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Abstract

Peer incentivization (PI) is a recent approach, where all agents learn

to reward or to penalize each other in a distributed fashion which

often leads to emergent cooperation. Current PI mechanisms implic-

itly assume a flawless communication channel in order to exchange

rewards. These rewards are directly integrated into the learning pro-

cess without any chance to respond with feedback. Furthermore, most

PI approaches rely on global information which limits scalability and

applicability to real-world scenarios, where only local information is

accessible. In this paper, we propose Mutual Acknowledgment Token
Exchange (MATE), a PI approach defined by a two-phase communi-

cation protocol to mutually exchange acknowledgment tokens to shape

individual rewards. Each agent evaluates the monotonic improvement

of its individual situation in order to accept or reject acknowledg-

ment requests from other agents. MATE is completely decentralized

and only requires local communication and information. We evaluate

MATE in three social dilemma domains. Our results show that MATE

is able to achieve and maintain significantly higher levels of cooperation

than previous PI approaches. In addition, we evaluate the robustness

of MATE in more realistic scenarios, where agents can defect from

1



Springer Nature 2021 LATEX template

2 Emergent Cooperation from Mutual Acknowledgment Exchange in MARL

the protocol and where communication failures can occur. We also

evaluate the sensitivity of MATE w.r.t. the choice of token values.

Keywords: Multi-Agent Learning, Reinforcement Learning, Mutual
Acknowledgments, Peer Incentivization, Emergent Cooperation

1 Introduction

Many potential AI scenarios like autonomous driving [38], smart grids [11], or

general IoT scenarios [8], where multiple autonomous systems coexist within

a shared environment, can be naturally modeled as self-interested multi-agent

system (MAS) [26, 6]. In self-interested MAS, each autonomous system or

agent attempts to achieve an individual goal while adapting to its environment,

i.e., other agents’ behavior [13]. Conflict and competition are common in such

systems due to opposing goals or shared resources [26, 31].

In order to maximize social welfare or efficiency in self-interested MAS,

all agents need to cooperate which requires them to refrain from selfish and

greedy behavior for the greater good. The tension between individual and

collective rationality is typically modeled as social dilemma (SD) [34]. SDs can

be temporally extended to sequential social dilemmas (SSD) to model more

realistic scenarios [23].

Multi-agent reinforcement learning (MARL) has become popular to model

individually rational agents in SDs and SSDs to examine emergent behavior

[6, 23, 31, 15, 36]. The goal of each agent is defined by an individual reward

function. Non-cooperative game theory and empirical studies have shown that

naive MARL approaches commonly fail to learn cooperative behavior due to

individual selfishness and lacking benevolence towards other agents, which

leads to defective behavior [2, 47, 23, 13].
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One reason for mutual defection is non-stationarity, where naively learn-

ing agents do not consider the learning dynamics of other agents but only

adapt reactively [44, 6, 22, 17]. This can cause agents to defect from mutual

cooperation as studied extensively for the prisoner’s dilemma [34, 2, 23, 13].

To mitigate this problem, some approaches propose to adapt the learning rate

based on the outcome [5, 30, 50] or to integrate information of other agents’

adaptation like gradients or opponent models [13, 25, 21]. These approaches

are either tabular or require full observability in order to observe each other’s

behavior thus do not scale to complex domains. Furthermore, some approaches

require knowledge about other agents’ objective to estimate their degree of

adaptation which could violate privacy [13, 25].

Another reason for mutual defection is the reward structure which was

found to be crucial for social intelligence [23, 39]. Prior work has shown that

adequate reward formulations can lead to emergent cooperation in particular

domains [3, 9, 10, 32, 19]. However, finding an appropriate reward formu-

lation for any domain is generally not trivial. Recent approaches adapt the

reward dynamically to drive all agents towards cooperation [18, 20, 21, 52].

Peer incentivization (PI) is a distributed approach, where all agents learn to

reward or to penalize each other which often leads to emergent cooperation

[29, 52, 37, 48]. Current PI mechanisms implicitly assume a flawless commu-

nication channel in order to exchange rewards. These rewards are assumed to

be simply integrated into the learning process without any chance to respond

with feedback. Furthermore, most PI approaches rely on global information

like joint actions [52], a central market function [37], or publicly available infor-

mation [48] which limits scalability and applicability to real-world scenarios,

where only local information is accessible.
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agent 1

agent 2

agent 3

(a) Request phase

agent 1

agent 2

agent 3

(b) Response phase

Fig. 1: MATE protocol example. (a) If agent 1 estimates a monotonic improve-
ment MI1(rt,1) ≥ 0 of its situation, it ”thanks” its neighbor agents 2 and 3 by
sending an acknowledgment request x1 > 0 as reward. (b) Agent 2 and 3 check
if the request x1 monotonically improves their own situation along with their
own respective reward. If so, a positive reward (e.g., y2 = +x1) is sent back as
a response. If not, a negative reward (e.g., y3 = −x1) is sent back.

Once emergent cooperation has been achieved, it needs to be maintained

to withstand social pressure, where many agents compete for scarce resources

[23, 31], or disturbances like protocol defections or communication failures

[2, 7]. Thus, reciprocity is important to establish stable cooperation by ade-

quately responding to both cooperative and defective opponent behavior

[35, 2, 1]. While reciprocity has already been considered in some prior learn-

ing rules [27, 5, 13, 25], there has been very little attention in most PI

approaches, where agents are only able to exchange positive rewards to reach

a consensus for cooperation – without any penalization mechanism against

potential exploitation [29, 52, 37]. The lack of reciprocity on the reward-level

can therefore lead to naive cooperation which can be easily destabilized.

