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Abstract 

 

Multiplexed imaging enables measurement of multiple proteins in situ, offering an 

unprecedented opportunity to chart various cell types and states in tissues. However, cell 

classification, the task of identifying the type of individual cells, remains challenging, labor-

intensive, and limiting to throughput. Here, we present CellSighter, a deep-learning based 

pipeline to accelerate cell classification in multiplexed images. Given a small training set of 

expert-labeled images, CellSighter outputs the label probabilities for all cells in new images. 

CellSighter achieves over 80% accuracy for major cell types across imaging platforms, which 

approaches inter-observer concordance. Ablation studies and simulations show that CellSighter 

is able to generalize its training data and learn features of protein expression levels, as well as 

spatial features such as subcellular expression patterns. CellSighter’s design reduces overfitting, 

and it can be trained with only thousands or even hundreds of labeled examples. CellSighter also 

outputs a prediction confidence, allowing downstream experts control over the results. 

Altogether, CellSighter drastically reduces hands-on time for cell classification in multiplexed 

images, while improving accuracy and consistency across datasets. 
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Introduction 

 

The spatial organization of tissues facilitates healthy function and its disruption contributes to 

disease 1. Recently, a suite of multiplexed imaging technologies has been developed, which 

enable measurement of the expression of dozens of proteins in tissue specimens at single-cell 

resolution while preserving tissue architecture 2–14. These technologies open new avenues for 

large-scale molecular analysis of human development, health and disease. However, while 

technologies have developed rapidly, with datasets spanning thousands of images 15,16, data 

analysis presents a major limitation to throughput. Specifically, cell classification, the task of 

identifying different cell types in the tissue remains an inaccurate, slow and laborious process. 

Analysis of multiplexed images has converged on a common sequence of procedures (Fig. 

1A). While technologies differ in implementation, from cyclic fluorescence to mass-spectrometry, 

they all generate a stack of images, each depicting the expression of one protein in the tissue. 

Initial processing corrects technology-specific artifacts such as autofluorescence, noise and image 

registration 17–19. Next, images undergo cell segmentation to identify individual cells in the tissue. 

Recently, artificial intelligence (AI) algorithms, trained on large manually-curated datasets, have 

automated this task, approaching human-level performance 20–22. Next, the expression of each 

protein is quantified in each cell to create an expression matrix. This table serves as input for cell 

classification, where the type and phenotype of each cell is inferred from co-expressed proteins, 

in combination with prior knowledge. For example, a cell expressing CD45 will be classified as an 

immune cell. A cell that in addition expresses CD3 and CD8 is a cytotoxic T cell, and if that cell 

also expresses PD-1, LAG-3 and TIM-3, it is classified as an exhausted cytotoxic T cell 23.  

Cell classification methods typically involve manual gating or clustering of the expression 

matrix using algorithms that were developed for isolated cells, such as cytometry or single cell 

RNA sequencing (scRNAseq) 8,13,19,24–30. However, deriving cell classifications from multiplexed 

images has unique challenges over classifying cells in suspension, due to biological and technical 

factors. For example, Fig. 1B (I) shows an example of a B cell and a T cell which were erroneously 

segmented as one cell. In the expression matrix, this cell will appear as expressing both CD20 and 

CD3. Imaging artifacts also make classification challenging 17. Fig 1B (II) shows an example of a 

tumor cell, with overlapping noise in CD4. In the expression matrix, this cell will erroneously 



 

 

 

3 

appear to express CD4.  

Biological factors also contribute to the difficulty of cell classification from images. In 

tissues, cells form densely-packed communities, as shown for the cytotoxic T cell closely 

interacting with T helper cells in Fig. 1B (III). Moreover, cells extend projections to facilitate trans-

cellular interactions 31, as shown for the CD163+ macrophage in Fig 1B (IV). This close-network of 

cell bodies and projections results in spillover, whereby the protein signals from one cell overlap 

with the pixels of nearby cells. Several works have proposed methods to deal with spillover using 

compensation 3,32, pixel analysis 33 or neighborhood analysis 34, but these suffer from signal 

attenuation, difficulty in scaling to large datasets, or requirements for additional data sources 

such as scRNAseq on the same tissue. Altogether, cell classification has hitherto remained a time-

consuming and labor-intensive task, requiring sequential rounds of clustering, gating, visual 

inspection and manual annotation. Accordingly, the accuracy of classification is often user-

dependent and may impede the quality of downstream analysis. 

In this work we sought to accelerate and improve cell classification from multiplexed 

imaging by harnessing two insights into this task. First, the effects of segmentation errors, noise, 

spillover and projections accumulate over the millions of cells routinely measured in multiplexed 

imaging datasets. As a result, the time that it takes to classify cells using manual labeling, gating 

and clustering is proportional to the number of cells in the dataset. It is easier and faster to 

classify thousands of cells than to classify millions of cells. This observation implies that a 

machine-learning approach that learns classifications from a subset of the data and transfers 

them to the rest of the dataset could largely expedite the process of cell classification as 

suggested 35. Second, while segmentation errors, noise, spillover and projections confound 

protein expression values in the expression matrix, they are often distinguishable in images. We 

therefore reasoned that a computer-vision approach that works directly on the images as input, 

rather than on the expression matrix, may have better performance in the task of cell 

classification. Specifically, deep convolutional neural networks (CNNs) have had remarkable 

success in computer vision tasks and have recently gained impact in medical imaging, from 

radiology to electron microscopy 20,22,36,37.  
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Here, we present CellSighter, a deep-learning based pipeline to perform cell classification 

in multiplexed images. Given multiplexed images, segmentation masks and a small training set 

of expert-labeled images, CellSighter outputs the probability of each cell to belong to different 

cell types. We tested CellSighter on data from different multiplexed imaging modalities and found 

that it achieves 80-100% accuracy for major cell types, which approaches inter-observer 

concordance. Ablation studies and simulations showed that CellSighter learns features of protein 

expression levels, but also spatial features such as subcellular expression patterns and spillover 

from neighboring cells. CellSighter’s design reduces overfitting and it can be easily trained on 

only thousands or even hundreds of labeled examples, depending on cell type. Importantly, 

CellSighter also outputs confidence in prediction, allowing an expert to evaluate the quality of 

the classifications and tailor the prediction accuracy to their needs. Finally, CellSighter can be 

applied across datasets, which facilitates cross-study data integration and standardization. 

Altogether, CellSighter drastically reduces hands-on time for cell classification in multiplexed 

images, while improving accuracy and consistency across datasets.  

