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Abstract
NASA’s Double Asteroid Redirection Test (DART) mission performed the �rst ever kinetic impact to de�ect
an asteroid1. The DART kinetic impact test arti�cially activated an asteroid with a hypervelocity impact,
providing a unique opportunity for an extensive observing campaign to monitor the evolutionary process
from the formation of the ejecta to its dispersion via a sustained tail. Here we report observations of the
impact ejecta with the Hubble Space Telescope (HST) from impact time (T)+15 minutes to T+18.5 days
at a resolution of 2.1 km per pixel. Our observations showed that the gravitational interaction between the
binary system and dust under the in�uence of solar radiation pressure produced a complex morphology
during the evolution of the ejecta. The dust ejected at speeds much higher than the escape speed of the
binary system (0.25 m/s) is directly ejected out of the system. The dust moving at speeds just above the
escape speed displayed signatures of gravitational interaction with the binary asteroid system, forming
spirals and extended features. Slow ejecta is ultimately pushed in the antisolar direction (nearly opposite
the impact direction) by solar radiation pressure to form a tail. These dynamical processes are highly
dependent on particle size and ejection direction. The ejecta evolution following DART’s kinetic impact
offers a framework for understanding the fundamental mechanisms acting on asteroids disrupted by
natural impact2,3 for the �rst time.

Introduction
HST observed the ejecta once every 1.6 hours during the �rst 8 hours after DART’s impact (Extended Data
Table 1) at a viewing geometry shown in Fig. 1. The image collected at about T+0.4 hour (Fig. 2a) shows
diffuse ejecta with several linear structures and clumps spanning nearly the entire eastern hemisphere.
After ~T+2 hours, the initial, diffuse dust cloud had mostly dissipated. An overall cone-shaped ejecta
morphology emerged with many structural features (Fig. 2b – 2f). Some features are visible in multiple
images and extended to nearly 500 km from the asteroid. The motion of these features, expanding
radially away from the asteroid at constant speeds between a few and ~30 m/s as projected in the sky
(Extended Data Table 2), suggests that they are directly ejected out of the Didymos system without being
appreciably in�uenced by the gravity of the system or by solar radiation pressure. Based on the position
angles (angle measured from north toward east) of the cone and a simple model (Methods), we �nd that
the observed ejecta cone is consistent with a 3D opening angle of 130º±10º and centerline at a position
angle of 67±8º, almost parallel to the incoming direction of the DART spacecraft.

Dimorphos’s ejecta was distinctive from the ejecta of Comet 9P/Tempel 1 produced by the only previous
planetary impact experiment, Deep Impact4 (Extended Data Figure 1a – 1c). Also observed by HST, the
Deep Impact ejecta was diffuse and mostly featureless, expanding at an average speed of ~100 m/s and
a maximum speed of ~300 m/s5,6. The different ejecta morphology is attributed to the different target
compositions and subsurface structures. While Tempel 1 has a highly porous subsurface7 composed of
�ne-grained dust and rich in volatiles8,9, Dimorphos has a bouldery surface and a rubble-pile interior1.
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At ~T+18 hours, two bright spiral features, together with some new, fainter, and smaller linear features in
between, were apparent at the base of the original cone (s1, s2; see Fig. 3a). The northern and southern
spirals had distinctly different morphologies and evolution. The northern spiral had an 18º counter-
clockwise offset from the northern edge of the ejecta cone and continuously shifted toward the antisolar
direction. After T+3 days, it started to show increasing widening along the antisolar direction, with a
diffuse anti-sunward edge and a relatively sharp sunward edge, forming a wing-like shape and
continuously fading after T+4.7 days (Fig. 3f – 3j). In contrast, the southern spiral started within 5º of the
southern edge of the ejecta cone, and its spiral motion was smaller and more gradual than the northern
spiral (Fig. 3a – 3d). As time passed, the southern spiral moved clockwise, in the same direction as the
orbital motion of Dimorphos around Didymos at the time of impact. Starting from T+4.7 days, the tip of
the southern spiral split into a few linear features (l21 – l24), which subsequently extended toward the
antisolar direction to align with the tail (Fig. 3f – 3i). Some of them (l20, l22) expanded in the sunward
direction to the maximum distances of 150 – 200 km after 10 days (Fig. 2i) before retreating towards the
tail direction and �nally fading out. In addition, the small linear features (l16 – l19) between the two
spirals behaved similarly to the southern spiral, extending to the north of Didymos and toward the tail
direction, forming lineaments overlaid with the wing-like structure (Fig. 3c – 3i).

