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A Novel Approach for Software Defect Prediction using CNN and GRU 

Based on SMOTE Tomek Method 

 

 

Abstract 
Software defect prediction (SDP) plays an important role in enhancing the quality of software projects and 
reducing maintenance-based risks through the ability to detect defective software components. SDP refers to the 
methods that use historical defect data to build the relationship between software metrics and software defects. 
Several prediction models such as machine learning (ML), deep learning (DL) have been developed and adopted 
to recognize defect in software modules and many methodologies and frameworks have been presented. One of 
the most difficult problems that these models face in binary classification is the classes imbalance. When the 
distribution of classes is unbalanced, the accuracy may be high, but the model cannot recognize data instances in 
the minority class, this will lead to weak classifications. So far, few research have been done in the previous 
studies that address the problem of class imbalance in SDP. To address the class imbalance problem, we propose 
a novel SDP approach based on convolutional neural network (CNN) and gated recurrent unit (GRU) combined 
with synthetic minority oversampling technique plus Tomek link (SMOTE Tomek). To establish the efficiency 
of the proposed models, the experiments have been conducted on benchmark datasets which obtained from the 
PROMISE repository and the experimental results have been compared and evaluated in terms of accuracy, 
precision, recall, f-measure, the area under the ROC curve (AUC), the area under the precision-recall curve 
(AUCPR), mean square error (MSE). The average accuracy of the proposed models on the original datasets were 
89% for CNN and 87% for GRU, while the average accuracy of the proposed models on the balanced datasets 
were 94% for CNN and 92% for GRU. The results showed that the proposed models on the balanced datasets 
improves the average accuracy by 5% for both models compared to original datasets. This indicates the positive 
effects of combining ML techniques with data balancing methods on the performance of defect prediction 
regarding datasets with imbalanced class distributions. 

Keywords: software defect prediction (SDP), software metrics, deep learning (DL), CNN, GRU, class 
imbalance, sampling techniques, SMOTE Tomek. 

1. Introduction 
Determining defects in source codes usually is a difficult task due to the huge code base of software projects. The 
importance and challenges of defect prediction have made it an active research area in software engineering [1]. 
Defects in software are often difficult to detect or identify and developers spend a significant amount of time 
locating and fixing them. The software life cycle includes many activities for identifying source code defects, 
such as design reviews, code inspections, integration tests, functions testing, and unit tests, etc. [2]. Early detection 
of a defect in software projects during the development phase helps allocate testing resources reasonably, 
determine the testing priority of different software modules and improves the effectiveness of the software 
development process [3]. SDP is a process for predicting source code defects using tools or techniques based on 
historical data. SDP can be divided into with-in project defect prediction (WPDP), cross project defect prediction 
(CPDP) for similar dataset, and cross project defect prediction (CPDP) for heterogeneous dataset [4, 5]. In this 
study, we develop our models based on with-in project defect prediction (WPDP) approach. In the WPDP 
approach, a prediction model can be built based on collecting historical data from a software project and predicting 
defects in the same project. WPDP performs best if there is enough quantity of historical data available to train 
model [6]. There are two ways in which previous studies have attempted to build accurate SDP models: the first 
approach is to manually design new features or new sets of features to represent defects more effectively, while 
the second approach involves applying new and improved machine learning based classifiers. Several models 
have been proposed for SDP based on the second approach (machine learning based classifiers), but there is still 
a need to develop accurate defect detection models or detectors, as well as robust software metrics to distinguish 
between defective and non-defective software modules. Latest studies leverage manually designed software 
metrics such as Halstead features, McCabe features, CK features, MOOD features, etc. to build classifiers. 
Recently, DL algorithms have been adopted to improve research tasks in software engineering, especially in the 
field of SDP [6, 7]. DL algorithms differ from classical artificial neural networks in one key aspect, namely that 



they contain many hidden layers [8, 9]. DL is a type of ML that allows computational models consisting of 
multiple processing layers to learn data representations with multiple levels of abstraction. DL architecture has 
been widely applied in many fields and used to solve many detections, classification, and prediction problems 
[10]. DL transforms initial "low-level" feature representation into "high-level" through multi-layer processing; it 
can complete complex classification tasks with simple models. Also, it has the capabilities of feature learning and 
representational learning. Therefore, it can achieve better performance while being flexible [11]. DL has drawn 
more and more attention, because of its powerful feature learning capability, and has been successfully used in 
many domains, such as speech recognition, image classification, etc. CNN and GRU models are two of the most 
famous DL architectures [2]. When there is an uneven distribution of classes in the training data set, this indicates 
that this data is imbalanced. Imbalanced classes classification biases performance towards majority numbered 
class in case of a binary application. Most ML techniques can predict better when the number of instances of each 
classis are roughly equal. so, data imbalance is the biggest problem faced by ML techniques. This problem 
severely hinders the efficiency of these models and produces unbalanced false-positive and false-negative results. 
Usually, defective software databases consist of imbalanced data which. This study selects imbalanced datasets 
from the public PROMISE repository for experimental purposes [12, 13, 14], so this motivates a solution such as 
applying the sampling methods and there is great interest in building unbiased classifiers that start from 
imbalanced software defect data. Although several experiments in the previous studies [12, 15, 16, 17] are 
conducted based on these datasets using many ML models, very few of them are based on CNN and GRU. Even 
there is no experiment using CNN and GRU combined with oversampling techniques in the literature. To bridge 
these gaps, the novelty and main contributions of our work are summarized as follows: 
1. In this study, we propose a novel approach that combines CNN and GRU with SMOTE Tomek technique to 
predict software defects. 
2. We evaluate the performance of the proposed approach and compares it with the traditional ML model (RF) as 
baseline model and also compares it with the existing approaches used in SDP. 
The structure of this paper is organized as follows. Section 2 presents a discussion on related work. Section 3 
presents background on the topics of CNN, and GRU. Section 4 presents the hypothesis and research questions. 
After that, our research methodology is presented in Section 5. Section 6 presents the experimental results. Section 
7 presents the discussion. Section 8 presents implication of the findings. Section 9 presents threats to validity 
followed by conclusions in the last section.  