 

Results 

 

CellSighter – a convolutional neural network for cell classification 

We designed CellSighter as an ensemble of CNN models that, given raw multiplexed images, as 

well as the corresponding segmentation mask, returns the probability of each cell to belong to 

one of several classes (Fig. 1C). The input for each model is a 3-dimensional tensor, consisting of 

cropped images of K proteins centered on the cell to be classified (Supp. Fig. 1A, B). To 

incorporate the information of the segmentation, but in a restrained manner, we added two 

additional images to the tensor. The first consists of a binary mask for the cell we want to classify 

(1's inside the cell and 0's outside the cell), and the second is a similar binary mask for all the 

other cells in the environment. To deal with large class imbalances between cell types, which in 

tissues can easily reach 100-fold 26,38 when training the network we upsampled rare cells such 

that the major lineages are represented in equal proportions (Methods). However, for very low-

abundant classes upsampling alone can result in spurious correlations and overfitting. We 
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therefore added standard and custom augmentations to the data, including rotations and flips, 

minor resizing of the segmentation mask, minor shifts of the images relative to each other, and 

signal averaging followed by Poisson sampling (Methods).  

The final cell classification is given by integrating the results from ten separately-trained 

CNNs. Each model predicts the probability of each class for the cell. We then average those 

probabilities and take the class with the maximum probability as the final prediction and the 

probability value as the confidence. We found that this design provides results that are more 

robust and reduces grave errors of the network, including hallucinations 39. The confidence score 

gives the investigators of the data freedom to further process CellSighter’s results to decide on 

the level of specificity, sensitivity and coverage of cells in the dataset that are best for their 

specific needs. Low-confidence cells can also be used to guide and refine further labeling. 

We first tested CellSighter on a dataset of human melanoma lymph node metastases, 

acquired by MIBI-TOF 2. We took sixteen 0.8x0.8mm2 images, encompassing 116,808 cells and 

generated labels for all cells using established approaches, including FlowSOM clustering 24, pixel 

clustering 33, gating and sequential rounds of visual inspection and manual annotation (Methods). 

Altogether, we distinguished fourteen cell types, including different types of tumor cells, stromal 

cells, vasculature and immune cells. We trained CellSighter on twelve images and tested it on 

four held-out images. Prediction accuracy on the test was high (85±8%) (Fig. 1D), and strikingly 

similar to the concordance between two different human labelers (84±17%, Supp. Fig. 1C). It 

ranged from 99% on easily-distinguishable cells, such as tumor cells and high endothelial venules 

(HEVs) to 70% on rare, entangled or lineage-related cell types. For example, Memory CD4 T cells 

were mostly confused with lineage-related CD4 T cells (12%). We evaluated to what extent these 

confusions represent errors in CellSighter, errors in the expert annotations or ambiguous cells. 

To this end, we had an expert manually inspect 300 random cells that received different 

annotations by CellSighter and the expert, without knowing which approach provided which 

annotation. We found that in 30% of cases the confused cells were ambiguous and could be 

classified as either type, in 9% they were both wrong, in 32% manual inspection agreed with 

CellSighter and in 29% with the expert (Supp. Fig. 1D). Overall, this suggests that discrepancies 

are mostly driven by ambiguous cells, and CellSighter performs comparably to current 
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approaches. Moreover, in 40% of cases where the expert was correct, the correct classification 

was the second ranking option (Supp. Fig. 1E), and correct predictions received higher overall 

confidence (Supp. Fig. 1F). Importantly, limiting the analysis to high-confidence cells, using a 

cutoff of 0.7 on the probability, results in classifications for 79% of the dataset and increases the 

accuracy of prediction to 93±5% (Fig. 1E). Altogether, visual inspection of the test images 

confirmed that CellSighter indeed recapitulated both the predictions of individual cells and of the 

tissue organization at large (Fig. 1F). 

 

CellSighter learns protein coexpression patterns 

We explored which features drive CellSighter’s predictions. First, we checked whether a CNN 

running on a tensor of protein images was able to learn protein expression per cell type, similar 

to what an expert does when working on the expression matrix. To this end, we correlated 

between the cellular protein expression levels and CellSighter’s confidence in prediction. For 

example, the confidence in predicting Neutrophil was highly correlated with the cellular 

expression levels of Calprotectin (R = 0.76, P < 10-20, Fig. 2A). Performing this analysis for all 

proteins across all cell types revealed expected associations between cell types and their 

respective proteins (Fig. 2B). For example, the confidence of B cell classification was mostly 

positively correlated with the expression of CD20 (R = 0.68, P= P < 10-20) and to a lesser extent 

with CD45RA (R = 0.5, P < 10-20) and CD45 (R = 0.28, P= P < 10-20). We also found that CellSighter 

is aware of the problems of spillover and multi-class classification as B cell classification was also 

mildly negatively correlated with the expression of CD3 (R = -0.25, P < 10-20), CD4 (R = -0.23, P < 

10-20) and CD8 (R = -0.19, P < 10-20). Indeed, a scatter plot of cellular CD20 expression (a hallmark 

protein for B cells) versus cellular CD8 expression (a hallmark protein for cytotoxic T cells) 

revealed that CellSighter was confident in its classifications for cells that had high expression of 

one of these proteins, but had lower confidence in the classification of cells that expressed both 

proteins (Fig. 2C). 

To further probe CellSighter’s classification process, we examined the gradients of the 

network using guided back propagation 40. We found that the gradients were concentrated in the 

center cell (Fig. 2D) and that they match the expected protein expression patterns. For example, 
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figure 2D shows an example of a cell classified as a Treg, where prominent gradients are observed 

for FoxP3 inside the cell, but not in the neighboring cells. Weaker gradients are observed for CD4, 

but not CD45, reflecting their respective roles in classifying Tregs. In cells classified as tumor cells, 

the strongest gradients were traced back to the images of MelanA and SOX10, whereas for HEVs 

it was in the images of CD31 and MECA-79 (Fig. 2E). Altogether, these analyses suggest that 

protein expression levels are a major determinant of CellSighter’s classification process, similar 

to gating and clustering.  

 

CellSighter learns spatial expression features 

Next, we examined whether CellSighter was able to leverage the fact that it works directly 

on the images and learn spatial features to aid in classification. Since CellSighter was trained on 

data resulting from clustering the expression matrix, which suffers from spillover, we wondered 

whether it could generalize to learn spatial expression patterns. To do this we employed three 

complimentary approaches: contrasting CellSighter with a machine learning model that works on 

the expression matrix rather than on the images, analyzing performance on simulated data, and 

examining the network’s gradients. 