The complex morphology evolution of the spirals and linear features indicates gravitational interaction
between the ejecta particles and Didymos. The hyperbolic excess speeds of these particles are <0.3 m/s,
indicating their initial speeds were within twice the system escape speed (~0.25 m/s). From the Earth-
observing geometry (Fig. 1), particles launched toward Didymos would predominantly appear in the
northern spiral, whereas the southern spiral contains more particles launched away from Didymos. Pre-
impact numerical simulations10-14 predicted an asymmetric behavior for particles launched inward and
outward of the orbit of Dimorphos. Particles launched inward would be accelerated and their trajectories
bent by Didymos before leaving the system, forming the observed northern spiral with the end nearest
Didymos shifted. Particles launched outward would directly depart from the binary system, more or less
along the radial direction. This interpretation appears consistent with the observed structure.

Beyond the gravitational in�uence of the Didymos system, solar radiation pressure would separate
particles of different sizes along the sunward-antisunward direction, with small particles being
accelerated faster than large particles15. Situated roughly orthogonal to the sunward direction, the
northern spiral was widened to the observed wing shape, with particle size sorted along the sunward-
antisunward direction and speed roughly sorted along the orthogonal direction. Its abrupt sunward edge
indicates a cutoff in the largest particle size in the ejecta. The southern spiral is more aligned toward the
sun, and those particles are decelerated and eventually forced to loop backward. Any clumps of particles
will spread out, forming the series of observed linear features extending in the antisunward direction (l16
– l24). The �ner particles in feature l16 – l18 are pushed further and caught up to the larger particles
ejected into the northern spiral earlier, appearing to overlap with the wing-like structure and creating a
more complex pattern.
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A dust tail started to emerge anti-sunward nearly opposite the ejecta cone at ~T+3 hours, and quickly
stretched out to >1500 km projected length and exceeded the spatial coverage of our images (Fig. 4). The
tail is a result of solar radiation pressure. Around T+5.7 days, the narrow tail showed a relatively bright
and sharp southern edge and a parallel but more diffuse northern edge (Fig. 4h). The overall morphology
of Dimorphos’s tail is similar to that of P/2010 A2, an active asteroid likely triggered by impact16-20

(Extended Data Figure. 1d, 1e). The ~1” width of the tail is consistent with an initial speed of the dust
comparable to the orbital speed of Dimorphos, suggesting that the tail contains the slowest ejecta
particles. Additionally, the early tail within T+2 days slightly curved towards the south (Fig. 4d, 4e),
whereas after T+8 days the tail became slightly more fan-shaped (Fig. 4i – 4k). With radiation pressure
sorting out particle size along the tail, the brightness pro�le of the tail is related to the differential size
frequency distribution in the ejecta. We �nd that the particle size in the portion of the tail in the HST �eld
of view progressively increased from about 1 µm initially to a few cm in the last HST image. Assuming a
power law size frequency distribution, we derived an exponent of -2.6±0.2 for particles of 1 µm – a few
mm radius, and an exponent of -3.6±0.2 for larger particles up to a few cm (Extended Data Fig. 5). Ejecta
particles are observed to continuously leave the Didymos system through the �nal images acquired after
T+15 days (Extended Data Figs. 2, 3).

Additionally, a secondary tail appeared between T+5.7 and T+8.8 days (Fig. 4i – 4k) but was no longer
discernible on T+18.5 days (Fig. 4l). It originated from the Didymos system and pointed about 4º further
north of the original tail, creating an overall fan-shaped tail morphology during this timeframe. The cause
of the secondary tail is unclear. Multiple mechanisms are to be explored, although evidence exists to
support a secondary dust emission as the source of the secondary tail (Methods, Extended Data Figs. 2,
6), consistent with the previous observations of active asteroids that displayed multiple tails21-24.