2. Related work 
The prediction of defects in software systems is very important and there is great interest in the development of 
novel high-performance software defect predictors. The purpose of SDP models is to improve the quality of 
software application systems [15]. Many models have been constructed to recognize the defects in software 
modules using artificial intelligence and statistical methods [1, 18, 19, 20, 21, 22].  
JIEHAN. Kun Zhu et al. [10] proposed a novel just-in-time defect prediction model named DAECNN-JDP based 
on denoising autoencoder and CNN. The model was evaluated based on six large open-source projects and 
compared with 11 baseline models. Experimental results showed that the proposed model outperforms these 
baseline models. Jiehan Deng et al. [12] proposed a novel LSTM method to perform SDP, their method can 
automatically learn semantic and contextual information from the program’s ASTs. Experiment was performed 
on several open-source projects, the results showed that the proposed LSTM method is superior to the state-of-
the-art methods. Thanh Tung Khuat and My Hanh Le. [15] conducted an empirical study to evaluate the 
importance of sampling techniques in SDP.  Experimental results indicated the positive effects of combining 
sampling techniques with ensemble learning models. This method solved the class-imbalance problem and 
achieve high prediction accuracy. Diana-Lucia Miholca et al. [16] presented a supervised classification approach 
named (HyGRAR). It is a non-linear hybrid model that combines gradual relational association rule mining and 
artificial neural networks to predict software defects. Experiments were conducted using 10 open-source datasets. 
Experimental results showed the excellent performance of the proposed classifier and better performance than 
most of the previously proposed classifiers. This method achieved high prediction accuracy. Racharla Suresh 
Kumar and Bachala Satyanarayana [17] developed a Hybrid Neural Network model with object oriented and CK 
metrics for software fault prediction. Adaptive Genetic Algorithm has been used for ANN optimization. The 
proposed model has been tested with PROMISE data sets. Experimental results showed the better performance 
compared to major existing schemes. Hao Xu et al. [18] proposed a novel approach based on the transfer CNN 
model to mine the transferable semantic features for CPDP tasks. Experiments were conducted based on 10 
benchmark projects with 90 pairs of CPDP tasks. Their results showed that the proposed model is superior to the 
reference methods. Cong Pan et al. [20] proposed an improved CNN model for WPDP and compare the results of 



the experiment with those of existing CNN studies. Experiment was performed based on a 30-repetition holdout 
validation and a 10 * 10 cross-validation. Their results showed that CNN model outperformed the state-of-the-art 
ML models significantly for WPDP. Hafiz Shahbaz Munir et al. [22] proposed a new framework based on GRU 
and LSTM for software defect prediction. Experiments were evaluated based on 119,989 C/C++ programs in 
Code4Bench. The proposed method was compared with different approaches. Experimental results demonstrated 
that the proposed method has a better performance in terms of recall, precision, accuracy and F1 metrics. Jian Li 
et al. [23] proposed a framework based on the programs' Abstract Syntax Trees called Defect Prediction via CNN.  
The model was evaluated based on seven open-source projects in terms of f-measure. Experimental results showed 
that on average, the model improves the state-of-the-art method by 12%. Ashima Kukkar et al. [24] proposed a 
novel DL model for multiclass severity classification called bug severity classification using a CNN and Random 
Forest with Boosting based on five open-source projects. Their results prove that the proposed model enhances 
the performance of bug severity classification over state-of-the-art techniques. Sushant Kumar Pandey et al. [25] 
proposed a new method using deep representation and ensemble learning with sampling techniques for software 
bug prediction and dealing with the class imbalance problem. Experiment was performed based on 12 data sets 
from the PROMISE repository. Evaluation results showed that the proposed method outperformed other state-of-
the-art techniques. This method solved the class-imbalance problem and achieve high prediction accuracy. Zhao 
Yang and Hongbing Qian [26] proposed ANNs model, which automated parameter tuning technique to optimize 
the defect prediction models. The model was evaluated based on 30 datasets are downloaded from the Tera-
PROMISE Repository. Their results showed that the performance of the proposed model have been indeed 
improved after tuning parameter settings. The authors suggested that researchers should pay attention to tuning 
parameter settings by Caret for ANNs instead of using suboptimal default settings if they select ANNs for training 
models in the future defect prediction studies. Linchang Zhao et al. [27] proposed a novel SDP model, called 
Siamese parallel fully-connected networks, which combines the advantages of Siamese networks and DL. The 
authors compared the proposed model with the state-of-the-art SDP models using six datasets from the NASA 
repository. Experimental results showed that the proposed model contributes to significantly higher performance 
compared with benchmarked SDP approaches. Ahmed Bahaa Farid et al. [28] proposed a hybrid model using 
bidirectional long short-term memory and CNN to predict software defects. The proposed model was evaluated 
using seven open-source Java projects from the PROMISE dataset. Their results showed that the proposed model 
is accurate for predicting software defects. This method used different performance measures and achieve high 
prediction accuracy. Guisheng Fan et al. [29] presented a framework named SDP via an attention-based RNN. 
The models were evaluated based on an open-source Apache Java project, using F1-measure and AUC. 
Experimental results demonstrated that the proposed model improves the F1 measure by 14% and AUC by 7% 
compared with the state-of-the-art methods. HONGLIANG LIANG al. [30] proposed Seml, a novel framework 
that combines word embedding and LSTM for software defect prediction. The model was evaluated based on 
eight open-source projects. The experimental results showed that the Seml outperforms three state-of-the-art 
defect prediction approaches on most of the datasets for both WPDP and CPDP. 
After reviewing some previous studies in SDP, we noticed that most of the proposed methods ignore the class 
imbalance problem. According to studies that dealt with the problem of class imbalance and handled it [15, 25], 
the authors point out that the data balancing methods have an important role in improving SDP accuracy. So, the 
major point from the recent studies is that ML combined with data balancing methods can improve and increase 
prediction accuracy. Therefore, this work focuses on addressing the class imbalance problem for improving the 
efficiency of our proposed models. 

3. Background 
In this section, we present the background of the topics of convolutional neural network and gated recurrent unit. 