First, we evaluated whether CellSighter was more robust to spillover compared with using 

machine learning approaches that work on the expression matrix. To this end, we used the same 

set of twelve labeled images to train a gradient boosting classifier (XGBoost) that works on the 

expression matrix 41. We then used XGBoost to predict the labels for the test images and got high 

prediction accuracies, globally comparable to CellSighter (Supp. Fig. 2A). However, visual 

inspection of the images suggested that CellSighter was more robust to spillover (Fig. 3A). For 

example, inspection of Calprotectin showed that for each patch of signal CellSighter tended to 

classify less cells overlapping with that patch as Neutrophils (Fig. 3A, Supp. Fig. 2B). Moreover, 

cells that were classified as neutrophils by CellSighter were mostly the cells that had higher 

overlap with the signal (>20%, Fig. 3B). To verify that this observation was causal, we performed 

a simulation where we took a patch of Calprotectin signal and moved it to vary its overall overlap 

with the cell (Supp Fig. 2C,D). We found that for low overlap (<20%) CellSighter was 9% less likely 
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to classify cells as Neutrophils compared to the XGBoost, whereas for higher degrees of overlap 

(>30%) this trend flipped (Supp Fig. 2C,D). 

To further examine CellSighter’s ability to learn spatial expression patterns, we performed 

a direct simulation of spillover that generates contradicting expression patterns. Here, we took 

crops centered on T helper cells and removed their cognate CD4 and CD20 signals, to avoid any 

confounding factors incurred by the original signals. We then reintroduced CD4 as a membranous 

signal, and a patch of strong, partially-overlapping CD20 signal, to simulate spillover (Fig. 3C). To 

verify that our simulation is relevant to real-world data, the expression levels for both CD4 and 

CD20 were compatible with the distribution of observed values in the dataset (Supp. Fig. 2E). We 

then ran both CellSighter on the images and XGBoost on the expression matrix of the resulting 

cells. Not surprisingly, if we only added the CD4 signal, both models classified 70-80% of cells as 

CD4 T cells (Supp. Fig. 2F). However, when introducing the CD20 signal, CellSighter classified 30% 

of the cells as B cells, whereas XGBoost classified 47% as B cells (Fig. 3D). Moreover, CellSighter 

had overall lower confidence in these classifications than XGBoost. For example, CellSighter had 

high confidence (>0.9) that 1.5% of these simulated cells are B cells, compared to 30% for 

XGBoost (Fig. 3E). Altogether, we conclude that both in real data and in simulations, running a 

CNN on images is more robust to spillover.  

Next, we evaluated whether CellSighter was able to learn the sub-cellular expression 

patterns of different proteins. Visual inspection of the gradient maps for several cells suggested 

that the gradients of nuclear proteins were concentrated in the center of the cell, whereas the 

gradients for membrane proteins followed the segmentation borders (Fig. 2D). We therefore 

used guided back propagation to examine the gradients of the network at varying radii from the 

cell center. We found that for nuclear proteins, such as FoxP3 and SOX10, CellSighter turns its 

attention closer to the center of the cell whereas for membrane proteins this distance increases. 

For example, for FoxP3, 60% of the gradient is achieved at a distance of 40% from the center of 

the cell, whereas for CD4 it is at 75% (Fig. 3F, Supp. Fig. 2G).  

To examine whether this relationship was causal we performed additional simulations. 

Again, we took patches centered on T helper cells and removed their cognate CD4 and CD20 

signals, to avoid any confounding factors incurred by the original signals, and then reintroduced 
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CD4 as a membranous signal. However, this time we also introduced CD20 as a membranous 

signal on the same cell. In different simulations we varied the percent of membrane that was 

covered by CD20, ranging from 100% to 12.5% (Fig. 3G). We also varied the overall signal in a 

complimentary manner, such that the average CD20 per cell was maintained at a relatively 

constant level (Supp. Fig. 2H). Here too we made sure that the overall signal was drawn from the 

real CD20 expression distribution (Methods). We found that when the CD20 signal surrounded 

100% of the membrane, both models were equally likely to classify the cell as a B cell, resulting 

in 84% of the cells classified as B cells using CellSighter and 80% using XGBoost. However, as the 

fraction of overlap with the membrane was reduced, XGBoost continued to classify a similar 

percentage of cells as B cells, whereas CellSighter was less likely to classify the cells as B cells. For 

example, at 12.5% overlap, XGBoost classified 72% of the cells as B cells, whereas CellSighter 

dropped to 35% (Fig. 3H). This suggests that CellSighter learned the characteristic membranous 

expression pattern of CD20. 

Overall, we found that CellSighter learns both protein expression levels and spatial 

expression patterns and integrates both when classifying cells. We note that CellSighter was able 

to learn these spatial features even though it was trained on imperfectly-labeled data, where 

annotations were mostly generated using gating and clustering on the expression matrix. This is 

important because most labs who perform multiplexed imaging can relatively easily generate 

such imperfect annotations for a subset of the data, whereas generating high-quality manually-

curated annotations is difficult and time-consuming. The fact that CellSighter learns spatial and 

sub-cellular expression features suggests that it is able to generalize beyond just learning the 

clustering. 

 

CellSighter features contribute to performance 

Next, we evaluated how different features of CellSighter affect the performance of the 

predictions. First, we examined what benefits, if any, are incurred by using an ensemble of 

models. To this end, we correlated between the cellular protein expression levels and the 

confidence in prediction using either a single CNN or an ensemble. We found improved 

correlations using the ensemble. For example, using a single CNN 2.68% of the cells that were 
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classified as Neutrophils had low expression of Calprotectin (<2), yet they were classified as 

Neutrophils with high confidence (>50%). Using the ensemble, this number drops 5-fold to 0.47%, 

and cells that are classified as Neutrophils either have high expression of Calprotectin or are 

classified with low confidence (Fig. 4A). Moreover, we compared the confidence in prediction for 

all the cells for which our prediction agreed with the expert labeling to the confidence in 

prediction for all the cells for which our prediction disagreed with the expert labeling (Fig. 4B).  

We found that using a single model 20% of the cells that were wrongly classified had high 

confidence (>0.9). However, using an ensemble, this number dropped to 5%, and the overall 

confidence for wrong classifications was significantly lower (Fig. 4B). Neural networks can be 

difficult to train and can learn spurious correlations. Using an ensemble of models provides 

results that are more robust, with improved correlation between the network’s confidence in 

prediction and its accuracy. 

