRI and the T1-weighted (T1w) data from the �rst imaging visit to UK Biobank (the
estimated year of the collection starts from 2014). T1w images were acquired during a 5-minute scan that
used a 3D MPRAGE gradient echo-planar imaging pulse sequence (repetition time/echo time/inversion time = 
2000/2.01/880 msec, iPAT = 2, �ip angle = 8°). The T1w images had a spatial resolution of 1x1x1 mm and a
�eld-of-view of 208x256x256 mm. The rs-fMRI images were acquired during a 6-minute scan that used a
gradient-echo echo-planar imaging pulse sequence (TR/TE = 0.735/39 msec, 8x multi-slice acceleration, no
iPAT, and �ip angle = 52°) with a spatial resolution of 2.4x2.4x2.4 mm and �eld-of-view of 211.2x211.2x153.6
mm. A total of 490-time point volumes were collected. DICOM data were converted into NIFTI format using a
dcm2niix tool. Additional UK Biobank MR sequence parameters are available at the UK Biobank
documentation https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/bmri_V4_23092014.pdf

Image processing and fALFF calculations
In addition to the preprocessing protocol provided by UK Biobank
(https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/brain_mri.pdf), extra steps were done to calculate fALFF
maps. Software from the Analysis of Functional NeuroImages (AFNI) and the FMRIB Software Library (FSL)
packages were used for rs-fMRI preprocessing and fALFF calculations. Initial rs-fMRI volumes were removed,
and images were de-obliqued to facilitate analysis. As per data cleaning recommendations27, BOLD
timeseries were corrected for head motion, skull removal, de-spiking, detrending, spatially smoothing (FWHM 
= 6mm), and global intensity normalization.

For fALFF calculation, the square root of the power spectrum of each rs-fMRI timeseries voxel was computed
to calculate the amplitude value for each voxel. Then, we calculated fALFF by summing the amplitude data in
each voxel, which falls in the 0.01Hz – 0.1 Hz low-frequency range, and dividing by the sum of amplitude in
the entire frequency spectrum. (Eq. 1)

 [1]

Brain structure segmentation
T1w and fALFF images were registered to standard space using the MNI-152 template. The FMRIB’s
Integrated Registration and Segmentation Tool (FIRST) from FSL was used to segment the hippocampus on
the T1w images28. The number of voxels in the segmented hippocampi masks was counted for volume
calculation. The binary left/right hippocampus masks were used for the fALFF region of interest as the mean
value in the mask. Estimated brain volumes were downloaded from tabular data (UK Biobank data �eld
25010).

Statistical analysis

fALFF =
Sum.Amplitude(0.01

~
0.1Hz)

Sum.Amplitude(wholefrequencyspectrum)
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T-statistics were used to test for group differences in demographics and blood lipid variables. A multivariable
regression model tested for an association between hippocampus fALFF and lipid score (Eq. 2) along with the
following covariates: age, biological sex, HbA1c, and total brain volume. Note that we also replaced the lipid
health factor in Eq. 2 with the triglyceride-to-HDL ratio; this was a pre-de�ned sensitivity analysis. Participant
age was reported by the corresponding assessment center. Biological sex was a categorical variable accessed
from the UK Biobank registry at recruitment.

Mean hippocampus fALFF = Age + Sex + HbA1c + Brain volume + Lipid health factor [2]

The beta weights for each regressor were reported, with left and right hippocampus fALFF tested separately. A
critical P-value of 0.05 was set to determine the statistical signi�cance. The sensitivity analysis used the
same regression model but replaced the lipid health factor by the triglyceride-to-HDL ratio.

The second voxel-wise analysis consisted of non-parametric permutation-based testing for each group
separately. This model had the same parameters as the fALFF regional analysis (i.e., as in Eq. 2); the
dependent variables were the fALFF voxel intensities. HbA1c was chosen to account for the effect of insulin
resistance. Voxel-wise t-statistics and corresponding non-parametric p-value maps were calculated using the
‘randomise’ program in FSL, based on 10,000 permutations of the data29. Threshold-free cluster enhancement
(TFCE) (H = 2, E = 5, C = 6) settings were used to produce a p-value corrected for multiple comparisons, and a
critical corrected P-value < 0.01 was chosen. Signi�cant clusters were displayed using the t-statistic map,
thresholded by TFCE non-parametric P-value smaller than 0.01. Clusters inside the brain stem, cerebellum,
and ventricles were excluded from the current analysis. A ‘cluster’ command from FSL was used to generate a
summary of cluster size and location (the latter was deduced using the Harvard-Oxford atlas).