3.1.Convolutional neural network 
Convolutional neural network (CNN) is a special type of deep neural network or a class of convolutional 
feedforward neural networks used to process data that has a known, grid-like topology. It is constructed to mimic 
the visual perception of biological processes and can be used for both supervised learning and unsupervised 
learning. CNN has been tremendously successful in practical applications, including speech recognition, image 
classification, and natural language processing [31]. CNN model is inspired by the typical CNN architecture used 
in image classification and consists of a feature extraction part and a classification part as shown in figure 1. These 
parts consist of multiple layers are convolution, batch normalization, and maximum merge layers. These layers 
constitute the hidden layer of the architecture. The convolutional layer performs convolution operations based on 
the specified filter and kernel parameters and calculates the network weights to the next layer, while the maximum 
pooling layer achieves a reduction in the dimension of the feature space. Batch normalization is used to mitigate 



the effect of different input distributions for each training mini-batch to improve training. Activation functions 
enable the training of the CNN model in a fast and accurate manner. There are many activation functions used in 
CNN such as Sigmoid, Rectified Linear Unit (ReLU), and hyperbolic tangent (Tanh) [11, 20,]. In this model, we 
used two activation functions, ReLU function for the input and hidden layers and the Sigmoid function for the 
output layer as shown in the equations below. 
 ℎ𝑖𝑖𝑚𝑚 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊𝑖𝑖𝑚𝑚−1 ×  𝑉𝑉𝑖𝑖𝑚𝑚−1 + 𝑏𝑏𝑚𝑚−1)                                                                                                             (1) 

Where ℎ𝑖𝑖𝑚𝑚 represents the convolutional layer, 𝑊𝑊𝑖𝑖𝑚𝑚−1 represents the weights of neurons, 𝑉𝑉𝑖𝑖𝑚𝑚−1 represents the 
nodes, and  𝑏𝑏𝑚𝑚−1 represents the bias layer. 𝑆𝑆(𝑥𝑥) =  

1
  1+ 𝑒𝑒−∑ 𝑊𝑊𝑖𝑖+𝑋𝑋𝑖𝑖  𝑘𝑘 +𝑏𝑏                                                                                                                                       (2) 

Where 𝑋𝑋𝑖𝑖 represents the input, 𝑊𝑊𝑖𝑖 is the weight of the input and b is the bias. 

 

 

Figure 1. CNN Model for SDP [20] 

3.2.Gated recurrent unit 
Gated recurrent unit (GRU) network is one of the optimized structures of the recurrent neural network (RNN). 
Due to the problem of long-term dependencies that arise when the input sequence is too long, RNN cannot 
guarantee the long-term nonlinear relationship. This means that there is a gradient vanishing and gradient 
explosion phenomena at the learning sequence. Many optimization theories and improved algorithms have been 
introduced to solve this problem such as GRU networks, long short-term memory networks, Bidirectional long 
short-term memory, echo state networks, and independent RNN [11]. The goal of the GRU network is to solve 
the long-term dependence and gradient disappearance problem of RNN. A GRU networks is similar to long short-
term memory networks with a forget gate, but it has fewer parameters than long short-term memory (LSTM) and 
uses an update gate and a reset gate as shown in figure 2. The update gate helps the model to determine how much 
of the past information (from previous time steps) needs to be passed along to the future and the reset gate helps 
the model to decide how much of the past information to forget [32]. The update gate model in the GRU network 
is calculated as shown in the equation below. 

z(t) =  σ(W(z). [h(t− 1), x(t)])                                                                                                                          (3) 

the z(t) is the update gate function, h(t − 1) is the output of the previous neuron, x(t) is the input of the current 
neuron, W(z) represents the weight of the update gate, and σ represents the sigmoid function. The reset gate model 
in the GRU neural networks is calculated as shown in the equation below. 

r(t) =  σ(W(r). [h(t− 1), x(t)])                                                                                                                          (4)   

r(t) is the reset gate function, h(t− 1) represents the output of the previous neuron, x(t) is the input of the current 
neuron, W(r) represents the weight of the reset gate, and σ is the sigmoid function. The output value of the GRU 
hidden layer is shown in the equation below.                                                                                                                                             ȟ(t) = tanh�Wȟ. [rt ∗ h(t − 1), x(t)]�                                                                                                                       (5) 



ȟ(t) is the output value to be determined in this neuron, h(t − 1) is the output of the previous neuron, 

x(t) represents the input of the current neuron, Wȟ represents the weight of the update gate, and tanh () is the 
hyperbolic tangent function. rt is used to control how much memory needs to be retained. The hidden layer 
information of the last output as shown in the equation below. 

h(t) = �1− z(t)� ∗ h(t − 1) + z(t) ∗  ȟ(t)                                                                                                          (6) 

 

 

Figure 2. GRU Model for SDP [33] 

 

4. Hypothesis and research questions 
Our hypothesis in this study is if data balancing methods are applied to balance the original data sets, the 
classification performance of the proposed models will be better in SDP. To investigate our hypothesis, we used 
a paired t-test to find out whether there was a statistically significant difference between our models on the original 
and balanced datasets. To statistically prove the validity of the impact of data balancing methods on the 
performance of ML algorithms, the hypothesis is formed as follows: 
H1: There is no difference in the accuracy of models when there are no data balancing methods and when the data 
balancing methods are used. 
H2: There exists a difference in the accuracy of models when there are no data balancing methods and when the 
data balancing methods are used.  
Based on our hypothesis, the purpose of this study is to understand the impact of data balancing methods on the 
performance of ML algorithms in SDP. In particular, we aim to address the following research questions. 
RQ1: Do data balancing methods improve the accuracy of ML models in SDP?  
This RQ aims at investigate data balancing methods in improving the accuracy of ML models in SDP.  
RQ2: Does the proposed approach outperform the state-of-the-art approaches in SDP?  
This RQ aims at investigate the performance of the proposed approach in SDP compared against the state-of-the-
art approaches. 

5. Methodology 
This study proposed a novel approach based on CNN and GRU with SMOTE Tomek technique for predicting 
defective software. The experiments were performed on public benchmark datasets. A series of steps have been 
taken and described such as benchmark datasets used, software metrics used, data pre-processing, features 
selection, dataset balancing, performance measures used. Figure 3 illustrates the whole workflow of the proposed 
SDP approach where each step is described in the following sections. 