In addition, we evaluated how much data is needed to train CellSighter. To this end, we 

retrained CellSighter on training sets that varied in size, where we randomly sampled from each 

class either 100, 250, 500, 1000 or 5000 cells and evaluated the resulting accuracy in prediction. 

To obtain confidence intervals, we repeated this process 5 times, each time training a separate 

model (Fig. 4C, D). We found that the number of cells needed to plateau the prediction accuracy 

was highly variable between classes. For example, for CD4 T cells we observed a continuous 

improvement in F1 score from 50% to 80% when increasing the number of cells. In contrast, for 

tumor cells we found that increasing the training set resulted in only a modest increase in F1 

score from 91% to 96% (Fig. 4C). These results indicate that some cell types are easier to learn 

than others. This can result from these classes having better defining markers, such as nuclear 

proteins that are less prone to spillover. Another factor contributing to making a class more easily 

classifiable could be spatial organization patterns where cell types of the same class cluster 

together, such as in the case of HEVs (Fig 4E). Overall, these results suggest that labeling efforts 

can be prioritized in an iterative process. A user can label a few images and train CellSighter using 

either all cells or a subset to identify classes that would benefit most from additional training 

data. The CellSighter repository supplies functions to facilitate such analyses.   
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Encouraged by our results that showed that CellSighter could be trained on only 

thousands or even hundreds of cells, we checked whether it was possible to train the network 

on easy, well-defined cells, that don’t suffer from segmentation errors, noise and spillover. If 

possible, this workflow would be highly advantageous as it would drastically reduce the time 

invested in the initial labeling. To this end, we identified in the dataset landmark cells that can be 

quickly defined using conservative gating (Methods). We then retrained CellSighter only on 

landmark cells from the 12 images in the training set. As expected, evaluating this model only on 

landmark cells in the test set achieves excellent results (97±4%, Supp. Fig. 3A). Next, we tested 

how this model performs on the entire test set. We found that using only landmark cells for 

training results in good classifications for well-defined classes such as Tregs, Tumor cells and 

HEVs. However, overall, it achieved poorer classifications relative to using an unbiased 

representation of the dataset (70±20% vs. 85±8%, Fig. 4F, Supp. Fig. 3B). We conclude that simple 

gating could be sufficient for some cell types, but for others the network needs to be trained on 

representative data that reflects the issues in the real data. This information can be useful to 

prioritize labeling efforts to more difficult cells. 

Finally, we evaluated the contributions of augmentations by training CellSighter with and 

without augmentations. We found that removing augmentations reduces the prediction accuracy 

by 1% to 10%, depending on cell type (Fig. 4G). Expectedly, the effect of augmentations was more 

significant for cell types that were under-represented in the training set and are difficult to 

classify, such as stromal cells and dendritic cells. Overall, having a wide plethora of 

augmentations diversifies the training set and helps overcome imbalances in the prevalence of 

different cell types.  

 

CellSighter generalizes across datasets and platforms 

 We evaluated whether CellSighter could apply to different datasets and platforms. First, 

we evaluated CellSighter on another MIBI-TOF melanoma dataset that includes 164 0.5x0.5mm2 

images, altogether comprising roughly 220,000 cells. We trained CellSighter on 132 images and 

evaluated on 32, where it achieved excellent performance (92±6% Fig. 5A-B). We note that this 

performance is higher than on the lymph node dataset, presumably because cells in this dataset 
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are less dense and the labels underwent extensive manual curation. Next, we turned to a 

published dataset of Melanoma metastases acquired by Imaging Mass Cytometry (IMC) 42.  We 

used the cell classifications provided by the authors to train CellSighter on 55 images and tested 

the results on 16 heldout images. CellSighter achieved high levels of accuracy (84±17%) on all 

classes except for stroma (36%), which was mostly confused with tumor cells (Fig. 5C). Since both 

MIBI and IMC are mass-based multiplexed imaging technologies, we also evaluated the approach 

on a technology that employs cyclic fluorescence. To this end, we analyzed a published dataset 

of colorectal cancer acquired using CO-Detection by indexing (CODEX) 26. We used the cell 

classifications provided by the authors to train CellSighter on 112 images (218,372 and tested the 

results on 28 heldout images (Fig. 5D). Also on this dataset, CellSighter achieved good levels of 

accuracy (70±19%), albeit lower than the other datasets primarily owing to low performance on 

several classes.  

Finally, we checked whether a model trained on one dataset could be applied to a 

different dataset. This is a challenging task since different datasets are collected on different 

tissues where different populations of cells reside, and these cells may have altered morphology, 

phenotypes and spatial organizations. Technically, different datasets will typically differ in the 

number and identity of proteins visualized and may have batch effects relating to the 

instrumentation and antibodies used at different times. We evaluated how CellSighter, trained 

on the melanoma lymph node dataset (Fig.1D) performed on a dataset profiling the 

gastrointestinal tract, which shares 19 proteins used to define eight shared cell types (Fig. 5E). 

We found that training CellSighter on the melanoma lymph node data and evaluating on the 

gastrointestinal data achieves high results for major cell types that shared all of their defining 

proteins, including CD4 T cells (88%), Tregs (83%), CD8 T cells (93%) and Endothelial cells (82%). 

For macrophages the performance was significantly low (47%). Notably, for this class there were 

unique proteins which were used for expert labeling in one dataset, but not the other. As such, 

poorer performance could stem from not having enough information for classification, or 

indicate biological variability in the expression patterns and morphology of these cell types 

between the lymph node and the gut 43.  
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Altogether, we conclude that CellSighter achieves accurate cell type classification within 

a single dataset for different types of multiplexed imaging modalities. Across datasets, accurate 

classification is dependent on having shared lineage-defining proteins, morphology and 

phenotypes. 

 

Discussion 

Cell classification lies at the heart of analysis of multiplexed imaging, but has hitherto remained 

labor-intensive and subjective. In this work we described CellSighter, a CNN to perform cell 

classification directly on multiplexed images. We demonstrated that the network learns both 

features of protein co-expression as well as spatial expression characteristics, and utilizes both 

to drive classification. We showed that CellSighter achieves high accuracy (>80%), on par with 

current labeling approaches and inter-observer concordance, while drastically reducing hands-

on expert labeling time. 

CellSighter has several features that we found appealing as users who frequently perform 

cell classification on multiplexed images. First, CellSighter outputs for each cell not only its 

classification, but also a confidence score. This type of feedback is nonexistent using current 

clustering or gating approaches, which often result in variable and arbitrary quality of cell 

classifications. Working with CellSighter, we found that the confidence scores that are generated 

are useful in evaluating any downstream analyses that are based on these classifications. 

