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Abstract
Characterization of somatic mutations at single-cell resolution is essential to study cancer evolution,
clonal mosaicism, and cell plasticity. However, detection of mutations in single cells remains technically
challenging. Here, we describe SComatic, an algorithm designed for the detection of somatic mutations in
single-cell transcriptomic and ATAC-seq data sets without requiring matched bulk or single-cell DNA
sequencing data. Using > 1.5M single cells from 383 single-cell RNAseq and single-cell ATAC-seq data
sets spanning cancer and non-neoplastic samples, we show that SComatic detects mutations in single
cells, even in differentiated cells from polyclonal tissues not amenable to mutation detection using
existing methods. In addition, SComatic permits the estimation of mutational burdens and de novo
mutational signature analysis at single-cell and cell-type resolution. Notably, using matched exome and
single-cell RNAseq data, we show that SComatic achieves a 20 to 40-fold increase in precision as
compared to existing algorithms for somatic SNV calling without compromising sensitivity. Overall,
SComatic opens the possibility to study somatic mutagenesis at unprecedented scale and resolution
using high-throughput single-cell profiling data sets.

Main
Characterization of somatic mutations at single-cell resolution is essential to study genetic heterogeneity
and cell plasticity in cancer1, clonal mosaicism in non-neoplastic tissues2, and to identify the mutational
processes operative in both malignant and phenotypically normal cells3,4. Single-cell genome sequencing
provides the most direct way to study mutations in single cells. However, single-cell genomics methods
are not easily scalable, and suffer from high rates of genomic drop-outs and artefacts introduced during
whole-genome amplification5. To circumvent the issues associated with whole-genome amplification,
other approaches rely on bulk sequencing of single-cell-derived colonies grown in vitro or clonal
populations directly isolated from tissues6–8. However, in vitro growth of single-cell-derived colonies is
laborious and limited to cell types amenable to cell culture5,7,9, and isolation of clonal units is not
technically feasible for some tissues. More recently, the development of ultra-sensitive sequencing
methods using strand-specific barcoding has permitted detection of mutations at single-molecule
resolution, even in polyclonal tissues10,11. Yet, cell type information is lost unless cell sorting is performed
prior to sequencing. Due to these technical limitations, our understanding of the patterns of somatic
mutations across cell types and their impact on cell fates and phenotypes remains limited.

An alternative strategy consists of detecting somatic mutations in sequencing reads from high-
throughput single-cell profiling assays directly, such as single-cell RNA-seq (scRNA-seq) and single-cell
assay for transposase-accessible chromatin using sequencing (scATAC-seq). The main advantage of this
approach is the possibility to harness the high throughput of single-cell profiling assays to map the
lineage of cells to transcriptional or regulatory programmes12,13 without the need for complex
experimental protocols for joint profiling of the DNA and RNA from the same cell3,8, 14–16. Nevertheless,
detection of mutations is strongly limited due to the variability in gene expression across cell types, allelic
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drop-out events, transcriptional bursts, RNA editing, limited depth of coverage, and sequencing
artefacts17–19. Therefore, existing algorithms rely on detecting mutations, such as single-nucleotide
variants (SNVs) or indels, previously identified using matched bulk or single-cell DNA sequencing data18,

20–22. These approaches are limited because matched DNA sequencing data are rarely available for
existing high-throughput single-cell data sets, and due to sampling biases or genetic heterogeneity
between the samples undergoing DNA sequencing and single-cell profiling. Therefore, algorithms
designed to detect somatic mutations in single-cell data sets de novo without requiring matched DNA
sequencing data are critically needed.

To address this need, we developed SComatic, an algorithm for de novo detection of somatic SNVs in
single-cell profiling data sets, including scRNA-seq and scATAC-seq data, without requiring matched bulk
or single-cell DNA sequencing data. Using a total of 1,575,862 non-neoplastic and cancer cells from 317
scRNA-seq and 66 scATAC-seq published data sets (Supplementary Table 1), we show that SComatic
achieves a 20 to 40-fold increase in precision as compared to existing algorithms for somatic SNV calling
without compromising sensitivity. In addition, we show that SComatic permits the detection of mutational
burdens and de novo discovery of mutational signatures at cell-type resolution, even for differentiated
cells and cells from polyclonal tissues showing high levels of genetic heterogeneity, which are not
amenable to mutation detection using existing experimental or computational methods. SComatic is
implemented in Python 3 and is available at https://github.com/cortes-ciriano-lab/SComatic.