 

Figure 3. Overview of the proposed approach for SDP 

5.1.Benchmark datasets 
To verify the validity of the proposed approach, we selected six open-source Java projects from PROMISE dataset 
[34]. The source code and corresponding PROMISE data for all six projects are public [12, 28, 35]. These projects 
cover several applications such as XML parser, text search engine library, and data transport adapters, and these 
projects have traditional static metrics for each Java file. The selection of projects was based on the percentage of 
data imbalance in them. To guarantee the generality of the evaluation results, experimental datasets consist of 
projects with different sizes and defect rates (in the six projects, the maximum number of instances is 965, and 
the minimum number of instances is 205. In addition, the minimum defect rate is 2.23% and the maximum defect 
rate is 92.19%). Table 1 shows the essential information of selected projects, including project name, project 
version, number of instances, and defect rate or the percentage of defective instances. 

Table 1 Description of the PROMISE datasets that we have chosen 

Project Name Project Version # Of Instances Defect Rate % 

ant 1.7 745 22.28% 
camel 1.6 965 19.48% 

ivy 2.0 352 11.36% 
jedit 4.3 492 2.23% 
log4j 1.2 205 92.19% 
xerces 1.4 588 74.31% 

5.2.Defect prediction metrics 
Metrics play the most important role to build a prediction model that aims to improve software quality by 
predicting as many software defects as possible. Metrics in the context of SDP are considered as independent 
variables. Many previous researchers have pointed out that there is a relationship between software metrics and 
defect predictions [3]. In general, the type of software metrics used in SDP can be divided into static code metrics 
and process metrics. Static code metrics represent how the source code is complex and include information about 
the software codes depending on the type of coding while process metrics represent how the development process 
is complex and constituted from some values such as developer count, time, effort, and cost [5]. In 1976, McCabe 
released the first standard of static code metrics and in 1977, Halstead developed a new metric standard. Some 
practitioners use this metric as an indicator of the level of defect-proneness. With the evolution of programming 
languages, object-oriented metrics standards were developed such as Lorenz, Kidd, Chi- damber, and Kemerer 
[36, 37]. The primary studies use software metrics as independent variables for measuring the quality of software 
modules. Several researchers used McCabe and Halstead metrics as independent variables in SDP. This study 
relies on the McCabe and Halstead metrics as independent variables. Table 2 shows the traditional static code 
metrics contained in the PROMISE repository, and for the descriptions, the readers are referred to [35]. 

Table 2 List of 20 traditional static metrics of PROMISE. Descriptions were given in [35]. 
Attribute  Description 
dit The maximum distance from a given class to the root of an inheritance tree 
noc Number of children of a given class in an inheritance tree 
cbo Number of classes that are coupled to a given class 
rfc Number of distinct methods invoked by code in a given class 



lcom Number of method pairs in a class that do not share access to any class attributes 
lcom3 Another type of the lcom metric proposed by Henderson–Sellers 
npm Number of public methods in a given class 
loc Number of lines of code in a given class 
dam The ratio of the number of private/protected attributes to the total number of 

attributes in a given class 
moa Number of attributes in a given class that are of user-defined types 
mfa Number of methods inherited by a given class divided by the total number of 

methods that can be accessed by the member methods of the given class 
cam The ratio of the sum of the number of different parameter types of every method 

in a given class to the product of the number of methods in the given class and 
the number of different method parameter types in the whole class 

ic Number of parent classes that a given class is coupled to 
cbm Total number of new or overwritten methods that all inherited methods in a 

given class are coupled to 
amc The average size of methods in a given class 
ca Afferent coupling, which measures the number of classes that depend on a given 

class 
ce Efferent coupling, which measures the number of classes that a given class 

depends on 
max_cc The maximum McCabe’s cyclomatic complexity (CC) 

score of methods in a given class 
avg_cc The arithmetic mean of McCabe’s cyclomatic 

complexity (CC) scores of methods in a given class 

5.3.Data pre-processing and features selection 
Pre-processing the collected data is one of the important stages before constructing the model. To generate a good 
model, the quality of data needs to be considered. Not all data collected is suitable for training and model building. 
Anyhow the inputs will greatly impact the performance of the model and later moreover affect the output. Data 
pre-processing is known as a group of techniques that are applied to the data to improve the quality of the data 
before model building for the purpose of removing noise and unwanted outliers from the data set, dealing with 
missing values, feature type conversion, etc. [16, 27, 28] In addition, normalization is necessary to convert the 
values into scaled values (scaling of the data in numeric variables in the range of 0 to 1) to increase the efficiency 
of the model. Therefore, the data set was normalized using Min–Max normalization. The formula for calculating 
normalized score can be described by (7). Feature selection is a crucial step to select the most discriminative 
features from the list of features using appropriate feature selection methods. The goal of feature selection is to 
select the features which are more relevant to the target class from high-dimensional features and remove the 
features which are redundant and uncorrelated [5, 38]. Feature extraction facilitates the conversion of pre-
processed data into a form that the classification engine can use [39, 40]. Feature selection methods are categorized 
into three categories (i) Filter methods: These methods are model agnostic, i.e., variables are selected 
independently of ML algorithms. These methods are faster and less computationally expensive, (ii) Wrapper 
methods: These methods are greedy and choose best feature subsets in each iteration according to ML algorithms. 
It is a continuous process of finding a feature subset. These methods are very computationally expensive and often 
unrealistic if the feature space is vast, (iii) Embedded methods: in these methods, feature selection is a part of 
building ML algorithms. These methods select the best possible feature subset as per the ML model to be 
implemented [41]. In this study, we applied embedded methods because it is faster and less computationally 
expensive than other methods and it fits ML models and feature scaling technique was applied to make the output 
the same standard. 𝑥𝑥𝑖𝑖  =  (𝑥𝑥𝑖𝑖 —  𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚)/ (𝑋𝑋 𝑚𝑚𝑚𝑚𝑥𝑥 —  𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚)                                                                                                           (7) 

Where max(x) and min(x) represent the maximum and minimum value of the attribute x respectively. 