The DART ejecta has implications about the near-surface structure of Dimorphos, and can be used to
infer the kinetic impact momentum transfer e�ciency independent of the observed period change of
Dimorphos25,26. More importantly, the DART mission showed de�nitively that impacts can activate
asteroids consistent with prior asteroid observations1. Our observations provided a basis for reassessing
the previous observations of active asteroids thought to be triggered by impact, including P/2010 A216-20

and (596) Scheila27-29. The evolution of Dimorphos’s ejecta suggests that an observational selection
effect could have contributed to the observed mm- to cm-sized dust for P/2010 A216,18, consistent with
the largest particle size found in Dimorphos’s ejecta. In contrast, ejecta from Scheila was dominated by
µm-sized particles traveling at speeds up to 100 m/s, and the quick fading of ejecta indicated a lack of
particles >10 µm27. This can be explained since Scheila was observed as soon as one week after the
impact when small particles were still present, whereas the ejecta of P/2010 A2 was �rst observed 10
months after impact when small particles likely have been cleared. DART, as a controlled, planetary-scale
impact experiment, provides a detailed characterization of the target, the ejecta morphology, and the
entire ejecta evolution process. DART will continue to be the model for studies of newly discovered
asteroids that are activated by natural impacts.
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Methods
1. Observations and data reduction and processing

We used a total of 19 HST orbits (period 95 min) over about 19 days to observe the Dimorphos ejecta
(Extended Data Table 1). The �rst orbit (orbit 0o) was before impact. The second orbit through the 7th
orbit (orbits 01 – 06, yellow in Table 1) started about T+15 min, and continuously observed the ejecta
except for the Earth occultation of the target. In the next 5 orbits (orbits 11 – 15, green in Table 1), we
observed the ejecta roughly once every 12 hours, and then once every day in the following three orbits
(orbits 16 – 18, green in Table 1). In the �nal phase (orbits 21 – 24, light blue in Table 1) observations
were executed once every 3 days. The observations concluded 18.5 days after impact. In each orbit,
images were collected at multiple exposure levels, where the central core of Didymos is unsaturated in
short exposures, and long exposures saturated Didymos to image the relatively faint ejecta and tail. All
images were collected through �lter F350LP (pivot wavelength 587 nm, passband rectangular width 480
nm).

The observations were planned to track at the Dimorphos ephemeris rate. This nominally included
corrections for parallax due to HST’s orbit around the Earth and was expected to keep Didymos inside the
�eld of view with minimal trailing for all exposures. However, due to an as-yet unexplained tracking
problem, some orbits lost the target in various numbers of exposures, and some long exposures are
trailed by up to more than 10 pixels. We limited our analysis to those exposures with less than 7 pixels of
trailing, and occasionally used long exposures with more trailing when no good images were available for
the particular orbits.

Images were calibrated by the HST standard calibration pipeline at the Space Telescope Science
Institute30. We then removed the sky background measured from a square 100 – 400 pixels wide and 100
– 300 pixels from the top right corner, depending on the image size. This area is in general 20” away from
Didymos and shows no sign of any ejecta.
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Aperture photometry was measured in all short, unsaturated exposures that have been corrected for
charge transfer e�ciency (CTE; ref) but not geometric distortion (_�c �les). The centroid is de�ned by a
2D Gaussian �t with a 5x5 pixel box centered at the photocenter. The pixel area map was used to correct
pixel area variations in the image30. The total counts were measured with circular apertures of 1 – 130
pixels radius (0.04” - 5.2”). We converted the total counts to �ux density and Vega magnitude based on
the photometric calibration constants (PHOTFLAM = 5.3469x10-20 erg / (Å cm2 electron), PHOTZPT =
26.78) provided in the FITS headers and HST photometric calibration website. The total brightness of
Didymos including the ejecta and the total brightness of ejecta are shown in Extended Data Fig. 2.

We used the CTE-corrected and geometric distortion corrected images (_drc �les) to study the morphology
of the ejecta. In order to increase the signal-to-noise ratio of the faint ejecta features, we separately
stacked all short exposures and long exposures in each orbit because no change is visible in the ejecta
morphology within each orbit. The centroid of long exposures that are saturated in the center was
determined by the cross-section of the diffraction spikes. Some trailed long exposures were included in
the stack, but those that trailed for more than 10 pixels were discarded. The effects of trailing are
accounted for as additional positional uncertainties to the measurements of features, which are mostly
smaller than the length of trailing. Cosmic rays and background stars were rejected in the stacking
process. Because different numbers of untrailed long exposures were available in each orbit, the total
exposure times vary from 25 s – 50 s in most stacked long exposures and reach 155 s for the orbit 21
stack and 110 s for the orbit 23 stack.

Various image enhancement techniques commonly used for studies of comets (see review by ref. 31)
were used to assist the identi�cation of ejecta features, including azimuthal median subtraction, re-
projection to azimuthal and radial projection, and different brightness stretching and displaying with
various color tables. All identi�ed features were cross-con�rmed by multiple techniques.