Results

Overview of SComatic
We developed SComatic to detect somatic mutations using single-cell sequencing data without requiring
matched bulk or single-cell DNA sequencing data (Fig. 1). In brief, SComatic computes base counts for
every position of the genome across cell types from the same individual using cell type annotations
established through e.g., marker gene expression (Fig. 1 and Methods). Somatic mutations are
distinguished from germline polymorphisms and artefacts using a set of hard filters and statistical tests
(Fig. 1). Specifically, SComatic only considers genomic positions with coverage in at least 5 cells from at
least 2 cell types. Candidate somatic SNVs are distinguished from background sequencing errors and
artefacts using a Beta-binomial test parameterized using non-neoplastic samples (Methods). Next,
mutations detected in multiple cell types are considered to be germline polymorphisms or artefacts and
are thus discounted as somatic. The key idea is that germline variants should be present in all cell types,
whereas somatic mutations should only be detected in cell types from the same differentiation hierarchy,
unless mutations were acquired in a progenitor or stem cell prior to clonal diversification or during early
development8,23,24. Candidate mutations overlapping known RNA editing sites or single-nucleotide
polymorphisms (SNPs) with population frequencies greater than 1% in gnomAD25 are also filtered out. In
addition, SComatic uses a ‘Panel of Normals’ generated using a large collection of non-neoplastic
samples to discount recurrent sequencing or mapping artefacts. For example, in 10x Chromium scRNA-
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seq data, recurrent errors are enriched in LINE and SINE elements, such as Alu elements (Supplementary
Fig. 1), which are thus not considered for mutation calling. Finally, to make a mutation call, SComatic
requires a sequencing depth of at least 5 reads in the cell type in which the mutation is detected, and that
the mutation is detected in at least 3 sequencing reads from at least 2 different cells of the same type
(Supplementary Fig. 2 and Methods).

Validation Of Scomatic Using Matched Single-cell Rna-seq And
Exome Sequencing Data
To compare the patterns of mutations detected by SComatic against DNA sequencing data, we analysed
scRNA-seq data generated using the 10X Genomics Chromium technology and matched whole-exome
sequencing (WES) data from 8 cutaneous squamous cell carcinoma (cSCC) and matched adjacent
normal tissue samples26. First, we compared the mutations detected by SComatic in epithelial cells using
scRNA-seq data with those detected in matched WES data (Methods). For this analysis, we focused on
the 9,788,377 positions in the genome across the 8 samples with sufficient coverage in both the scRNA-
seq and WES data (Fig. 2d and Methods). In these regions, we detected 266 of the 10,477 (2.4%)
mutations found in the WES data, which we considered true positive mutations. Using SComatic, we
detected 179 mutations in the scRNA-seq data (Fig. 2d), 78 (44%) of which were also detected in the WES
data (Methods). For 49/179 (27%) of the mutations, we found at least 1 read in the WES data supporting
the mutated allele, which was however insufficient evidence to call a mutation by our WES analysis
pipeline (Methods). Finally, 52/179 (29%) mutations were only detected in the scRNA-seq data. Of these,
38/52 (73%) were detected in sample P7. Interestingly, 59 of the 85 (69%) WES-specific mutations were
also detected in P7 only. Mutational signature analysis revealed that 43 (83%) of the mutations only
detected in the scRNA-seq data and 70 (82%) of the WES-specific mutations were attributed to single-
base substitution (SBS) mutational signatures SBS7a, SBS7b and SBS7d, which are linked with
mutagenesis caused by exposure to ultraviolet (UV) radiation, consistent with the expected predominant
signature for these samples26 (Fig. 2e). In addition, the variant allele fraction (VAF) of the mutations
detected in WES and scRNA-seq data were not correlated for P7, unlike for other samples (Supplementary
Fig. 3). Therefore, these results suggest that, for sample P7, the lack of sequencing reads in the WES data
supporting those mutations detected by SComatic in the scRNA-seq data (and vice versa) is likely due to
high genetic heterogeneity.