5.4.Class imbalance and sampling techniques 
Class imbalance in classification models represents those situations, where the number of examples of one class 
is much smaller than other classes. The class with the higher size of data is the majority class, while the class with 
a smaller size is considered as minority class [42]. Class imbalance is an important special of the software defects 



data, which consists of only a few defective instances and there are large number of non-defective instances. 
Hence, the class imbalance problem often could cause misclassification of the instances in the minority class. The 
datasets used in our study suffer from common problem in SDP studies, which is class imbalance [12, 13, 14]. 
The reference datasets are not properly distributed which shows a lack in the real distribution of learning instances 
as shown in Table 1. We manage this problem by modifying the original datasets to increase the realism of the 
data [36]. The most common methods used to deal with distributions of unbalanced classes are sampling 
techniques, might be divided into two categories: oversampling techniques and under-sampling techniques [43, 
44]. Oversampling techniques supplements instances of the minority class to the dataset, while the under-sampling 
techniques eliminate samples of the majority class for the goal of obtaining a balanced dataset [15]. The SMOTE 
is a classic oversampling technique that increases the samples while Tomek Link is an under-sampling technique 
that decreases the samples. SMOTE Tomek is a new technique that was applied using the library from imbalanced 
learn, which combines the synthetic minority oversampling technique (SMOTE) function for oversampling as 
well as the Tomek Link function for under-sampling [45, 46, 47]. In this study, we used SMOTE Tomek technique 
to deal with the class imbalance problem. Figure 4 shows the distribution of learning instances over the original 
and balanced data sets. 

 

Figure 4. Distribution of learning instances over the original and balanced data sets 

5.5.Models building and evaluation 
Different ML and DL algorithms have been used to build defect prediction models and each algorithm has its own 
benefits. Most studies of SDP divide the data into two sets: a training set and a test set. The training set is used to 
train the model, whereas the testing set is used to evaluate the performance of the defect’s prediction model. Once 
a defects prediction model is built, its performance needs to be evaluated [48]. Implementation framework of our 
models: we use Keras as a high-level API based on TensorFlow to build our models for simplicity and correctness, 
training is performed with 80% of the dataset (random selection of features), while the remaining 20% is used for 
validation, each model was developed separately with different parameters as shown in Table 3. We evaluate the 
performance of our proposed models based on a set of common performance measures such as confusion matrices, 
AUC, AUCPR and MSE as a Loss function. AUC, which plots the false positive rate on the x-axis and true positive 
rate on the y-axis over all possible classification thresholds. AUCPR is a curve plots the precision versus the recall 
or a single number summary of the information in the precision-recall curve. MSE is a metric which measures the 
amount of error the model. It assesses the average squared difference between the actual and predicted values. A 
confusion matrix is a specific table used to measure the performance of a model. A confusion matrix summarizes 
the results of the testing algorithm and presents a report of True Positive (TP), False Positives (FP), True Negatives 
(TN), and False Negatives (FN) as shown in Table 4. 
 

Table 3. Parameter settings of the models 
Parameters Models 

CNN GRU 

Layers. GRU - 100 
Activation function ReLU + Sigmoid  Tanh + Sigmoid 

Dropouts 0.2 0.2 
Dense 10, 1 1 

Optimizer Adam Adam 
Learning Rate 0.01 0.01 



Loos Function Mean squared error (MSE) Mean squared error (MSE) 
Batch Size 25 64 

Epochs 100 100 
Validation Split 0.1 0.1 

Verbose - 1 
 

Table 4. Confusion matrix 
 

Predicted 
 

Actual 

Defective Non-defective 
Defective TN FP 
Not defective FN TP 

Accuracy = (TP+TN) / (TP+FP+FN+TN)                                                                                                             (8) 

Precision = TP / (TP+FP)                                                                                                                                       (9) 

Recall = TP / (TP + FN)                                                                                                                                         (10) 

F-Measure = (2 * Recall *Precision) / (Recall + Precision)                                                                                 (11) 

AUC =   
∑ rank(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)− 

M(M+1)2    𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖M .  N                                                                                                                (12) 

Where ∑ rank(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖)    𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑒𝑒 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 is the sum of ranks of all positive samples, M and N are the number of 

positive samples and negative samples, respectively. 

AUCPR  =    ∫ Precision(Recall ) d(Recall)
10                                                                                                                  (13) 

MSE =   
1n� (x(i)− y(i))2 

ni=1                                                                                                                                    (14) 

Where n is the number of the observations, x(i) is the actual value, y(i) is the observed or predicted value for the  

ith observation. 

6. Experimental results 
In this section, we evaluate the efficiency of our proposed models. The experimental environment was based on 
a Python environment and used data from the same project for both training and testing. The study has considered 
six open-source datasets for experimental analysis using CNN and GRU. We also did experiment by using 
traditional ML model (RF) as baseline model and compared it with our proposed models. 
To answer the research questions - RQ1, the performance of the prediction models is reported in Tables 5 to 9, 
and Figures 5 to 21 mentioned below.  
Table 5 presents the results of CNN model on the original datasets in terms of accuracy, precision, recall, f-
measure, AUC, AUCPR and MSE. We notice that the accuracy values of the model range from 0.80 to 0.97, the 
precision values of the model range from 0.00 to 0.95, the recall values of the model range from 0.00 to 1.00, the 
f-measure values of the model range from 0.00 to 0.97, the AUC values of the model range from 0.53 to 0.97, the 
AUCPR values of the model range from 0.03 to 0.98, and the MSE values of the model range from 0.030 to 0.150. 
Table 6 presents the results of CNN model on the balanced datasets in terms of accuracy, precision, recall, f-
measure, AUC, AUCPR and MSE. We notice that the accuracy values of the model range from 0.86 to 0.99, the 
precision values of the model range from 0.84 to 1.00, the recall values of the model range from 0.88 to 1.00, the 
f-measure values of the model range from 0.87 to 0.99, the AUC values of the model range from 0.91 to 0.99, the 
AUCPR values of the model range from 0.91 to 0.99, and the MSE values of the model range from 0.018 to 0.114. 
Table 7 presents the results of GRU model on the original datasets in terms of accuracy, precision, recall, f-
measure, AUC, AUCPR and MSE. We notice that the accuracy values of the model range from 0.76 to 0.96, the 
precision values of the model range from 0.00 to 0.95, the recall values of the model range from 0.00 to 0.97, the 
f-measure values of the model range from 0.00 to 0.96, the AUC values of the model range from 0.27 to 0.88, the 
AUCPR values of the model range from 0.02 to 0.96, and the MSE values of the model range from 0.037 to 0.190. 
Table 8 presents the results of GRU model on the balanced datasets in terms of accuracy, precision, recall, f-
measure, AUC, AUCPR and MSE. We notice that the accuracy values of the model range from 0.84 to 0.99, the 
precision values of the model range from 0.83 to 1.00, the recall values of the model range from 0.85 to 1.00, the 