Furthermore, evaluating CellSighter’s predictions on a test set is highly informative of label 

qualities. We consistently found that improving the labeling that is used for training improves 

CellSighter’s performance and ability to generalize. Therefore, classes that have low prediction 

accuracies can help the user to identify cell types that are poorly defined. This in turn can direct 

further efforts to split classes, merge classes, gate or perform manual annotations on the cells of 

the training set until adequate results are achieved. This process will likely increase the overall 

labeling quality in multiplexed imaging. 

CellSighter also has some limitations Primarily, it is a supervised approach. As such, if a 

rare cell population (eg Tregs) is not represented in the training set, CellSighter will not be able 

to identify it in the rest of the dataset. One way to diminish this issue is to validate that for each 
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antibody there are images containing positive staining in the training set. Still, this will not resolve 

rare populations that are defined based on differential combinations of proteins that are usually 

associated with more abundant populations. For example, very rare FoxP3+ CD8+ T cells 44 may 

not be included in the training set and therefore missed. Incidentally, such extremely rare 

populations are also commonly not classified using standard clustering and gating-based 

approaches 26,38,42. With CellSighter, such cells can be more readily identified by examining cells 

that were confused between classes. For example, FoxP3+ CD8+ T cells could be identified by 

evaluating cells that have high probabilities to be classified as either Tregs or CD8 T cells. The user 

can then decide whether to add this class and make sure that it is represented in the training set 

or, alternatively perform subsequent gating of this population.   

   In addition, CellSighter receives as input images of multiple channels. This has a big 

advantage in that multiple proteins are assessed simultaneously to call out cell types. For 

example, CD4 T cell classification will be driven by expression of CD3 and CD4, but not CD8 and 

assessing these proteins for both the classified cell and its immediate surroundings. This mimics 

what human experts do when they perform manual labeling and adds to the accuracy of 

classification. On the flip side, different datasets often include different proteins in their panels. 

A good example for this is myeloid cells, where different studies measure different combinations 

of CD14, CD16, MHCII, CD163, CD68, CD206, CD11C etc 6,26,38,42,45–48. Transferring models 

between datasets that don’t share all the proteins used in classification is not straightforward, 

and reduces the accuracy of classification. There are several solutions to this issue. We found 

that proteins can be interchanged if they share a similar staining pattern. In addition, as 

technologies mature, antibody panels will likely increase in size and become more standardized, 

reducing inter-dataset variability in the proteins measured, which will facilitate transferring 

labels across datasets and platforms. Altogether, we foresee that in the future, using machine-

learning approaches such as CellSighter will streamline data integration, such that knowledge 

would transcend any single experiment and consolidate observations from different studies 49,50. 

While CellSighter is undoubtedly not there yet, it is an important step in facilitating this process. 

 

 



 

 

 

15 

Methods 

Datasets and expert annotations 

MIBI Melanoma lymph node dataset: The dataset contains sixteen 0.8x0.8mm2 images, 

altogether encompassing 116,808 cells. Of these, the cells from 12 images were used for training 

and the model was evaluated on the remaining four images. Labels for all cells were generated 

using FlowSOM clustering 24, in combination with gating and sequential rounds of visual 

inspection and manual annotation. The following populations have been defined: B cells (CD20, 

CD45, CD45RA) , DCs (DC_SIGN, CD11c, CD14, CD45, CCR7 , CD4) , CD4 T cells (CD4, CD3, CD45) , 

T regs (CD4, FoxP3, CD3, CD45) , Macrophages (CD45, CD68, CD163, CD206, DC_SIGN, CD14, 

CCR7) , CD8 T cells (CD8, CD3, CD45, Granzyme B) , Stroma (COL1A1, SMA) , Follicular Germinal 

B cells (CD20, CD21, CD45, CD45RA,) , HEVs (CD31, Meca79) , Memory CD4 Tcells (CD4, CD3, 

CD45, CD45RO), NK cells (CD45, CD56) , Neutrophils (S100A9_Calprotectin) , endothelial cells 

(CD31) and Tumor (MelanA, SOX10). The following expert-annotated classes were not included 

in predictions: unidentified, which contains a mixture of various proteins, and CD3-only, together 

encompassing 5% of the data. Expression of all proteins across cell types can be found in 

supplementary figure 3C. 

MIBI Melanoma dataset: 174 0.5x0.5mm2 images, altogether encompassing 220,016 cells. Labels 

for all cells were generated using sequential gating and sequential rounds of visual inspection 

and extensive manual annotation. Of these, the cells from 132 images were used for training and 

the model was evaluated on the remaining 42 images. The following populations have been 

defined: B cells (CD20, CD45), CD4 T cells (CD3, CD4, CD45) , CD8 T cells (CD3, CD8, Granzyme B, 

CD45) , Endothelial (CD31) , Myeloid (CD16, CD68, CD163, CD206, DC_SIGN, CD11c, CD45,) , SMA 

(SMA) , Neutrophil (MPO_ Calprotectin) , T cell (CD3 only) , T regs (FoxP3) and Tumor (SOX10). 

Expression of all proteins across cell types can be found in supplementary figure 3D. 

MIBI GastroIntestinal (GI) dataset: Labels for eighteen 0.4x0.4mm2 images were generated using 

FlowSOM clustering 24, in combination with pixel clustering 33 and sequential rounds of visual 

inspection and manual annotation. The model trained on the melanoma lymph node dataset was 

ran on 9,532 cells from the following classes, which were shared across the two datasets: T regs 

(FoxP3, CD4, CD3, CD45), CD8 T cells (CD8, CD3, GranzymeB, CD45), CD4 T cells (CD4, CD3, CD45), 
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B cells (CD20, CD45RA, CD45), Macrophages (CD68, CD206, CD163, CD14, DC-SIGN, CD45), 

Neutrophil (S100A9-Calprotectin), Stroma (SMA, COL1A1) and Endothelial (CD31). Expression of 

all proteins across cell types can be found in supplementary figure 3E. 