Results

Participant characteristics and blood biochemistry summary
Participant characteristics and blood biochemistry summaries are listed in Table 1. There were no signi�cant
group differences in age, total brain volume, LDL, and TG; however, as anticipated, there were group
differences in BMI, WHR, HbA1c, HDL-C, and the lipid health factor (P < 0.05) (Table 1). An unadjusted
correlation map is presented in supplementary Fig. 1 that shows the raw correlations between variables.
Group OHigh comprised 24 Class III, 78 Class II, and 83 Class I obesity participants (n = 185). Group OLow

consisted entirely of Class I obesity participants (n = 182). The lipid health factor explained 48% variance of
the original data, with factor loadings of 0.86, 0.09, and − 0.83 for HDL-C, LDL, and TG, respectively; hence a
higher lipid score corresponds to a better lipid health pro�le. The histogram from Table 1 shows the
distribution of lipid health factors in the three groups. The PCA analysis detailed results related to the lipid
health factor creation are presented in supplementary table 1.
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Table 1
Group characteristics (mean ± standard deviation) are provided as well as the lipid health factor

histograms per group (grey histograms show the whole cohort). The * sign denotes variables that
were signi�cantly different compared to controls. (P < 0.05) “Some” alcohol frequency indicates

about 3 times a month, while “lots” is more than 3 times a week. Participants who preferred not to
answer the ethnic, smoking, and alcohol questionnaire are treated as missing data.

  Obese group OHigh (n = 185) Obese group OLow

(n = 182)

Control group

(n = 187)

Age

(years)

Sex

(Male : Female)

83 : 105

(44.1% : 55.9%)

92 : 92

(50% : 50%)

79 : 108

(42.2% : 57.8%)

BMI

( )

WHR

Brain volume

( )

HbA1c

( )

*

HDL-C

( )

LDL

( )

TGs

( )

Lipid health factor

Ethnic background

(White/Black/Asian/Mix)

181/2/0/2 180/0/2/0 182/0/2/2

62.8 ± 7.6 64.8 ± 7.4 63.3 ± 7.4

kg ⋅ m−2

36.3 ± 3.5∗ 31.3 ± 0.7∗ 27.7 ± 1.1

0.91 ± 0.09∗ 0.90 ± 0.08∗ 0.84 ± 0.09

L

1.17 ± 0.11 1.18 ± 0.13 1.17 ± 0.11

mmol ⋅ mol−1

36.40 ± 3.70∗ 35.87 ± 3.66 35.15 ± 2.99

mmol ⋅ L−1

1.34 ± 0.32∗ 1.40 ± 0.34 1.46 ± 0.37

mmol ⋅ L−1

3.66 ± 0.87 3.77 ± 0.91 3.78 ± 0.89

mmol ⋅ L−1

1.99 ± 0.92 2.05 ± 1.00 1.89 ± 1.05

−0.13 ± 0.92∗ −0.02 ± 1.01 0.15 ± 1.04
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  Obese group OHigh (n = 185) Obese group OLow

(n = 182)

Control group

(n = 187)

Smoking status

(Never/Previous/Now)

105/65/14 118/48/16 120/60/7

Alcohol frequency

(No/Some/Lots/Daily)