2. Ejecta cone opening angle and direction

We based our ejecta cone characteristics on the ejecta structures moving at >1 m/s in the images within
T+8.5 hours (Fig. 1). These structures showed a linear motion moving away from the asteroid along the
radial direction (Extended Data Table 2). Assuming that the majority of the ejecta dust is within a thin
cone-shaped curtain, the two edges of the cone would appear as two bright rays along the radial direction
due to the optical depth effect when viewed from the side. Because the DART impact velocity is close to
the sky plane (Extended Data Table 1), if we assume that the cone direction is close to the inverse of the
DART impact velocity direction, the cone is close to being viewed from the side in HST images, and the
opening angle spanned by the two edges of the cone (linear feature l7 and l8) is close to its 3D opening
angle (see below).

We measured the position angles of the two edges of the ejecta cone from both the original image and
the enhanced images (see Method S1). The uncertainty range of the position angles is de�ned by the
apparent width of the linear feature. Our measurement resulted in an ejecta cone centered within 5º of the
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incoming direction of DART with an opening angle of about 130º. Because of the fuzziness of the ejecta
rays and their slight curvature, the uncertainty of the measured position angles could be as high as ±8º,
resulting in an uncertainty of the opening angles up to ±12º in some early images. Taking the mean of
these two edges and the maximum value of the uncertainty yields the ejecta cone axis at a position angle
67±8° under the assumption that the ejecta cone is axisymmetric along the cone axis.

To test our assumption about the geometry seen from HST in 3D space, we projected a 3D cone geometry
onto the HST viewing geometry. We then computed the pixel count peaks from a simulated cone to
determine the predicted position angles. Comparing observation-driven peak conditions with numerically
derived peaks resulted in a score map that applied a Gaussian distribution-like function to evaluate the
consistency. We performed Monte-Carlo simulations by varying the position angles of the observed cone
edges within uncertainties to �nd a best-matched 3D cone geometry. This approach yielded a cone axis
direction at (RA, DEC) = (130±10°, 17±12°) and the cone opening angle of 126±14°. Each combination of
the cone edges offered two solutions of the cone axis symmetric to the image plane, however, adding
uncertainties to the observed edges provided a stochastic distribution of the solutions.

3. Dynamic model of the tail

The position angle of the tail and its uncertainty were determined by the radial directions that de�ne the
visible boundary of the tail at the furthest point along the tail in all (short and long exposures) stacked
images that contain the tail. The dust dynamics model under the in�uence of solar radiation pressure
follows ref. 15, where the motion of dust is determined by 𝛽srp, which is de�ned as the ratio of the solar
radiation pressure force to the solar gravitational force. 𝛽srp depends on particle radius, r, and density, 𝜌,
as

where K = 5.7x10-4 kg/m2 is a constant, Qpr is the radiation pressure coe�cient averaged over the solar

spectrum, which is usually assumed to be 1. We assumed a grain density of 3.5x103 kg/m3 for the dust
in the ejecta, following the density of ordinary chondrite meteorites32, considering that Didymos-
Dimorphos system shows an S-type spectrum that is associated with (LL) ordinary chondrite material33.

Pre-impact modeling suggested that the acceleration of solar radiation pressure always exceeds that of
the gravitational acceleration of the Didymos system for ejecta particles < 100 µm in size11,12. These
small particles are pushed out of the binary system in less than 10 hours. Didymos’s gravity is
predominant within about 3 km for mm particles, and 10 km for cm particles.

The modeling of the orientation of the tail in the sky plane follows the synchrone-syndyne approach34,
where synchrones are the loci of dust particles ejected with zero initial velocity at the same time but with
various 𝛽srp. The measured position angles of Dimorphos’s tail coincide to within 4º of the direction
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suggested by the synchrones associated with the time of impact in all images, suggesting that solar
radiation pressure dominates the tail formation (Extended Data Fig. 4). The small discrepancy between
T+1 and T+5 days is likely due to the slight apparent curvature of the tail (Fig. 3h).

The non-zero initial velocity of ejecta dust causes the tail to be widened towards the direction of the
velocity when the particles escape the Didymos system. The average initial velocity of Dimorphos’s
ejecta, as projected in the image plane, can be decomposed into a sunward component and a northward
component, and the latter causes the widening of the tail toward the north. The relatively sharp southern
edge and the more diffuse northern edge are consistent with the expectation from the ejecta mass-speed
relationship35. The 1” width of the tail is consistent with a velocity dispersion 𝛥v = 0.15 m/s, comparable
to or slightly smaller than the orbital velocity of Dimorphos, suggesting that the tail is primarily composed
of the slowest ejecta.

