[1] Kasepalu T, Kuusik K, Lepner U, Starkopf J, Zilmer M, Eha J, et al. Remote Ischaemic Preconditioning Reduces Kidney Injury Biomarkers in Patients Undergoing Open Surgical Lower Limb Revascularisation: A Randomised Trial. Oxid Med Cell Longev 2020. https://doi.org/10.1155/2020/7098505.
[2] Kepler T, Kuusik K, Lepner U, Starkopf J, Zilmer M, Eha J, et al. Remote Ischaemic Preconditioning Attenuates Cardiac Biomarkers During Vascular Surgery: A Randomised Clinical Trial. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2020;59:301–8. https://doi.org/10.1016/j.ejvs.2019.09.502.
[3] Zhang Y, Ma L, Ren C, Liu K, Tian X, Wu D, et al. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol 2019;234:12637–45. https://doi.org/10.1002/jcp.27858.
[4] Wu G, Chen M, Wang X, Kong E, Yu W, Sun Y, et al. Effect of remote ischemic preconditioning on hepatic ischemia-reperfusion injury in patients undergoing liver resection: a randomized controlled trial. Minerva Anestesiol 2019. https://doi.org/10.23736/S0375-9393.19.13838-2.
[5] Pryds K, Bøttcher M, Sloth AD, Munk K, Rahbek Schmidt M, Bøtker HE. Influence of preinfarction angina and coronary collateral blood flow on the efficacy of remote ischaemic conditioning in patients with ST segment elevation myocardial infarction: post hoc subgroup analysis of a randomised controlled trial. BMJ Open 2016;6. https://doi.org/10.1136/bmjopen-2016-013314.
[6] Gedik N, Maciel L, Schulte C, Skyschally A, Heusch G, Kleinbongard P. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci AMS 2017;13:448–58. https://doi.org/10.5114/aoms.2016.61789.
[7] Paez DT, Garces M, Calabró V, Bin EP, D’Annunzio V, Del Mauro J, et al. Adenosine A1 receptors and mitochondria: targets of remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 2019;316:H743–50. https://doi.org/10.1152/ajpheart.00071.2018.
[8] Reuter SE, Evans AM. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 2012;51:553–72. https://doi.org/10.1007/bf03261931.
[9] Bjørndal B, Alterås EK, Lindquist C, Svardal A, Skorve J, Berge RK. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice. Nutr Metab 2018;15. https://doi.org/10.1186/s12986-018-0241-7.
[10] Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018;46:D608–17. https://doi.org/10.1093/nar/gkx1089.
[11] McGill MR, Li F, Sharpe MR, Williams CD, Curry SC, Ma X, et al. Circulating Acylcarnitines as Biomarkers of Mitochondrial Dysfunction after Acetaminophen Overdose in Mice and Humans. Arch Toxicol 2014;88:391–401. https://doi.org/10.1007/s00204-013-1118-1.
[12] Kepler T, Kuusik K, Lepner U, Starkopf J, Zilmer M, Eha J, et al. The Effect of Remote Ischaemic Preconditioning on Arterial Stiffness in Patients Undergoing Vascular Surgery: A Randomised Clinical Trial. Eur J Vasc Endovasc Surg 2019;57:868–75. https://doi.org/10.1016/j.ejvs.2018.12.002.
[13] Xia F-Y, Zhu L, Xu C, Wu Q-Q, Chen W-J, Zeng R, et al. Plasma acylcarnitines could predict prognosis and evaluate treatment of IgA nephropathy. Nutr Metab 2019;16:2. https://doi.org/10.1186/s12986-018-0328-1.
[14] Ismaeel A, Franco ME, Lavado R, Papoutsi E, Casale GP, Fuglestad M, et al. Altered Metabolomic Profile in Patients with Peripheral Artery Disease. J Clin Med 2019;8. https://doi.org/10.3390/jcm8091463.
[15] Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, et al. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep 2017;7:1–11. https://doi.org/10.1038/s41598-017-17797-x.