Next, we applied SComatic to detect somatic mutations across all genomic positions with sufficient
coverage in the scRNAseq data (Methods). We detected 810 and 186 SNVs in the tumour and matched
normal samples, respectively (Supplementary Table 1), which mapped to 3’-UTR (40%), intronic (27%) and
exonic regions (24%) (Supplementary Fig. 4). After normalizing by breadth of coverage (Methods), we
estimated an average mutation rate per haploid genome for epithelial cells from the cSCC and normal
skin samples of 12.8 and 3.7 mutations per Mb, respectively (note that we report mutational burdens for
single cells as mutations per haploid genome because only one allele is usually detected per cell and
genomic position). These rates are significantly higher as compared to non-epithelial cells in the data set,
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which had a median of 0.33 and 0.40 mutations per Mb in tumour and matched normal samples,
respectively (P < 0.001, Mann-Whitney U-test; Supplementary Fig. 5). Mutational signature analysis
attributed 71% and 84% of the mutations detected in epithelial cells from tumour and matched normal
skin samples, respectively, to signatures associated with exposure to UV radiation (SBS7a-d; Fig. 2b-c and
Methods), consistent with prior DNA sequencing studies of somatic mutations in sun-exposed skin7,27.
The remaining mutations were mostly attributed to SBS5 and SBS40 signatures (19.6% and 13.4% for the
tumour and matched normal samples, respectively), which have been previously identified in non-
neoplastic skin samples7. The mutation rates computed using the mutations detected using scRNA-seq
data for epithelial cells were highly correlated with the rates estimated using the WES data (R2 = 0.97, P = 
0.0024; Fig. 2f and Methods), indicating that SComatic permits the calculation of mutation burdens at
cell-type resolution.

Together, these results show a high concordance between the mutations detected in scRNA-seq by
SComatic and WES, and highlight that methods for calling mutations in single-cell data based on
genotyping mutations previously identified in genome sequencing data are likely to have low sensitivity in
samples with high levels of genetic heterogeneity.

Scomatic Outperforms Existing Mutation Detection Algorithms
Next, we compared the performance of SComatic against top-performing pipelines designed for detecting
somatic mutations in scRNA-seq data22 using popular variant calling algorithms (VarScan228,
SAMtools29 and Strelka230). To this aim, we used the matched WES and scRNA-seq data from epithelial
cells from 7 out of the 8 cSCC tumours26 described above. We excluded patient P7 from this analysis due
to the high level of genetic heterogeneity observed between the matched scRNA-seq and WES data
(Supplementary Fig. 2). SComatic achieved a sensitivity of 0.59 (95% CI [0.58–0.60]), which was slightly
lower than VarScan2 (0.62, 95% CI [0.61–0.63], P = 1.86 x 10− 4), and significantly higher as compared to
SAMtools (0.38, 95% CI [0.37–0.39], P < 10− 15). Strelka2 showed a significantly higher sensitivity than
SComatic (0.78, 95% CI [0.78–0.79], P < 10− 15; Fig. 3a). However, SComatic outperformed by a large
margin all other methods in terms of precision: 0.88 for SComatic (95% CI [0.87–0.89]) vs 0.043 for
Strelka2 (P < 10− 15, two-sided Student’s t-test; Fig. 3a). SComatic also achieved significantly higher F1
score values than other methods (0.71 vs < 0.08, respectively; P < 10− 15; Fig. 3a). Notably, we obtained
similar differences in performance between methods when also including sample P7 in the
benchmarking set (Supplementary Fig. 6).

To further compare the performance of these algorithms, we performed mutational signature analysis by
fitting COSMIC signatures to the observed mutational spectra (Methods). We found that 77% of the
mutations detected by SComatic were attributed to signatures SBS7a-d (R2 = 0.96 and P < 10− 15, Fig. 3b-
c), and the mutational spectrum was highly consistent with the WES data (cosine similarity = 0.99,
Fig. 3d). By contrast, the mutations detected by VarScan2, SAMtools and Strelka2 were attributed to
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signatures SBS1 and SBS5 and were significantly different from the patterns of mutations detected in
WES (cosine similarities < 0.47; Fig. 3d). Collectively, these results indicate that existing methods for
detecting somatic mutations in scRNA-seq have high false positive rates, whereas SComatic enables the
detection of somatic mutations at single-cell resolution at high precision without compromising
sensitivity.

Detection Of Somatic Mutations In Samples With High Mutational
Burdens
We next assessed the performance of SComatic to detect somatic mutations in samples characterised by
a high mutational burden. To this aim, we applied SComatic to scRNA-seq data from 70 treatment-naïve
primary colorectal tumours, including 37 mismatch repair deficient (MMRd) tumours showing
microsatellite instability (MSI), and 40 matched normal adjacent colon samples31,32. Using SComatic, we
called 8,997 somatic SNVs across all samples (7,531 SNVs in MSI, 1,127 in microsatellite stable (MSS),
and 339 in the matched normal samples; Supplementary Table 1), most of which mapped to non-coding
elements, primarily UTR regions (37%) and introns (27%) (Supplementary Fig. 4). Consistent with
previous colorectal cancer genome studies33,34, our analysis revealed that epithelial cells in MSI tumours
showed a significantly higher mutational burden than epithelial cells from MSS tumours (24.7 vs 8.3
SNVs per Mb, P < 1.11 x 10− 12; two-sided Mann-Whitney U-test) and normal adjacent colon samples (0.51
SNVs per Mb; P < 1.77 x 10− 15). By contrast, the mutational burden for non-epithelial cells was low and
comparable between MSI and MSS tumours (0.41 vs 0.52, P = 0.06; two-sided Mann-Whitney U-test), as
expected for non-malignant cell types (Fig. 4a, Supplementary Fig. 5b). Moreover, the mutational burden
estimated by SComatic using scRNA-seq data from epithelial cells in MSI tumours was comparable with
that of MMRd tumours estimated using exome-sequencing data from The Cancer Genome Atlas
(TCGA)33,34 (Fig. 4b; P > 0.05; Student’s t-test).