The inverse proportionality of 𝛽srp with particle size means that small particles experience stronger solar
radiation pressure and are pushed away from the asteroid faster after ejection than large particles.
Because the duration of our HST observations is much shorter than the orbital period of Didymos around
the Sun (2.1 years), the motion of particles along the tail relative to the asteroid under solar radiation
pressure can be approximated by a constant acceleration motion. As the length of the tail grows, particles
of various sizes spread out along the tail, with the smallest particles remaining near the far end of the tail
from the asteroid, while larger particles dominate the end near the asteroid. Assuming a power-law
differential particle size distribution with an exponent of 𝛼 for the tail, we derived that the brightness of
the tail is expected to have a power-law relationship with the distance to the asteroid with an exponent b
= -4 - 𝛼.

We extracted the brightness pro�les of the tail from stacked long exposures from T+5 hours until the last
stack at T+18.5 days (Extended Data Fig. 5). The exponent 𝛼 of the particle size distribution was derived
from the linear part of the tail brightness pro�les (in log-log space) in various images, corresponding to a
range of 𝛽srp from 0.2 to 8x10-4, to be nearly constant with an average of -2.6 and a standard deviation of
0.2. The range of 𝛽srp indicates particle sizes between about 1 µm and a few mm. In images after about
T+6 days, the tail brightness displays two regions with different power law slopes. The inner region
appears to be in�uenced by the particles in the spirals that started to overlap with the tail. The outer
region has best-�t slopes close to -2.6 as in the early images, whereas the slope of the inner region ranges
from -3.4 to -3.75. The range of 𝛽srp for the inner region is 7x10-4 to 1x10-5, corresponding to the large
mm – cm sized particles. The lack of small particles in the spirals is expected because 100 µm or smaller
particles should have been removed a few hours after impact. The apparent increasing steepness of the
particle size frequency distribution in this size range also seems to indicate that the bulk of ejecta
particles have a size cutoff at a few cm. If the particle size frequency distribution of the tail represents
that of the ejecta, then a power law index of -2.6 means the total ejecta mass is dominated by the largest
particles.
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The above treatment assumes that the albedo is independent of particle size, which needs to be
examined. Based on laboratory phase function measurements of micron-size aerosols36 and mm-size
particles37, along with supporting models of scattering e�ciency38, the albedo of µm-size particles is
about 70% that of mm-grains at the phase angle of our early observations (54º). This brightness ratio is
reversed at the phase angle corresponding to the �nal images (74º), where µm-size particles become
about 16% brighter. Our calculation suggests that the small difference between the albedos of µm- and
mm-sized particles changes the best-�t power law index of the particle size frequency distribution by less
than 2%. Our assumption of the same albedo throughout the µm- to cm sized particles holds.

4. Secondary tail

The small decrease of the overall fading rate of the the Didymos system total brightness between about
T+5 and T+7 days indicates an increase in the total scattering cross-section in the ejecta within 10 km of
the system (Extended Data Fig. 2), partly compensating for the ejecta moving out of the photometric
aperture. It is unlikely to be caused by albedo change for the ejecta particles. Injection of new dust
particles into the ejecta is considered.

This scenario and its timing is also supported by the synchrone model (Extended Data Fig. 6), where the
projected direction of the secondary tail is consistent with the synchrones associated with about T+5 to
T+7 days. The similar narrow width of the secondary tail with the original tail suggests a low initial
velocity of ~0.15 m/s for the dust particles. While the Didymos binary environment could complicate the
dust motion and cause deviation from the zero initial velocity assumption of the idealized synchrone
model, the observed low initial velocity of the dust in the secondary tail implies limited effects.

The possible mechanisms of the secondary dust emission could include the re-impact of ejecta blocks
onto Dimorphos or Didymos12, or large ejecta blocks disintegrating into small pieces due to spin up or
mutual collisions39. Mass shedding from the surface of Dimorphos due to rotation is not likely given its
slow rotation if its spin is tidally locked. But mass movement and shedding from Didymos could
potentially be triggered by ejecta re-impact due to its fast rotation causing a net outward acceleration at
its equator40, though no clear indication has been con�rmed yet25. Once dust is lifted from the surface of
Dimorphos or Didymos via these mechanisms, solar radiation pressure will quickly sweep the dust into
the antisolar direction, forming a secondary tail.