f-measure values of the model range from 0.84 to 0.99, the AUC values of the model range from 0.90 to 0.99, the 
AUCPR values of the model range from 0.88 to 0.99, and the MSE values of the model range from 0.013 to 0.123. 
Table 9 presents the statistical analysis results (paired t-test) of proposed models on the original and balanced 
datasets in terms of mean, Standard Deviation (STD), min, max and P value. We notice that the mean values of 
CNN model are 0.89 on the original datasets and 0.94 on the balanced datasets, while the mean values of GRU 
model are 0.87 on the original datasets and 0.92 on the balanced datasets. The STD values of CNN model are 0.07 
on the original datasets and 0.05 on the balanced datasets, while the STD values of GRU model are 0.07 on the 
original datasets and 0.05 on the balanced datasets. The Min values of CNN model are 0.80 on the original datasets 
and 0.86 on the balanced datasets, while the Min values of GRU model are 0.76 on the original datasets and 0.84 
on the balanced datasets. The Max values of CNN model are 0.97 on the original datasets and 0.99 on the balanced 
datasets, while the Max values of GRU model are 0.96 on the original datasets and 0.99 on the balanced datasets. 
The P value of CNN model is 0.004 based on the original and balanced datasets, while the P value of GRU model 
is 0.004 based on the original and balanced datasets. Based on the P value of both models on the original and 
balanced data sets, we note that the P value is less than 0.05, and this indicates that there is a difference between 
the results of the models on the original and balanced data sets. 
Figure 5 bellow shows the Box plots for the performance measures (Accuracy, Precision, Recall, F-measure, 
AUC, AUCPR and MSE) on the original and balanced datasets. The averages of (Accuracy, Precision, Recall, F-
measure, AUC, AUCPR and MSE) of CNN model on the original datasets are 0.89, 0.57, 0.51, 0.53, 0.72, 0.54 
and 0.086, respectively. The averages of (Accuracy, Precision, Recall, F-measure, AUC, AUCPR and MSE) of 
CNN model on the balanced data sets are 0.94, 0.93, 0.95, 0.94, 0.96, 0.95 and 0.051, respectively. The averages 
of (Accuracy, Precision, Recall, F-measure, AUC, AUCPR and MSE) of GRU model on the original datasets are 
0.87, 0.52, 0.48, 0.50, 0.63, 0.49 and 0.113, respectively. The averages of (Accuracy, Precision, Recall, F-
measure, AUC, AUCPR and MSE) of GRU model on the balanced data sets are 0.92, 0.92, 0.92, 0.92, 0.95, 0.95 
and 0.067, respectively. 
Figures 6 to 13 below show the training and validation accuracy and training and validation loss of the models on 
the original and balanced datasets. As shown in the figures, the accuracy of training and validation increases and 
the loss decreases with increasing epochs. Regarding the high accuracy and low loss obtained by the proposed 
models, we note that the models are well trained and validated. 
Figures 14 to 17 below show the ROC curves of the models on the original and balanced datasets. The best AUC 
obtained by CNN model in the original data sets is 97% on the xerces data set, while the worst AUC is 53% on 
the log4j data set. The best AUC obtained by CNN model in the balanced data sets is 99% on the log4j and xerces 
data sets, while the worst AUC is 91% on the camel data set. The best AUC obtained by GRU model in the original 
data sets is 88% on the xerces data set, while the worst AUC is 27% on the jedit data set. The best AUC obtained 
by GRU model in the balanced data sets is 99% on the jedit data set, while the worst AUC is 90% on the camel 
data set. 
Figures 18 to 21 below show the AUCPR of the models on the original and balanced datasets. The best AUCPR 
obtained by CNN model in the original data sets is 98% on the xerces data set, while the worst AUCPR is 0.03% 
on the jedit data set. The best AUCPR obtained by CNN model in the balanced data sets is 99% on the log4j and 
xerces data sets, while the worst AUCPR is 91% on the camel data set. The best AUCPR obtained by GRU model 
in the original data sets is 96% on the log4j data set, while the worst AUCPR is 0.02% on the jedit data set. The 
best AUCPR obtained by GRU model in the balanced data sets is 99% on the ivy and jedit data sets, while the 
worst AUCPR is 88% on the camel data set. 
After comparing the results obtained by the proposed models on the original datasets with results obtained by the 
proposed models on the balanced datasets, as shown in the tables and figures, we note that the models got good 
scores on the balanced datasets and the results improved further due to balancing, which indicated that the 
proposed models performed well and data balancing techniques play an important role in improving the accuracy 
of the models. 
 
Table 5. Performance analysis for proposed CNN Model-Original Data sets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure AUC AUCPR MSE 

ant 0.81  0.54  0.47 0.50 0.78  0.49 0.150  
camel 0.80  0.44  0.19 0.27  0.71  0.37 0.149  

ivy 0.89  0.57  0.44 0.50  0.80  0.47 0.114  
jedit 0.97  0.00  0.00 0.00 0.58 0.03 0.030  
log4j 0.95 0.95 1.00 0.97 0.53 0.94 0.031 

xerces 0.94 0.95 0.98 0.96 0.97 0.98 0.044 
Averages 0.89 0.57 0.51 0.53 0.72 0.54 0.086 

 



Table 6. Performance analysis for proposed CNN Model-Balanced Datasets 
 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure AUC AUCPR MSE 

ant 0.89  0.90  0.88 0.89 0.94  0.93 0.091  
camel 0.86  0.84  0.91 0.87  0.91  0.91 0.114  

ivy 0.95  0.92  0.98 0.95  0.97  0.95 0.042  
jedit 0.98  0.96  1.00 0.98 0.98 0.95 0.019  
log4j 0.99 1.00 0.98 0.99 0.99 0.99 0.018 

xerces 0.98 0.99 0.97 0.98 0.99 0.99 0.025 
Averages 0.94 0.93 0.95 0.94 0.96 0.95 0.051 