Mutational signature analysis attributed the mutations detected in MSI tumours to SBS signatures
associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), SBS5 and SBS40 (Fig. 4c-d;
Methods). In one sample (C172), 82.9% of mutations were attributed to signatures SBS10a, SBS10b and
SBS28 (Fig. 4a,c,d), suggesting that hypermutation in this sample is driven by POLE deficiency35,36. In
MSS tumours, most mutations were attributed to signatures SBS5 and SBS40, consistent with published
compendia of mutational signatures extracted from large cancer genome sequencing studies36.

We next compared the mutational burdens estimated by SComatic against VarScan2, SAMtools and
Strelka2 using the colorectal cancer scRNA-seq data. As opposed to SComatic, the mutational burdens
computed using the mutations detected by the other algorithms were not different between MSI/POLE-
deficient and MSS or normal adjacent samples, consistent with the low specificity of existing
methodologies for mutation calling using scRNA-seq data (Supplementary Fig. 7).
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Together, these results indicate that SComatic permits the identification of the mutational processes
operative in hypermutated samples at single-cell resolution without requiring matched genomic
sequencing data.

Detection Of Mutations Using Scrna-seq Data From Samples With
Low Mutational Burdens
We further tested the performance of SComatic to detect mutations in samples with low mutational
burdens. To this aim, we applied SComatic to scRNA-seq data for CD34+-enriched cells from 5 individuals
with myeloproliferative neoplasms (MPN), a type of blood cancer caused by the clonal expansion of a
single hematopoietic stem cell (HSC)8. We detected an average of 0.12 mutations per Mb per haploid
genome, which primarily mapped to intronic regions (62%, Supplementary Fig. 4). Mutational signature
analysis revealed that 96% of the mutations detected by SComatic were attributed to signatures SBS5
and SBS40 (Fig. 5a-b), consistent with single-cell whole-genome sequencing (WGS) studies of HSCs from
healthy donors6,37 and MPN patients8,38. In addition, we found a positive correlation between the average
mutation rate of HSCs estimated by SComatic and the patients’ age at the time of sampling (Pearson’s r 
= 0.79; P = 0.09, Fig. 5c), in agreement with previous studies8. Altogether, these results show that
SComatic accurately detects mutational burdens and signatures in samples with low mutational burdens.

To further test whether SComatic can be used for the analysis of somatic mutations in samples with high
levels of genetic heterogeneity (e.g., polyclonal tissues) and in differentiated cells, we next analysed 10X
scRNA-seq data from 78 samples obtained from 6 heart regions across 14 donors39. We detected a total
of 2,132 somatic SNVs (Supplementary Table 1), 78% of which mapped to intronic regions
(Supplementary Fig. 4). By extrapolating to the entire genome, we estimated an average mutation rate per
haploid genome of 302 mutations for cardiomyocytes (range 92 − 1,284; Fig. 5d), which was significantly
lower than the mutation rates estimated for adipocytes (1,179 SNVs per cell and haploid genome) and
smooth muscle cells (581; Supplementary Fig. 8a). Mutational signature analysis revealed that 46.7% of
these mutations were attributed to SBS5 and SBS40 (Fig. 5e,f). In addition, 35.4% of mutations were
attributed to SBS44, consistent with a recent study of somatic mutagenesis in human cardiomyocytes
using single-cell genome sequencing40. The mutational burdens for cardiomyocytes estimated by
SComatic were comparable to those estimated using single-cell WGS data40 (Supplementary Fig. 9; P = 
0.08; two-sided Wilcoxon’s rank test).