10/52/94/29 6/37/106/33 8/31/95/53

Hippocampus fALFF association with the lipid health factor
Table 2 summarizes the association between the hippocampal volume/fALFF versus age, HbA1c, and the
lipid health factor. The lipid health factor was positively associated with left hippocampus volume, a �nding
observed only in the group OLow. Both left and right hippocampal fALFF were positively associated with the
lipid health factor, a �nding observed only in the group OHigh. Age and HbA1c were not signi�cantly
associated with either hippocampus volume or mean hippocampus fALFF on both hemispheres within any of
the three groups. Examples of the segmented left (yellow) and right (green) hippocampi are included in
Table 2. Sensitivity analysis using TG/HDL ratio reveals a consistent pattern of a negative association
between TG/HDL ratio and left hippocampus volume for group OLow and another consistent association for
left and right hippocampal fALFF for group OHigh (P < 0.05). Details of the sensitivity analysis are available in
supplementary table 2.
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Table 2
Summary of the hippocampal volume statistics and linear regression results. Beta-weights with P-values < 

0.05 are denoted with ‘*’ mark and underlined. An example of hippocampal segmentation is provided,
superposed on the T1w image (left: blue, right: red).

Hippocampus
Volume

Obese group OHigh

(BMI )

Obese group OLow

(BMI )

Control group

(BMI )

Mean(mm3) SD Mean(mm3) SD Mean(mm3) SD

Left
hippocampus

3 741.7 486.1 3 787.8 528.9 3 611.9 593.2

Right
hippocampus

3 906.1 469.6 3 887.2 505.7 3 789.4 543.6

Linear model: Hippocampus volume = Age + Sex + HbA1c + Brain volume + Lipid health factor

Hippocampus
Volume

Obese group OHigh

(BMI )

Obese group OLow

(BMI )

Control group

(BMI )

Age A1c Lipid Age A1c Lipid Age A1c Lipid

Left Beta -7.37 16.41 60.13 -7.57 8.41 105.03 3.12 11.97 69.54

P-
value

0.11 0.07 0.11 0.15 0.41 0.008* 0.64 0.44 0.10

Right Beta -3.30 16.78 29.28 -7.36 6.91 29.90 -2.21 14.84 9.89

P-
value

0.45 0.051 0.42 0.15 0.48 0.43 0.72 0.29 0.80

Linear model: Mean hippocampus fALFF = Age + Sex + HbA1c + Brain volume + Lipid health factor

Hippocampus
fALFF

Obese group OHigh

(BMI )

Obese group OLow

(BMI )

Control group

(BMI )

Age A1c Lipid Age A1c Lipid Age A1c Lipid

Left
mean

Beta <
-0.001

<-0.001 0.005 <
-0.001

<
-0.001

< 
0.001

< 
0.001

<
-0.001

-0.002

P-
value

0.08 0.78 0.02* 0.45 0.22 0.87 0.26 0.47 0.30

Right
mean

Beta <
-0.001

<
-0.001

0.007 <
-0.001

<
-0.001

0.001 < 
0.001

<
-0.001

-0.002

P-
value

0.34 0.69 0.01* 0.61 0.18 0.66 0.45 0.64 0.41

36.3 ± 3.5 31.3 ± 0.7 27.7 ± 1.1

36.3 ± 3.5 31.3 ± 0.7 27.7 ± 1.1

36.3 ± 3.5 31.3 ± 0.7 27.7 ± 1.1
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Hippocampus
Volume

Obese group OHigh

(BMI )

Obese group OLow

(BMI )

Control group

(BMI )

Mean(mm3) SD Mean(mm3) SD Mean(mm3) SD

Example of hippocampus segmentation: Right (Red) and Left (Blue) Hippocampus on T1w MR images.

Voxel-wise brain analysis of fALFF association with the lipid
health factor
Within the group OHigh, we also identi�ed the following fALFF regions that were positively associated with the
lipid health factor: premotor cortex, right amygdala, left/right thalamus, subcallosal cortex, temporal fusiform
cortex, middle temporal gyrus, right hippocampus, and temporal pole (corrected P < 0.01; Fig. 2; clusters
reported in supplementary table 3). Within obese OLow and control groups, no signi�cant clusters were
detected between regional fALFF with lipid health factors.