 
Table 7. Performance analysis for proposed GRU Model-Original Data sets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure AUC AUCPR MSE 

ant 0.80  0.50  0.47 0.48 0.72  0.47 0.176  
camel 0.76  0.22  0.11 0.15  0.57  0.22 0.190  

ivy 0.89  0.57  0.44 0.50  0.79  0.39 0.128  
jedit 0.96  0.00  0.00 0.00 0.27 0.02 0.037  
log4j 0.93 0.95 0.97 0.96 0.57 0.96 0.062 

xerces 0.90 0.93 0.93 0.93 0.88 0.91 0.090 
Averages 0.87 0.52 0.48 0.50 0.63 0.49 0.113 

 
Table 8. Performance analysis for proposed GRU Model-Balanced Datasets 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure AUC AUCPR MSE 

ant 0.86  0.85  0.89 0.87 0.92  0.91 0.108  
camel 0.84  0.83  0.85 0.84  0.90  0.88 0.123  

ivy 0.95 0.95 0.95 0.95 0.98  0.99 0.042  
jedit 0.99  0.98  1.00 0.99 0.99 0.99 0.013  
log4j 0.96 1.00 0.93 0.96 0.95 0.98 0.060 

xerces 0.94 0.94 0.93 0.94 0.96 0.97 0.061 
Averages 0.92 0.92 0.92 0.92 0.95 0.95 0.067 

 
Table 9. Comparison of the proposed models in terms of accuracy using paired t-test 

 

Paired t-test 

 

CNN Model GRU Model 

Original 

Datasets 

Balanced 

Datasets 

Original 

Datasets 

Balanced 

Datasets 

Mean 0.89 0.94 0.87 0.92 
STD 0.07 0.05 0.07 0.05 
Min 0.80 0.86 0.76 0.84 
Max 0.97 0.99 0.96 0.99 

P value 0.004 0.004 
 
 



 
Figure 5. Boxplots represent performance measures obtained by proposed models on all datasets 

 

 
Figure 6. Training and Validation Accuracy for the original data sets - CNN model 

 

 
Figure 7. Training and Validation Accuracy for the balanced data sets - CNN model 



 
Figure 8. Training and Validation Accuracy for the original data sets - GRU model 

 

 
Figure 9. Training and Validation Accuracy for the balanced data sets - GRU model 

 

 
Figure 10. Training and Validation Loss for the original data sets - CNN model 



 
Figure 11. Training and Validation Loss for the balanced data sets - CNN model 

 

 
Figure 12. Training and Validation Loss for the original data sets - GRU model 

 

 
Figure 13. Training and Validation Loss for the balanced data sets - GRU model 



 
Figure 14. ROC curves for the original data sets - CNN model 

 

 
Figure 15. ROC curves for the balanced data sets - CNN model 

 

 
Figure 16. ROC curves for the original data sets - GRU model 

 



 
Figure 17. ROC curves for the balanced data sets - GRU model 

 
 

 
Figure 18. AUCPR for the original data sets - CNN model 

 

 
Figure 19. AUCPR for the balanced data sets - CNN model 



 
Figure 20. AUCPR for the original data sets - GRU model 

 

 
Figure 21. AUCPR for the balanced data sets - GRU model 

7. Discussion 
To answer the research questions - RQ2, we compared the results produced using our models with the results 
obtained using the baseline model (RF) based on five performance measures: accuracy precision, recall, f-Measure 
and AUC. Table 10 summarize the comparison between our models and the baseline model (RF). The best values 
are indicated in bold in the table. According to Table 10, our models outperform the baseline model in some 
datasets. We also compared the results produced using our models with the results obtained in previous studies 
based on five performance measures: accuracy precision, recall, f-Measure and AUC. Table 11 compares the 
values of performance measures obtained by our models and the performance values in previous studies. The best 
values are indicated with bold text and “- “ to indicate the approaches that did not provide results in a particular 
data set. According to Table 11, some of the results in the previous studies are better than ours, but in the most 
cases, our models outperform the state-of-the-art approaches and provides better predictive performance. 

Table 10 Performance measures of baseline model (RF) and proposed models 

 

Models 

 

Datasets 

Performance Measures 

Accuracy Precision Recall F-Measure AUC 

 
 
 

ant 0.81  0.54  0.47 0.50 0.68 
camel 0.81  0.50  0.22 0.31  0.58 

ivy 0.89  0.57  0.44 0.50  0.69 



RF jedit 0.97  0.00  0.00 0.00 0.50 
log4j 0.98 0.97 1.00 0.99 0.75 

xerces 0.95 0.95 0.99 0.97 0.90 
Averages 0.90 0.58 0.52 0.54 0.58 

 

 

CNN with 

SMOTE Tomek 

ant 0.89 0.90 0.88 0.89 0.94 
camel 0.86 0.84 0.91 0.87 0.91 

ivy 0.95 0.92 0.98 0.95 0.97 
jedit 0.98 0.96 1.00 0.98 0.98 

log4j 0.99 1.00 0.98 0.99 0.99 

xerces 0.98 0.99 0.97 0.98 0.99 

Averages 0.94 0.93 0.95 0.94 0.96 
 

 

GRU with 

SMOTE Tomek 

ant 0.86 0.85 0.89 0.87 0.92 
camel 0.84 0.83 0.85 0.84 0.90 

ivy 0.95 0.95 0.95 0.95 0.98 
jedit 0.99 0.98 1.00 0.99 0.99 

log4j 0.96 1.00 0.93 0.96 0.95 

xerces 0.94 0.94 0.93 0.94 0.96 

Averages 0.92 0.92 0.92 0.92 0.95 

Table 11 Comparison of the proposed models with other existing approaches 

 

Approaches 

Datasets Performance Measures 

Accuracy Precision Recall F-Measure AUC 

LSTM [12] Camel, Jedit, 
Log4j, 
Xerces 

- - - 0.37, 0.44, 
0.52, 0.26 

- 

LR [15] Ant, Camel, 
IVY 

- - - 0.52, 0.34, 
0.30 

- 

K-NN [15] Ant, Camel, 
IVY 

- - - 0.53, 0.37, 
0.30 

- 

MLP [15] Ant, Camel, 
IVY 

- - - 0.50, 0.38, 
0.25 

- 

SVM [15] Ant, Camel, 
IVY 

- - - 0.50, 
0.084, 0.28 

- 

HyGRAR [16] JEdit, Ant 0.98, 0.96 0.70, 0.98 0.63, 0.85 - 0.81, 0.92 

Hybrid Neural 

Network 

model [17] 