Next, we applied SComatic to 24 scRNA-seq data sets from 8 non-neoplastic tissues across 15 human
donors generated by the GTEx consortium41. We found a total of 524 SNVs and estimated an average
mutation load of 598 mutations per cell and haploid genome (Fig. 5g, Supplementary Fig. 8b and
Methods). As observed in the heart cell atlas, adipocytes had the highest mutation burdens (1,430
mutations per cell and haploid genome), whereas muscle cells showed the lowest burdens (251;
Supplementary Fig. 8b). As observed in other polyclonal tissues7, mutational signature analysis revealed
that most of these mutations were attributed to the mutational signatures SBS5 and SBS40 (92.1%,
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Fig. 5h,i). Together, these results suggest that SComatic permits the study of the patterns and rates of
mutations in polyclonal tissues.

Performance Of Scomatic On Single-cell Atac-seq Data Sets
Next, we applied SComatic to detect somatic mutations using sciATAC-seq data generated for 459,056
cells from 66 samples spanning 24 non-neoplastic tissues42. SComatic detected a total of 389 somatic
SNVs (Supplementary Table 1). The distribution of mutations was different as compared to scRNA-seq
data sets, as most mutations mapped to intergenic (32%), promoter (19%), and intronic regions (18%)
(Supplementary Fig. 4). We found low single-cell mutational burdens with an average load of 300
mutations per cell and haploid genome, with ductal cells showing the highest rates (933 per haploid
genome), and skeletal myocytes (9 mutations) and follicular cells (0 mutations) the lowest burdens
(Supplementary Figs. 10a-c). As observed in other polyclonal tissues, 99% of the SNVs were attributed to
SBS5 and SBS40 (Supplementary Fig. 10b,c). Importantly, the genome-wide mutation rates were
comparable for cell types represented in scRNA-seq and sciATAC-seq data sets, indicating that SComatic
permits the estimation of mutation rates across different single-cell profiling assays (Supplementary
Fig. 11).

Patterns Of Clonality At Cell-type Resolution

Motivated by the importance of clonal mosaicism to somatic evolution and disease2,43, we next assessed
whether the single-cell resolution provided by SComatic permits analysis of the patterns of clonality
across cell types. To this aim, we computed the fraction of mutant cells per cell type across the single-cell
data sets analysed (Supplementary Table 1, Supplementary Fig. 12 and Methods). We detected clonal
mutations in epithelial cells from the cSCC samples, but not in epithelial cells from non-neoplastic skin
samples, consistent with the high level of polyclonally in normal skin (Supplementary Fig. 12a,b). The
clonality of mutations in epithelial cells in both MSI and MSS colorectal samples spanned a dynamic
range of values, as expected for tumours harbouring both clonal and subclonal mutations
(Supplementary Fig. 12c,d). The mutations detected in non-neoplastic cell types from both cancer and
non-neoplastic samples showed overall low (< 0.2) mutant cell fractions, in agreement with genome
sequencing studies of non-neoplastic tissue samples7 (Supplementary Fig. 12d-f). Together, these results
show that SComatic permits the study of clonality patterns of both cancer and non-neoplastic cell types.

De novo mutational signature analysis

Clustering of samples based on the cosine similarity of their mutational spectra revealed groups
consistent with the relative activity of known mutational processes in these samples (Supplementary
Fig. 13). Thus, we sought to determine whether the mutations detected by SComatic permit the
identification of mutational processes using de novo mutational signature extraction. Decomposition of
the mutations identified in epithelial cells from hypermutated colorectal cancer samples using COSMIC
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signatures revealed a strong contribution of signatures associated with POLE and MMRd. By contrast, the
signatures extracted from epithelial cells in MSS tumours showed strong contributions of SBS5 and
SBS40, consistent with the mutational processes expected for these tumours (cosine similarities > 0.96,
Supplementary Fig. 14). We identified two signatures in cSCC samples, one of which showed a cosine
similarity > 0.98 when decomposed into the COSMIC signatures attributed to UV-light mutagenesis
(SBS7a, SBS7b and SBS7c), and the other was decomposed into a combination of signatures (SBS5 and
SBS40), in agreement with the WES data (cosine similarity = 0.7, Supplementary Fig. 14). Despite the
limited number of mutations and samples available for analysis, the signatures extracted from the
mutations detected in non-neoplastic samples from GTEx and the heart cell atlas were decomposed into
SBS5 and SBS40 (cosine similarity > 0.36; Supplementary Fig. 14), which is consistent with the
mutational signatures identified in WGS studies of non-neoplastic samples7. The signatures detected in
cardiomyocytes showed a strong contribution of SBS44, which is related to MMRd and recently reported
in a recent study of cardiomyocytes using single-cell WGS40. Together, these results indicate that
SComatic permits de novo mutational signature analysis using mutations detected in single-cell data.