[16] Schooneman MG, Ten Have GAM, van Vlies N, Houten SM, Deutz NEP, Soeters MR. Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism. Am J Physiol-Endocrinol Metab 2015;309:E256–64. https://doi.org/10.1152/ajpendo.00503.2014.
[17] Xu G, Hansen JS, Zhao XJ, Chen S, Hoene M, Wang XL, et al. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans. J Clin Endocrinol Metab 2016;101:5044–52. https://doi.org/10.1210/jc.2016-1859.
[18] Kanoria S, Robertson FP, Mehta NN, Fusai G, Sharma D, Davidson BR. Effect of Remote Ischaemic Preconditioning on Liver Injury in Patients Undergoing Major Hepatectomy for Colorectal Liver Metastasis: A Pilot Randomised Controlled Feasibility Trial. World J Surg 2017;41:1322–30. https://doi.org/10.1007/s00268-016-3823-4.
[19] Abu-Amara M, Yang SY, Quaglia A, Rowley P, Fuller B, Seifalian A, et al. Role of endothelial nitric oxide synthase in remote ischemic preconditioning of the mouse liver. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc 2011;17:610–9. https://doi.org/10.1002/lt.22272.
[20] Cornide-Petronio ME, Jiménez-Castro MB, Gracia-Sancho J, Peralta C. Ischemic Preconditioning Directly or Remotely Applied on the Liver to Reduce Ischemia-Reperfusion Injury in Resections and Transplantation. Liver Dis Surg 2019. https://doi.org/10.5772/intechopen.86148.
[21] Cheung MMH, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 2006;47:2277–82. https://doi.org/10.1016/j.jacc.2006.01.066.
[22] Stather PW, Wych J, Boyle JR. A systematic review and meta-analysis of remote ischemic preconditioning for vascular surgery. J Vasc Surg 2019;70:1353-1363.e3. https://doi.org/10.1016/j.jvs.2019.03.025.
[23] Ferko M, Kancirová I, Jašová M, Čarnická S, Muráriková M, Waczulíková I, et al. Remote ischemic preconditioning of the heart: protective responses in functional and biophysical properties of cardiac mitochondria. Physiol Res 2014;63 Suppl 4:S469-478.
[24] Slagsvold KH, Moreira JBN, Rognmo Ø, Høydal M, Bye A, Wisløff U, et al. Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: A randomized trial. Int J Cardiol 2014;177:409–17. https://doi.org/10.1016/j.ijcard.2014.09.206.
[25] Kleinbongard Petra, Gedik Nilguen, Kirca Mücella, Stoian Leanda, Frey Ulrich, Zandi Afsaneh, et al. Mitochondrial and Contractile Function of Human Right Atrial Tissue in Response to Remote Ischemic Conditioning. J Am Heart Assoc 2018;7:e009540. https://doi.org/10.1161/JAHA.118.009540.
[26] Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: Reflecting or Inflicting Insulin Resistance? Diabetes 2013;62:1–8. https://doi.org/10.2337/db12-0466.
[27] Moretti C, Cerrato E, Cavallero E, Lin S, Rossi ML, Picchi A, et al. The EUROpean and Chinese cardiac and renal Remote Ischemic Preconditioning Study (EURO-CRIPS CardioGroup I): A randomized controlled trial. Int J Cardiol 2018;257:1–6. https://doi.org/10.1016/j.ijcard.2017.12.033.
[28] Wider Joseph, Undyala Vishnu V, Whittaker Peter, Przyklenk Karin. Abstract 19195: Remote Ischemic Preconditioning Fails to Reduce Infarct Size in Type-2 Diabetes: Role of Defective Humoral Communication. Circulation 2017;136:A19195–A19195. https://doi.org/10.1161/circ.136.suppl_1.19195.
[29] Behmenburg F, van Caster P, Bunte S, Brandenburger T, Heinen A, Hollmann MW, et al. Impact of Anesthetic Regimen on Remote Ischemic Preconditioning in the Rat Heart In Vivo. Anesth Analg 2018;126:1377–80. https://doi.org/10.1213/ANE.0000000000002563.