Other mechanisms, such as the dynamic interaction between the slow ejecta dust and the binary
system11, gravitational scattering for the ejecta dust when they are turned back by solar radiation
pressure and pass the binary system, or photon-charged dust particles under the in�uence of
interplanetary magnetic �eld41 could also result in unusual tail morphology leading to the appearance of
a secondary tail. But they may not be accompanied by the increase of ejecta dust as suggested by the
fading lightcurve of the Didymos system.
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Figure 1

Geometry of the Didymos system at the time of impact as viewed from the Earth. Sky north is in the up
direction and east is on the left in this view. Didymos is the large spheroid in the center. Dimorphos is the
small spheroid orbiting Didymos in the orbit represented by the green circle, moving clockwise at an
orbital speed of ~0.17 m/s. The positive pole of Didymos (also the orbital pole of the system) is
represented by the cyan line, pointing close to the south celestial pole and 51º out of the sky plane away
from the Earth. The Sun is at a position angle (angle from north toward east) of 118º, represented by the
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yellow line and dot-circle symbol. The DART spacecraft vector at impact is represented by the red line,
going from east to west at a position angle of 68º and within 1º of the sky plane.

Figure 2

Evolutionary sequence of Dimorphos ejecta from T+0.4 to T+8.2 hours. All images are displayed in
duplicate pairs, with the left unannotated and the right having features marked by white markers and
names. The times correspond to the mid-observation time of each image. Black lines mark diffraction
spikes from the instrument. All images are displayed with the same logarithmic brightness stretch. Sky
north is in the up direction and east to the left. The scale bars mark 200 km at the distance of Didymos.
The yellow arrows point to the direction of the Sun, the cyan arrows the heliocentric orbital velocity
direction of Didymos, and the red arrows the direction of DART spacecraft at impact, all projected in the
sky plane at the time of observations. The �rst four images (T+0.4 to T+5.0 hour) are trailed for 4 – 7
pixels, and the T+6.6 hours image is trailed for 14 pixels, all along the northeast-southwest direction (see
Methods). The trailing widens the tail and the two diffraction spikes in the orthogonal direction. Most
features are much larger than the length of trailing, and we added uncertainties to account for the effect
of trailing in our measurements. Many features are visible during this period, including linear features (l1
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– l12), an arc feature (arc1), a circular feature (c1), blobs (b1 – b3), and a tail. The ejecta cone is marked
by linear features l7 and l8.

Figure 3

Evolution of ejecta from T+0.7 days (T+17.8 hours), following Figure 1, through T+18.5 days. The image
orientation, brightness stretch, scale bars, and vector arrows are all the same as in Fig. 2. The main
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characteristics of the ejecta during this period of time include the spirals (s1 and s2), linear features (l7,
l11 – l24), blobs (b3 – b5), a circular feature (c1), and an arc (arc2). The original ejecta cone (l7) is still
visible in images before T+5.7 days (panels a – g). The early southern spiral (s2) could be overlapped
with the south edge of the original ejecta cone (panels a – e), which is not separately marked. The
northern spiral (s1) is widened along the tail direction in about T+5 days, forming a wing-like feature
(panels g – k). A group of linear features (l16 – l24), some being part of the southern spiral (l21 – l24),
showed a clockwise rotation about Didymos from T+1.1 to T+4.7 days (panels b – f). These linear
features later (T+5.7 days) stretched along the tail direction under solar radiation pressure (panel g – i),
with those in the north of Didymos overlapping with the wing-shaped feature. A secondary tail is visible
between T+8.8 and T+14.9 days (panels h – j, also see Fig. 4). The curved edge of the wing-like feature is
visible in the last image (panel k).
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Figure 4

Tail formation from the Dimorphos ejecta cloud. All frames are rotated such that the expected direction of
the tail based on our dust dynamic model (see text and supplementary material) is in the horizontal
direction extending towards the right. All frames are displayed in the same logarithmic brightness scale.
The scale bars are aligned with the asteroid on one end and extend 200 km long towards the tail
direction. Note that the �rst three frames (a, b, c) are trailed 5 – 7 pixels approximately along the direction
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of the vertical diffraction spikes. The trailing in all other frames is < 2 pixels. The �rst frame (a) in this
sequence acquired at T+0.08 days (T+1.9 hours) shows no signs of a tail. A tail was visible starting from
the second frame (b) acquired at T+0.15 days (T+3.5 hours). The tail continued to grow in a direction that
is in general consistent with an impulsive emission of dust from Dimorphos at the time of impact. The
secondary tail is visible between T+8.82 and T+14.91 days (panels i – k), pointing at about 4º north of
the original tail.
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