Discussion
Here, we show that SComatic permits de novo detection of somatic SNVs at single-cell resolution. In
contrast to existing methods relying on genotyping sites known to be mutated in the sample under study,
SComatic detects somatic SNVs in single-cell data sets directly without requiring matched bulk or single-
cell DNA sequencing data. This is particularly relevant to study somatic mutagenesis in cell types and
samples that cannot be reliably analysed using existing single-cell genomics methods, such as
differentiated cells and polyclonal tissues showing high levels of genetic heterogeneity5,7. Critically, we
show that SComatic vastly outperforms existing pipelines for the detection of somatic SNVs in single cell
data sets, which allows the identification of mutational processes in both cancer and non-neoplastic
cells, including those from differentiated cells and polyclonal tissues in which mutations cannot be
reliably studied using current experimental or computational approaches.

Despite its higher performance as compared to existing tools, we note that SComatic is limited by the
sparsity and low sequencing depth of current single-cell sequencing assays. As single-cell methods
improve, SComatic will allow to derive further insights from single-cell sequencing data sets, such as
phylogenetic analysis, identification of driver mutations in cancer and non-neoplastic cells, and the study
of clonal mosaicism, including the estimation of mutations under positive selection driving clonal
expansions. Although we have previously shown that somatic mutations can be detected in off-target
regions, such as introns44, only a small fraction of the genome has sufficient sequencing coverage to be
amenable to mutation detection. Therefore, other methodologies are required to study the rates, patterns,
and selection of mutations in those regions missed by scRNA-seq and ATAC-seq or overlapping known
RNA editing sites. In addition, SComatic relies on predefined cell type annotations using e.g., marker
genes or gene expression clustering. Therefore, the quality of the mutations identified is contingent on
reliable cell type annotations, which can be challenging in cases in which clonally unrelated cells cannot
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be easily distinguished using gene expression data alone8,44. Finally, we applied SComatic to study the
patterns of clonality and mutation rates in clonal and polyclonal tissues. Although the cell-type mutation
rates we estimate are comparable across assays, we note that the bias introduced by allele-specific
expression, polyploidization, and limited sequencing depth might affect the burden or clonality estimates
for other data sets.

Overall, SComatic opens the possibility to study somatic mutagenesis using single-cell data sets
generated for human samples under the auspices of large-scale initiatives, such as the Human Cell Atlas
or the Human Tumour Atlas Network45,46, as well as the analysis of mutational burdens and processes in
other organisms.
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methods
Processing of single-cell data sets

Single-cell RNA-seq data from cancer and non-neoplastic samples were downloaded in fastq format and
processed uniformly. Specifically, raw sequencing reads were aligned to the GRCh38 build of the human
reference genome using Cell Ranger47 version 6.0.1 and default parameter values to generate alignment
files in Binary Alignment Map (BAM) format and count matrices. Cell type annotations were downloaded
from the original publications from which the data were downloaded (Supplementary Table 1). Cell
annotations were used to assign sequencing reads to individual cells. Single cells without cell type
annotations were discarded. Raw sciATAC-seq reads were mapped to the GRCh38 build of the human
reference genome using BWA-MEM v0.7.17-r118848. Aligned sequencing reads in BAM format were then
processed following the Genome Analysis Toolkit (GATK) v4.1.8.0 Best Practices workflow to remove
duplicates and recalibrate base quality scores49.

Detection of somatic mutations in single-cell data sets using SComatic

SComatic consists of the following steps:

Processing of alignment files

First, the BAM file containing the sequencing reads for all cell types in a sample is split into cell-type-
specific BAM files using precomputed cell type annotations. To this aim, sequencing reads are assigned
to individual cells using molecular barcodes (tag “CB” in BAM files processed using Cell Ranger). Before
identifying candidate mutation sites, reads with a mapping quality lower than 255 (or 30 for sciATAC-seq
data) or with more than 5 mismatches are filtered out. In addition, to ignore sequencing artefacts
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enriched in terminal ends of the reads or adapter sequences not properly trimmed, the base quality for the
first 5 bases at the 3’ and 5’ ends of each read is set to 050. 

Collecting base count information

Next, the count of each base in each cell type for every position in the genome is recorded in a base count
matrix indexed by cell types and genomic coordinates using the pileup functionality from the Pysam
module51. For this analysis, a minimum base quality of 30 is required, and only sites with a sequencing
depth of 5 reads across at least 2 cell types are considered. Sites overlapping RNA editing sites are
removed52,53. In addition, sites mapping to polymorphisms in the gnomAD25 database version v2.0.1 with
a population frequency greater than 1% are removed. 