IMC Melanoma dataset: Data and cell classifications were taken from Hoch et al. 42. Of these, the 

cells from 55 images were used for training and the model was evaluated on the remaining 16 

images, altogether encompassing 70,439 labeled cells. The following populations, as defined by 

the authors, have been used: Tumor, B cell, CD4 T cells, Macrophage+pDC, CD8 T cells, Stroma, 

Neutrophil, Tregs and unknown. Annotations were provided for a subset of cells. For this dataset, 

the crop size for the CNN was chosen to be 30x30 pixels because of the image resolution. To train 

CellSighter the following subset of protein channels was used: CD4, CD20, SMA, SOX10, FOXP3, 

CD45RO, Collagen I, CD11c, CD45RA, CD3, CD8a, CD68, CD206/MMR, S100, CD15, MPO, HLA-DR, 

CD45, CD303, Sox9, MiTF, CD19, p75 

CODEX Colorectal dataset:  Data and cell classifications were taken from Schurch et al. 26. Of 

these, the cells from 112 images were used for training and the model was evaluated on the 

remaining 28 images, altogether encompassing 218,372 cells from the following classes: 

Macrophages (CD68+CD163+ macrophages, granulocytes, CD11b+CD68+ macrophages, CD68+ 

macrophages, CD163+ macrophages, CD68+ macrophages GzmB+), DCs (CD11c+ DCs), CD4 T cells 

(combined with CD4+ T cells GATA3+ and CD4+ T cells CD45RO+), CD8 T cells, T regs cells, 

Granulocytes, Vasculature, Stroma, Smooth muscle, Plasma cells, B cells, Tumor cells, Immune 

cells, NK cells. We chose to not work on the other classes in the dataset due to the fact that they 

were either not well defined or that they don’t have a lot of samples. To train CellSighter the 

following subset of protein channels was used: CD7, GATA3, CD44, FOXP3, CD8, p53, CD45, beta-

catenin, HLA-DR - MHC-II, CD45RA, CD4, CD21, MUC-1, CD20, Na-K-ATPase, Cytokeratin, CD11b, 

CD56, aSMA, CD11c, Granzyme B, CD15, Synaptophysin, GFAP, CD3, Chromogranin A, CD163, 

CD45RO, CD68, CD31, Podoplanin, CD34, CD38, CD138. 

 

CellSighter 

CellSighter is an ensemble of CNN models, each based on a ResNet50 backbone 51. The input for 

each model is a 3-dimensional tensor, consisting of cropped images of K proteins centered on the 
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cell to be classified, a binary mask for the cell to classify (1's inside the cell and 0's outside the 

cell), and a similar binary mask for all the other cells in the environment (Fig. 1C). The crop size 

can vary, but ideally should include the cell and its immediate neighbors. For the datasets at hand 

no significant differences were observed when varying the crop sizes from 40 – 100 pixels 

(corresponding to ±20-50 µm2, Supp. Fig. 1B). A crop size of 60x60 pixels was used for all datasets 

except the IMC, where a crop size of 30x30 pixels was used to account for the different resolution.  

To account for class imbalance, rare classes were upsampled such that the major lineages 

(Myeloid, T cell, tumor, B cell, other) were represented in equal proportions. Training:  In training, 

the images randomly undergo a subset of the following augmentations: no augmentation, 

rotations, flips, translations of the segmentation mask, resizing of the segmentation mask by up 

to 5 pixels, shifts of individual protein channels in the X-Y directions by up to 5 pixels with 

probability of 30%, and gaussian signal averaging in a window of 5 pixels followed by Poisson 

sampling. The final cell classification is given by integrating the results from ten separately-

trained CNNs. We found that randomization in initializations and augmentations are sufficient to 

generate sufficient diversity between the models. Each model predicts the probability of each 

class for the cell. Those probabilities are then averaged to generate one probability per cell type. 

The final prediction is the class with the maximal probability and the prediction confidence is the 

probability value. 

The code for CellSighter can be found at: https://github.com/KerenLab/CellSighter 

  

XGBoost 

Python’s XGBoost gradient boosting tree model was used for benchmarking experiments on 

tabular data (https://github.com/dmlc/xgboost 41). Input to the model included the arcsinh 

transformed expression values per cell normalized by cell size for all the proteins that were used 

to train CellSighter 20. The model was trained with the following parameters: n_estimators=100 

and max_depth=2, the rest of the parameters were kept as the default of the library. 

 

Gradient analysis 
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The analysis was performed using one of the models of the ensemble on 5000 cells from the test 

set. Small cells (<50 pixels) were removed since their size is too small for spatial analysis, leaving 

4961 cells. For each of these cells, the sum of positive gradients for each marker was calculated 

in concentric circles centered in the middle of the input, ranging from 1 to 18 pixels in jumps of 

2. For each cell the radius of the circles is then normalized by the radius of the cell. Gradients are 

normalized relative to the largest radius profiled. 

 

Neutrophil analysis 

Calprotectin patch analysis: Calprotectin patches were obtained by dilating the signal using a 

kernel of size 3 and identifying connected components. Cells that overlap with Calprotectin 

patches are identified.  

Simulations: All 237 Neutrophil cells from the test set were used. Calprotectin signal was 

simulated using Poisson sampling with lambda=4 normally distributed with a standard deviation 

of 5 pixels. Simulations were performed in which this signal was moved relative to the center of 

the cell ranging from 0 to 15 pixels in x and y directions. 

 

CD4/CD20 simulations 

CD20 patch experiments: 549 CD4 T cells were randomly-sampled and their cognate CD4 and 

CD20 signals removed to avoid any confounding factors incurred by the original signals. CD4 

signal was simulated by Poisson sampling with lambda=1.3 in horizonal and vertical distances of 

at most 5 pixels from the border of the cell segmentation. CD20 was simulated around a random 

point on the border of the cell with Poisson sampling with lambda=1.3 with a uniform distance 

between 0 and 6. Cells that are smaller than 15 pixels across their minor axis were filtered to 

eliminate complete overlap of the patch with the cell.  

CD20 membrane experiments: 200 CD4 T cells were randomly-sampled and their cognate CD4 

and CD20 signals removed to avoid any confounding factors incurred by the original signals. CD4 

signal was simulated by Poisson sampling with lambda=1.3 in horizonal and vertical distances of 

at most 5 pixels from the border of the cell segmentation. CD20 was simulated similarly, but 

varying the percent of the membrane that is covered by the signal to be 12.5%, 25%, 50% and 
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100%. In order to keep the overall signal intensity in the cell similar, the number of sampled 

points increased proportionally to the decrease in membrane size. 

   

Training with different input sizes 

For these experiments, 100, 250, 500, 1000 or 5000 cells were randomly sampled from the 

training set for each class. In cases in which there were not enough cells in the data for sampling 

(e.g. Tregs had only 440 cells in the training set), all cells from that class were sampled, but results 

for these values for these classes are not reported to allow comparisons across experiments. 