JEdit, IVY, 
Ant, Camel 

0.97, 0.88, 
0.81, 0.81 

1.00, 0.99, 
0.93, 1.00 

1.00, 0.88, 
0.84, 0.81 

0.98, 0.93, 
0.88, 0.89 

- 

CBIL [28] Camel, JEdit, 
Xerces 

- - - 0.93, 0.85, 
0.95 

0.96, 0.91, 
0.98 

DP-ARNN 

[29] 

Camel, 
Xerces, JEdit 

- - - 0.51, 0.27, 
0.56 

0.79, 0.76, 
0.82 

LSTM [30] Camel  0.51 0.41 0.46  
CNN with 

SMOTE 

Tomek 

ant, camel, 
ivy, jedit, 

log4j, xerces 

0.89, 0.86, 
0.95, 0.98, 
0.99, 0.98 

0.90, 0.84, 
0.92, 0.96, 
1.00, 0.99 

0.88, 0.91, 
0.98, 1.00, 
0.98, 0.97 

0.89, 0.87, 
0.95, 0.98, 
0.99, 0.98 

0.94, 0.91, 
0.97, 0.98, 
0.99, 0.99 

GRU with 

SMOTE 

Tomek 

ant, camel, 
ivy, jedit, 

log4j, xerces 

0.86, 0.84, 
0.95, 0.99, 
0.96, 0.94 

0.85, 0.83, 
0.95, 0.98, 
1.00, 0.94 

0.89, 0.85, 
0.95, 1.00, 
0.93, 0.93 

0.87, 0.84, 
0.95, 0.99, 
0.96, 0.94 

0.92, 0.90, 
0.98, 0.99, 
0.95, 0.96 

 

8. Implication of the findings 
The results have implications for researchers and practitioners. They are interested in understanding quantitatively 
the effectiveness and efficiency of applying data balancing methods with ML techniques in SDP. Furthermore, 
the formers are concerned about the qualitative perspective of the results. So, we reported the implications related 



to effectiveness, efficiency, comparison and relation with previous work in the previous sections (experimental 
results and discussion). 

9. Threats to validity 
This section discusses the threats to validity and experiments limitations of our study and how we mitigate them. 
It is important to assess the threats to validity such as construct, internal, external and experiments limitations, 
particularly constraints on the search process and deviations from the standard practice. 

9.1. Construct validity 

Construct validity concerns design of the study and its possibility to reflect the actual goal of the research. To 
avoid threats in study design we have applied a procedure of systematic literature review. To assure that researched 
area is relevant for study goal, we have cross-checked research questions and adjusted them several times to 
address the business needs. Besides, the metrics considered may be a threat to our study. We only adopt the static 
code metrics to predict defects. Thus, we cannot claim that we could generalize our conclusion to other types of 
metrics. However, the static code metrics were also widely adopted in many previous studies [44, 49]. Another 
threat is the construction of the ML models, for which we took several aspects into account that could have 
possibly influenced the study, i.e., data pre-processing, which features to consider, how to train the models, etc. 
However, the procedures followed in this respect are precise enough to ensure the validity of the study. 

9.2. Internal validity 

Threats to internal validity are related to the correctness of the experiments outcome or the process of performing 
the study. The main threat to internal validity is datasets. The reference datasets are imbalanced datasets that show 
a lack in the real distribution of the percentage of defects classes and non-defective classes. We manage this threat 
by modifying the original datasets in order to increase the realism of the data in terms of defect actual presence in 
the software system. The distribution of the dataset is modified by applying two data sampling techniques. Another 
threat is the most of our datasets have a small number of defects. These small number of defects create the problem 
that it may be difficult to generate statistically significant results, we tried to minimize that threat by applying 
standard performance measures for SDP. We however acknowledge that a number of statistical tests [50] can be 
applied to verify the statistical significance of our conclusions, Therefore, we plan to conduct more statistical tests 
in our future work. 

9.3. External validity 

External validity concerns relate to the generalization of our results. We tried to select and gathered different types 
of datasets from different projects of PROMISE repository to test our experiment. our criteria in project selection 
were based on the ratio of defects. So, we chose projects with a high percentage of defects and a low percentage 
of defects (projects with an unbalanced classes) to help us apply data balancing techniques. We built our model 
to adapt the combine of ML with balancing techniques in SDP. We selected six open-source Java projects of the 
PROMISE dataset as our evaluation datasets. However, we cannot declare that our results can be generalized. 
Future replications of this study are necessary to confirm the generalizability of our findings. 

9.4. Experiments limitations 

The limitations of the experiments are summarized as follows. First, the datasets used in our experiments is limited 
to only six open-source Java projects. Second, our findings may not be enough to generalize to all software in the 
industrial domain. 

10. Conclusion 
Recently, various ML and DL techniques have been used to build SDP models. Software defects have a major 
impact on the software development life cycle and defect prevention plays an important role in software quality 
assurance and effective help of software maintenance. SDP is a process of generating models or tools to predict 
software defects based on historical data. Early defect prediction helps prioritize and optimize effort and costs for 
inspection and testing. Historical software metrics that indicate defective data are primary inputs to the models. 
To improve the existing state-of the-art approaches used to predict software defects, we proposed a novel approach 
based on CNN and GRU combined with SMOTE Tomek to predict defects in the source code. To evaluate the 
effectiveness of proposed models, we performed a series of experiments on six public software defect datasets. 
The results were compared with random forest (RF) as baseline model and compared with existing state-of-the-
art SDP approaches.  We found that the proposed models on the balanced datasets with average precision of 93% 
for CNN and 92% for GRU compared with RF (58%). Our results showed that the proposed models on the 
balanced datasets improves the average precision by 35% and 34%, respectively compared to RF. Our proposed 



models outperform existing state-of-the-art SDP approaches significantly and substantially in most cases. The 
robustness and accuracy of SDP will be evaluated on various datasets in our future work. 
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