 

Discussion
In this study, we found associations between lipid health and hippocampal measures of function and
anatomy that were observed exclusively in the obese groups but not in the controls. Speci�cally, the group
with the highest BMI showed a positive association between the lipid health factor and hippocampal
activation. By contrast, the lower obesity group showed a positive association between the lipid health factor
and hippocampal volume but not hippocampal function in the resting state. Lastly, we corroborated the use
of the lipid health factor by also considering another metric of dyslipidemia, namely the triglyceride to HDL
ratio. These �ndings support the obesity and brain literature with novel �ndings regarding the pre-selected
subgroups. This study focused primarily on the hippocampus as an important region for brain health and
bene�tted from a relatively large sample size.

The lipid health factor and the sensitivity analysis

36.3 ± 3.5 31.3 ± 0.7 27.7 ± 1.1
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Factor loadings showed that the lipid health factors were directly related to the HDL-C, and inversely related to
TG, while explaining limited variance in LDL. The factor loadings thus align with the current de�nition of
dyslipidemia. According to the Kaiser rule, the lipid health factor was a valid construct because it exceeded a
minimum eigenvalue level for the small number (i.e. three) of input variables30. Therefore, it was feasible to
use the lipid health factor score as a means of investigating within-group differences in dyslipidemia and the
factor loadings aligned with the previous work31. The normally distributed lipid health factors within all three
groups indicates it is not biased by the obesity class. The sensitivity analysis using TG/HDL ratio also
demonstrates high consistency on the TG/HDL ratio and our lipid health factor when observing their
associations with hippocampal volume and functional activation. It also indicates our lipid health factors
may be related to insulin resistance, and atherosclerosis aside from dyslipidemia as well32,33.

The lipid health factor is associated with hippocampus
anatomy within obese adults within group Olow

We demonstrate that a higher lipid health score was associated with larger hippocampal volume exclusively
in the obese group OLow. However, we did not observe an association between lipid health score and
hippocampal volume for the obese group OHigh, nor the controls. These �ndings add to the neuroimaging
literature that has historically focused on BMI-to-brain relationships. The literature shows that BMI -- as the
explanatory variable -- was associated with lower hippocampal volume in older adults from the Pittsburgh
study, an age-comparable Latino cohort, and younger adults from the Leipzig and Spanish studies34,35,36,37,38.
To our knowledge, the obesity and brain literature has limited studies on dyslipidemia and brain associations
in the manner that we conducted our experiments. With relatively large sample sizes, we were able to show
that dyslipidemia was correlated with brain measures in distinct ways based on the subgroups.

Regarding other explanatory variables in the regression model, we note that hippocampal volume was not
associated with age or HbA1c for any of the groups. The lack of age-related association with hippocampal
volume agrees with one other obesity neuroimaging study34; we note our cohort had a relatively narrow age
range and therefore does not address population-level brain ageing35. Regarding HbA1c, we noted a trending
relationship between hippocampal volume and HbA1c for the OHigh group (P < 0.1), but this was not
signi�cant. One reason for the lack of HbA1c �ndings could be the Type 2 Diabetes exclusion in our study.
Interestingly, the non-signi�cant association was also reported in an earlier hippocampus and fasting insulin
study34.

The structural analysis also revealed left lateralized �ndings between hippocampal volume and dyslipidemia,
that are noteworthy. The left hippocampal volume was highly correlated with the lipid health factor for the
obese low group and showed a non-signi�cant trend for obese high and control groups. Curiously, no
associations were found for the right hippocampal volume for any of the groups. Similar results, namely the
‘left-less-than-right’ pattern, was also observed in other neuroimaging studies focused on mild cognitive
impairment and depression39,40. Our results help to appreciate this phenomenon of left/right hippocampal
volumes as it pertains to dyslipidemia. The non-signi�cant �ndings within OHigh and control groups may also
suggest the association may change dynamically with BMI.
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Hippocampal fALFF correlates with dyslipidemia only the high
obese group
From the fALFF analyses, we observed bilateral hippocampal resting state activation that was positively
correlated with lipid health exclusively in the high obesity group OHigh but not in Olow nor controls. The
hippocampal result in the high obesity group aligns with a mood induction paradigm study, albeit we note
that this other study focused on BMI as the explanatory variable41. Hippocampal function & plasticity are
indeed relevant topics with respect to these nuanced �ndings, as discussed elsewhere34. Our study thus
further interprets that the possible mechanisms behind such hippocampus-obesity association may be
related to dyslipidemia within Class II/III obese adults. Age and HbA1c explanatory variables were not
signi�cant in explaining between-subject differences in hippocampal fALFF for reasons that are mentioned
above.