Figures show the mean and std of five independent experiments.   

 

Landmark cell analysis 

Landmark cells were defined for each class as the cells that express above 20th percentile of the 

proteins that define the class, and are not above the 15th percentile value of expression of any 

other protein. E.g. landmark tumor cells strongly expressed either SOX10 or MelanA and no other 

lineage protein. For the following classes some deviations from this formulation were necessary 

to allow enough cells for training: For myeloid cells the threshold for the other markers was the 

20th and not 15th percentile. For Tregs and neutrophils only high expression of FoxP3 and 

Calprotectin was used respectively, without consideration for other proteins. Visual inspection 

validated that these cells were indeed landmarks of their classes. 

Landmark cells were partitioned to train and test by the same image partition as in figure 1. 

CellSighter was trained on the landmark training cells and tested both on the landmark test cells 

(Supp. Fig. 3A) and on all cells in the test (Supp. Fig. 3B). 
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Figure 1: CellSighter – a convolutional neural network for cell classification. (A) Standard pipelines for cell 

classification take in multiplexed images and cell segmentation masks and generate an expression matrix. Cells in 

the matrix are annotated by rounds of clustering, gating, visual inspection and manual correction. CellSighter works 

directly on the images. (B) Imaging artifacts and biological factors contribute to making cell classification from 

images challenging. Segmentation errors, noise, tightly packed cells and cellular projections are easily visible in 

images, but hard to discern in the expression matrix. Scale bar = 5!m. (C) CellSighter is an ensemble of convolutional 

neural networks (CNNs) to perform supervised classification of cells. (D) Comparison between labels generated by 

experts using clustering, gating and manual annotation (x-axis) and labels generated by CellSighter (y-axis) shows 

good agreement. (E) Same as (D) for high-confidence classifications (Confidence>0.7). (F) For one FOV, shown are 

the protein expression levels (left), expert-generated labels (middle) and CellSighter labels (right).  
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Figure 2: CellSighter learns protein expression patterns
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Figure 5: CellSighter generalizes across datasets and platforms.

(A) Comparison between labels generated by experts (x-axis) and labels generated by CellSighter (y-axis) for 

a melanoma MIBI dataset. (B) For one FOV in the MIBI melanoma dataset, shown are the protein expression 

levels (left), expert-generated labels (middle) and CellSighter labels (right). (C) Same as (A) for IMC data from 

Hoch et al. 39 (D) Same as (A) for CODEX data from Schurch et al. 24 (E) Same as (A) showing performance of 

the model trained on the lymph node metastases dataset and evaluated on a dataset of the gastrointestinal 

tract. 
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Supplementary Figure 1 
(A) Histogram showing the major axis length in pixels for all cells in the Melanoma lymph node metastases dataset. (B) 

Shown is the agreement between CellSighter and expert labeling (F1 score, blue) for different cell classes (x-axis) when 

varying the crop size of the input into CellSighter between 20 and 100 pixels. (C) For the melanoma dataset, shown is the 

agreement on the labels of all cells from a single FOV between two different human labelers. (D) Expert inspection of cells 

performed blindly, without knowledge of the source of the label. (E) 

annotation and both) CellSighter had a higher chance of including this label in the top two (±40%), whereas in cases in which 

inspection suggested that the expert was incorrect (CellSighter and None) CellSighter had a lower chance of including this 

label in the top two (±20%). (F) 

erroneous (Orange bars).
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Supplementary Figure 2 

(A) Comparison between labels generated by experts (x-axis) and labels generated by running gradient-boosting on the 

expression matrix (XGBoost, y-axis).(B) 

the number of Neutrophils predicted was larger in either CellSighter (left) or XGBoost (right) respectively. (C) Results of 

Neutrophils (y-axis) at different levels of intersection of their Calprotectin signal with the cell segmentation (x-axis). At low 

(D) Example images from 

three degrees of overlap for two cells.  (E) Histogram showing expression levels of CD4 in CD4 T cells (left) or CD20 in B cells 

(right) for real (black) and simulated (gray) data. (F) Crops centered on CD4 T cells had their cognate CD4 and CD20 signals 

removed and CD4 was reintroduced as a membranous signal. Shown are results for the fraction of these cells that were 

(G) Shown is the normalized sum of gradients (y-axis) 

as a function of the normalized integrated distance from the cell center (x-axis) for different lineage proteins. The gradients for 

each protein were evaluated in its respective cell type: CD14 – Macrophages, CD21 – Follicular germinal B cells, CD20 – B 

cells, CD4 – T helper cells, CD11c – DCs, CD8 – CD8 T cells, Calprotectin – Neutrophils, MelanA – Tumor cells, CD68 – 

Macrophages, SOX10 – Tumor cells, Foxp3 – Tregs. (H) For cells in which CD20 was simulated as a membranous signal with 

varying overlap with the membrane, shown is the CD20 expression per cell (y-axis) as a function of the percentage of 

membrane that has CD20 signal (x-axis). 