Detecting potential somatic SNVs 

To distinguish technical artefacts, such as recurrent sequencing or mapping errors, from true somatic
mutations, SComatic models the background error rate using a Beta-binomial distribution. Specifically,
non-reference allele counts at homozygous reference sites are modelled using a binomial distribution
with parameter P (error rate), which is a random variable that follows a Beta distribution with parameters
α and β50. To infer the parameter values, SComatic uses base count information for 1 million sites in the
genome randomly selected from a panel of unrelated non-neoplastic samples generated using the same
sequencing technology. Next, for each site in the genome and cell type, the Beta-binomial distribution is
used to test whether the non-reference allele counts are significantly higher than expected given the
background error rate, and thus, considered as a potential somatic mutation. Candidate somatic
mutations are required to be present in only cells from the candidate cell type. To test this, SComatic
requires that the Beta-binomial test is not significant when applied to all other cell types independently
and when applied to the base counts aggregated across all other cell types. The threshold for statistical
significance for the Beta-binomial is set to 0.001. 

Filtering out recurrent artefacts

Due to the enrichment of artefacts in repetitive regions (Supplementary Fig. 1) and the high error rate of
Illumina sequencers at homopolymer tracts54, mutations mapping to or within 4bp of mononucleotide
tracts are removed. Finally, mutations mapping less than 5bp apart from each other are filtered out,
except for doublet base substitutions (DBS) dinucleotide changes previously reported to be generated by
specific mutational processes, such as CC>TT mutations associated with UV-light-induced mutagenesis
in skin (COSMIC signature DBS1) or characteristic DBS peaks observed in colorectal cancers (COSMIC
signatures DBS2,3,4,6,7,8,10 and 11).36

In addition, SComatic generates a ‘Panel of Normals’ to discount positions affected by recurrent artefacts
(sites with non-reference allele counts significantly higher than the background error rate modelled with
the Beta-binomial distribution). To this aim, SComatic uses a large collection of non-neoplastic datasets
to assess the frequency of non-reference allele counts at each genomic site in the genome. This analysis



Page 15/25

serves to filter out candidate mutations mapping to regions of the genome prone to sequencing or
mapping artefacts, germline variants missed by other filters, and candidate mutations found in at least 2
unrelated samples, which are considered to be germline polymorphisms.

Calling somatic mutations

Finally, to make a mutation call, SComatic requires mutations to be supported at least 3 reads from at
least 2 cells from the same cell type. To tune this parameter, we performed mutational signature analysis
on subsets of mutations defined based on the number of cells harbouring each mutation. For this
analysis, we focused on the somatic mutations detected by SComatic in epithelial cells from MSI
tumours. Our analysis revealed that the mutational spectra and mutational signature contributions were
consistent across subsets of mutations present in 2 or more cells (Supplementary Fig. 2), indicating that
requiring mutations to be present in at least 2 cells to make a call is adequate to detect true somatic
mutations

Estimation of mutational burdens

To compute the mutational burden at the cell type level, we divided the total number of somatic
mutations detected in each cell type by the total number of callable sites across all cells of the same type
(Supplementary Fig. 15). Cell types with less than 500,000 callable sites were not included in this
analysis. To estimate single-cell mutational burdens, we divided the number of mutations detected in
each unique cell by the number of sites with a sequencing depth of at least 1 read and within the set of
callable sites across all cells of the same type. We only considered the autosomes for computing
mutational burdens. The sensitivity of single-cell assays to detect both alleles is low due to limited
sequencing depth and allele-specific expression17. That is, we only detect one read per cell for most
genomic position in the genome. Thus, our estimated mutational burdens for single cells mostly reflect
the mutational burdens per haploid genome. We decided to report mutational burdens per haploid
genome instead of correcting for ploidy because ploidy information for single cells was not available for
the data sets analysed. We could not assume that all cells are diploid as the data sets analysed
contained cell types, such as cancer cells and cardiomyocytes, that often undergo polyploidization.

Mutational signature analysis

Mutational signature analysis was performed using the R package MutationalPatterns55 and the COSMIC
Mutational Signatures catalogue version 336. We used the function fit_to_signatures with default
parameter values to estimate the contribution of each mutational process to the mutational spectrum
observed in each sample. To account for differences in the frequency of each of the 96 trinucleotide
contexts in which mutations can be detected between the whole genome and the regions profiled using
scRNA-seq or scATAC-seq, we normalised the frequency of mutations detected at each trinucleotide
context. To this aim, we first computed the frequency of each trinucleotide context in the human genome
using the function get_trinuc_norm from the R package SigMA (https://github.com/parklab/SigMA). Next,
for each single-cell data set we estimated the frequency of each trinucleotide context across callable
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regions using a custom Python script, TrinucleotideContextBackground.py, which is provided as part of
SComatic. To normalize the mutational spectra detected in each single-cell data set to the frequency of
each trinucleotide in the whole genome, we divided the fraction of mutations detected at each
trinucleotide context by the frequency of such context in the whole genome relative to its frequency in the
single-cell data set being analysed.