Voxel-wise fALFF within O High group further explains the fALFF-dyslipidemia association.

The voxel-wise analysis helped to further elucidate lipid health score and fALFF associations by considering
additional brain regions. We found associations with several brain regions within OHigh group but not for OLow

or control groups. The largest cluster was in the premotor cortex (PMC), a brain region that processes
information from the posterior parietal and dorsolateral prefrontal cortex and is tied to primary motor cortex
execution42. We note that decreased PMC activity is being reported in the study of brain diseases,
schizophrenia, and Parkinson’s disease43. Our novel �ndings add to the neuroimaging literature, and further
mechanistic obesity research that attempts to link PMC and dyslipidemia is warranted. The voxel-wise
analysis also identi�ed clusters of dyslipidemia-fALFF association in the hippocampus, amygdala, and
thalamus; each is involved in eating, reward, memory, and emotional behaviors. These �ndings align with
eating behavior literature. This includes external food sensitivity and binge eating related to inadequate
modulations from amygdala, as well as PMC on eating motor planning44,45. The reduced sub-callosal gyrus
fALFF observed within OHigh group may also relate to amygdala response due to the circuitry of fearful

responses46.

We failed to detect any voxel-wise associations for the obese group OLow or controls. To our current
knowledge, and relative to neuroanatomy, less is known about associations between dyslipidemia and
functional neuroimaging. One meta-analysis suggests obesity is associated with disrupted functional
connectivity, which may vary by BMI subgroups; however, dyslipidemia was not considered; hence the current
study adds new �ndings47. The lack of fALFF �ndings in the current study for the OLow group and controls
may show that dyslipidemia is more relevant for brain activation among higher obese groups. We cannot rule
out whether there were ‘state-like’ differences, i.e. emotions and behaviors on the day of scanning, that could
contribute to these subgroup differences; thus, more research is warranted.

Limitations and future directions
There are limitations to this study. We focused on the hippocampus in the primary analysis and used
segmentation masks provided by UK Biobank. We acknowledge that additional subcortical grey matter
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regions could be of interest and worthy of future investigation. In addition, between-group differences in the
image registration quality of the MNI152 brain template could have contributed to experimental errors that
would degrade effect sizes. Next, we opted to use fALFF maps from among various choices to characterize
resting-state BOLD data. Other approaches would be of interest but were not considered in the current study.
Other functional neuroimaging modalities, fMRI-related methods that probe connectivity, or cerebral blood
�ow MRI techniques each have merit. Finally, despite large sample sizes for each subgroup, we were not
powered to include ethnicity as a covariate.

In conclusion, the current study found within-group hippocampus anatomical and functional associations
with dyslipidemia for the obese samples, but no such �ndings were evident in non-obese controls. When
considering voxel-wise analysis, similar patterns persisted, whereby the morbidly obese OHigh group showed
activation clusters with dyslipidemia, while the less obese and control groups showed no relationships. These
�ndings suggest that it is important to consider sub-group anthropomorphic differences in brain-based
investigations. Future work is warranted to investigate whether these imaging �ndings align with cognition,
behaviours, and persist over time to yield an adverse brain health pro�le.
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Figures

Figure 1

The �ow chart describes the participant selection process to create three groups: two obese groups (OHigh,
OLow) and one control group. The screening summary, inclusion, and exclusion criteria for the three study
cohorts are listed. BMI: Body mass index. WHR: waist-to-hip ratio. ICD10: International Statistical
Classi�cation of Diseases and Related Health Problems. LDL: low-density lipoprotein. HDL-C: high-density
lipoprotein cholesterol. TG: triglycerides. BOLD: blood oxygenation level-dependent. HbA1c: Hemoglobin A1c.
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Figure 2

Brain regions and voxel T-values showing a signi�cant correlation between fALFF amplitude and lipid health
score were only identi�ed for the obese group OHigh. Images are arranged in MNI152 brain coordinates.
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