10 m

44% overlap

F
ra

c
ti
o

n
 o

f 

c
a

lp
ro

te
c
ti
n

 p
a

tc
h

e
s

 CellSighter 
> 

XGBoost

 
 XGBoost 

> 
CellSighter

0.00

0.04

0.08

0.12



A B

C

E

D

C
D

4
5

C
D

4
5
R

A

C
D

2
0

C
D

2
1

F
o
x
p
3

C
D

4

C
D

3

C
D

4
5
R

O

C
C

R
7

C
D

8

G
ra

n
z
y
m

e
 B

C
D

5
6

C
D

1
1
c

D
C

-S
IG

N

C
D

2
0
6

C
D

6
8

C
D

1
6
3

C
D

1
4

C
a
lp

ro
te

c
ti
n

C
O

L
1
A

1

S
M

A

C
D

3
1

M
E

C
A

-7
9

M
e
la

n
A

S
O

X
1
0

Proteins

Proteins

B cell

GC B cell

Treg

CD4+T

CD4+Tmem

CD8+T

NK cell

DCs

Mac

Neutrophil

Stroma

Endothel

HEVS

Tumor

Cell classes Melanoma LN

GI Cell classes

6

0

Intensity

Proteins

Cell classes

5

0

Intensity
5

0

Intensity

Melanoma 

C
D

4
5

C
D

2
0

C
D

4

C
D

8

G
Z

M
B

C
D

3

F
o
x
p
3

C
D

3
1

C
D

1
6

C
D

6
8

C
D

2
0
6

C
D

1
1
c

C
D

1
6
3

C
D

2
0
9

S
M

A

M
P

O
 C

a
lp

S
O

X
1
0

Bcell

CD4T

CD8T

Tcell

Treg

Endothelial

Myeloid

SMA

Neutrophil

Tumor

C
D

4
5

C
D

4
5
R

A

C
D

2
0

F
o
x
p
3

C
D

4

C
D

3

C
D

4
5
R

O

C
D

8

G
ra

n
z
y
m

e
B

C
D

5
6

D
C

-S
IG

N

C
D

2
0
6

C
D

6
8

C
D

1
6
3

C
D

1
4

C
a
lp

ro
te

c
ti
n

C
O

L
1
A

1

S
M

A

C
D

3
1

B cells

Tregs

CD4+T

CD8+T

Macrophages

Neutrophils

Stroma

Endothel

Train and test on landmark cells Train on landmark cells and test on all cells

B cell

GC B cell

 CD4+Treg

CD4+T

 CD4+Tmem

CD8+T

NK

DCs

MAC

Neutrophil

Storma

Endothel

Hevs

Tumor

B
 c

e
ll

G
C

 B
 c

e
ll

 C
D

4
+
T

re
g

C
D

4
+
T

 C
D

4
+
T

m
e
m

C
D

8
+
T

N
K

D
C

s

M
A

C

N
e
u
tr

o
p
h
il

S
to

rm
a

E
n
d
o
th

e
l

H
e
v
s

T
u
m

o
r

0

100
Recall

96.5
 (2376)

0.2
 (1)

2.0
 (1)

3.3
 (82)

99.7
 (618)

2.0
 (1)

99.7
 (295)

93.8
 (1760)

2.7
 (29)

5.5
 (104)

97.3
 (1038)

2.0
 (1)

98.8
 (79)

12.5
 (1)

87.5
 (7)

89.8
 (44)

0.2
 (1)

4.1
 (2)

100.0
 (58)

0.3
 (1)

99.6
 (236)

0.4
 (1)

100.0
 (133)

100.0
 (26)

1.2
 (1)

100.0
 (25)

0.3
 (6)

99.8
 (1816)

Clustering and gatingClustering and gating

C
e
llS

ig
h
te

r

C
e
llS

ig
h
te

r

B cell

GC B cell

 CD4+Treg

CD4+T

 CD4+Tmem

CD8+T

NK

DCs

MAC

Neutrophil

Storma

Endothel

Hevs

Tumor

B
 c

e
ll

G
C

 B
 c

e
ll

 C
D

4
+
T

re
g

C
D

4
+
T

 C
D

4
+
T

m
e
m

C
D

8
+
T

N
K

D
C

s

M
A

C

N
e
u
tr

o
p
h
il

S
to

rm
a

E
n
d
o
th

e
l

H
e
v
s

T
u
m

o
r

0

100
Recall

59.9
 (5418)

1.0
 (22)

0.9
 (110)

1.2
 (1)

4.6
 (63)

3.8
 (26)

0.2
 (1)

0.5
 (15)

3.3
 (300)

79.1
 (1694)

2.8
 (323)

0.5
 (15)

4.6
 (63)

2.0
 (14)

0.4
 (1)

0.2
 (5)

1.2
 (111)

0.2
 (5)

99.7
 (295)

2.6
 (299)

1.2
 (34)

4.2
 (120)

6.2
 (5)

16.8
 (228)

4.1
 (28)

2.4
 (13)

0.9
 (2)

2.0
 (14)

0.2
 (5)

24.8
 (2247)

0.8
 (18)

68.9
 (8027)

10.6
 (300)

16.3
 (461)

2.5
 (2)

13.0
 (177)

9.3
 (64)

7.6
 (42)

0.4
 (1)

3.4
 (24)

0.8
 (25)

11.0
 (1282)

76.1
 (2148)

2.0
 (57)

1.2
 (1)

2.0
 (27)

20.1
 (111)

0.8
 (6)

2.0
 (58)

1.8
 (164)

3.3
 (379)

0.6
 (17)

73.0
 (2066)

3.8
 (3)

1.3
 (17)

0.9
 (6)

2.9
 (16)

0.3
 (2)

0.9
 (28)

0.2
 (18)

0.2
 (7)

71.2
 (57)

4.9
 (443)

0.4
 (8)

5.0
 (586)

7.5
 (211)

0.7
 (21)

5.0
 (4)

41.4
 (562)

33.8
 (232)

6.2
 (34)

3.5
 (8)

2.1
 (15)

2.3
 (67)

1.0
 (91)

17.9
 (384)

3.2
 (370)

1.0
 (28)

0.3
 (9)

1.2
 (1)

6.4
 (87)

37.7
 (259)

1.5
 (8)

1.7
 (4)

1.1
 (32)

0.8
 (73)

0.3
 (1)

0.6
 (75)

0.6
 (18)

0.9
 (26)

2.5
 (2)

4.2
 (57)

2.9
 (20)

99.6
 (236)

1.6
 (9)

0.4
 (1)

3.8
 (27)

0.4
 (11)

1.2
 (111)

0.2
 (4)

1.1
 (130)

1.4
 (39)

0.3
 (8)

2.5
 (2)

3.1
 (42)

4.5
 (31)

0.4
 (1)

56.8
 (313)

40.9
 (94)

2.0
 (14)

2.5
 (73)

0.5
 (41)

0.4
 (12)

0.3
 (2)

0.2
 (1)

41.3
 (95)

0.7
 (21)

0.2
 (19)

0.2
 (25)

0.2
 (6)

1.4
 (40)

2.5
 (2)

0.5
 (7)

0.4
 (3)

0.5
 (3)

10.4
 (24)

85.3
 (608)

0.2
 (16)

2.1
 (28)

88.4
 (2618)

Supplementary Figure 3 

(A) Comparison between labels generated by experts (x-axis) and labels generated by running CellSighter 

(y-axis). Shown are results for a model that was trained and evaluated on landmark cells. (B) Comparison 

between labels generated by experts (x-axis) and labels generated by running CellSighter (y-axis). Shown are 

results for a model that was trained on landmark cells and evaluated on the complete dataset. (C) For the 

melanoma lymph node data, shown is expression of distinct proteins (x-axis) across cell classes (y-axis). (D) 

For the melanoma data, shown is expression of distinct proteins (x-axis) across cell classes (y-axis). (E) For 

the gastrointestinal data, shown is expression of distinct proteins (x-axis) across cell classes (y-axis).