For fitting COSMIC signatures, we only used the mutational processes known to be operative in each
sample type analysed7,36: (1) SBS1, SBS5, SBS6, SBS10a, SBS10b, SBS14, SBS15, SBS17a, SBS17b,
SBS18, SBS21, SBS26, SBS28, SBS37, SBS40 and SBS44 for colorectal cancer samples; (2) SBS1, SBS2,
SBS5, SBS7a, SBS7b, SBS7c, SBS7d, SBS13, SBS32 and SBS40 for skin squamous cell carcinoma
samples; (3) SBS1, SBS2, SBS4, SBS5, SBS7a, SBS7b, SBS13, SBS16, SBS17b, SBS18, SBS22, SBS23,
SBS32, SBS40, SBS41 and SBS88 for MPNs and non-neoplastic samples. We also included SBS6, SBS8,
SBS19, SBS32, SBS35, SBS39, and SBS44 when analysing heart samples40. The goodness of fit was
determined by computing the cosine similarity between the observed and the reconstructed mutational
spectra using the estimated signature contributions.

De novo mutational signature extraction was performed using non-negative matrix factorization (NMF)
as implemented in the R package MutationalPatterns using somatic SNVs detected in each of the
following sample groups: epithelial cells from MSI and POLE-deficient colorectal cancer samples,
epithelial cells from MSS colorectal cancer samples, epithelial cells from cSCC and matched normal skin
samples, cardiomyocytes from the heart cell atlas, and all cell types from the GTEx dataset. The extracted
signatures were decomposed into COSMIC v3 signatures using the fit_to_signatures function after
normalizing them to the trinucleotide frequencies of the whole genome. The goodness of fit of the
decomposition of de novo signatures was estimated by computing the cosine similarity between the
extracted mutational signature and the mutational spectrum reconstructed based on the estimated
COSMIC signature contributions.

Whole-exome sequencing data analysis 

Raw sequencing reads were mapped to the GRCh38 build of the human reference genome using BWA-
MEM29 (version 0.7.17-r1188). Aligned sequencing reads in BAM format were processed to remove
duplicates and recalibrate base quality scores following the GATK (version 4.1.8.0) Best Practices
workflow56,57. Point mutations were detected using Strelka230 (version 2.9.10) and MuSE58 (version
1.0rc) using default parameter values and the matched normal samples as germline controls. For
benchmarking purposes, we only considered those somatic mutations detected by both algorithms.

Comparison of mutations detected in scRNA-seq and WES data

To compare the mutations detected using matched WES and scRNA-seq data, we computed the base
counts for all positions in the genome using the WES data. For this analysis, we only focused on regions
with a coverage of at least 50x in the WES data from the cancer sample and 10x in the matched normal
sample. In the case of the scRNA-seq data, we only interrogated regions with a sequencing depth of at
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least 10 reads in the epithelial cells, and with a depth of 5 reads in at least 2 additional cell types. Only
regions that passed these filtering criteria for the scRNA-seq and WES data were considered for
benchmarking purposes.

As we considered the WES data as the baseline for comparison, we categorized the mutations as: (1) true
negatives: non-mutated sites; (2) WES-specific mutations: mutations detected in the WES but not in
scRNA-seq data; (3) scRNA-seq-specific: mutations detected in the scRNA-seq data with no reads
supporting the mutant allele in the WES data; (4) low-confidence true positives: mutations detected in the
scRNA-seq data with at least one read supporting the alternative allele and no reads supporting any other
alternative allele in WES, but not called by our WES mutation detection pipeline; (5) true positives:
mutations detected in both the scRNA-seq and WES data; and (6) WES and low-quality scRNA-seq:
somatic mutations detected in WES but filtered out by SComatic. To compute performance metrics, we
estimated the sensitivity, precision and F1-score values for each algorithm using 50 bootstrap resamples.
We then compared the performances between callers using the Student's t-test correcting for multiple
hypothesis testing using the FDR method.
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Figure 1

See image above for figure legend.
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Figure 2

See image above for figure legend.
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Figure 3

See image above for figure legend.
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Figure 4

See image above for figure legend.
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Figure 5

See image above for figure legend.
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