In this paper, we propose Mutual Acknowledgment Token Exchange

(MATE), a PI approach defined by a two-phase communication protocol as

shown in Fig. 1 to mutually exchange acknowledgment tokens to shape individ-

ual rewards. Each agent evaluates the monotonic improvement of its individual
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situation in order to accept or reject acknowledgment requests from other

agents. MATE is completely decentralized and only requires local communi-

cation and information without knowing the objective of other agents or any

public information. Our contributions include:

• The concept of monotonic improvement, where each agent locally evaluates

its individual situation to estimate the reliability of the environment, i.e.,

other agents’ behavior.

• The MATE communication protocol and reward formulation using mono-

tonic improvement estimation. The two phases of MATE ensure reward-

level reciprocity, where agents get rewarded for accepted acknowledgment

requests but penalized for rejected ones.

• An empirical evaluation of MATE in three SD domains and a comparison

with other PI approaches w.r.t. different metrics. Our results show that

MATE is able to achieve and maintain significantly higher levels of cooper-

ation than previous PI approaches. In addition, we evaluate the robustness

of MATE in more realistic scenarios, where agents can defect from the pro-

tocol and where communication failures can occur. We also evaluate the

sensitivity of MATE w.r.t. the choice of token values.

This paper is an extended and revised version of our prior work [33], which

was presented at the 21st International Conference on Autonomous Agents and

Multiagent Systems (AAMAS). The main extensions are more detailed discus-

sions regarding practicability and reciprocity as well as additional experiments

examining the sensitivity of MATE w.r.t. the choice of token values.
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2 Background

2.1 Problem Formulation

We formulate self-interested MAS as partially observable stochastic game M =

⟨D,S,A,P,R,Z,Ω⟩, where D = {1, ..., N} is a set of agents i, S is a set

of states st at time step t, A = ⟨A1, ...,AN ⟩ = ⟨Ai⟩i∈D is the set of joint

actions at = ⟨at,i⟩i∈D, P(st+1|st, at) is the transition probability, ⟨rt,i⟩i∈D =

R(st, at) ∈ R
N is the joint reward, Z is a set of local observations zt,i for each

agent i ∈ D, and Ω(st) = zt = ⟨zt,i⟩i∈D ∈ Z
N is the joint observation of state

st. Each agent i maintains a local history τt,i ∈ (Z × Ai)
t. πi(at,i|τt,i) is the

action selection probability represented by the individual policy of agent i. In

addition, we assume each agent i to have a neighborhood Nt,i ⊆ D − {i} of

other agents at every time step t which is domain dependent as suggested in

[53].

πi is evaluated with a value function V π
i (st) = Eπ[Gt,i|st] for all st ∈ S,

where Gt,i =
∑∞

k=0
γkrt+k,i is the individual and discounted return of agent i

with discount factor γ ∈ [0, 1) and π = ⟨πj⟩j∈D is the joint policy of the MAS.

In practice, the global state st is not directly observable for any agent i such

that V π
i is approximated with local information, i.e., τt,i instead [23, 31, 20, 29].

We define the efficiency of a MAS or utilitarian metric (U) by the sum of

all individual rewards until time step T :

U =
∑

i∈D

Ri (1)

where Ri =
∑T−1

t=0
rt,i is the undiscounted return or sum of rewards of agent

i starting from initial state s0.
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The goal of agent i is to find a best response π∗
i with V

π∗

i

i = V ∗
i =

maxπi
V

⟨πi,π−i⟩
i for all st ∈ S, where π−i is the joint policy without agent

i. A nash equilibrium is a solution concept, where all local policies are best

responses π∗
i to each other such that no agent can improve its value by devi-

ating from its policy [35, 2, 47]. In SDs and SSDs, nash equilibria do not

maximize efficiency (U) of a MAS therefore individually rational agents may

fail to learn cooperative behavior [2, 1, 7, 23, 13].

2.2 Multi-Agent Reinforcement Learning

We focus on decentralized or independent learning, where each agent i opti-

mizes its policy πi based on local information like τt,i, at,i, rt,i, zt+1,i (and

optionally information obtained from its neighborhood Nt,i) using reinforce-

ment learning (RL) techniques, e.g., policy gradient methods as explained in

Section 2.3 [44, 13, 53]. Naive (independent) learning induces non-stationarity

due to simultaneously adapting agents which continuously changes the envi-

ronment dynamics [26, 22, 17]. Therefore, naive learning can lead to overly

greedy and exploitative policies which defect from any cooperative behavior

[23, 13].

2.3 Policy Gradient Reinforcement Learning

Policy gradient RL is a popular approach to approximate best responses π∗
i for

each agent i [28, 13, 52]. A function approximator π̂i,θi ≈ π∗
i with parameter

vector θi is trained using gradient ascent on an estimate of J = Eπ[G0,i] [51].

Most policy gradient methods use gradients g of the following form [43]:

g = (Gt,i − bi(st))∇θi logπ̂i,θi(at,i|τt,i). (2)
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where bi(st) is some state-dependent baseline. In practice, bi(st) is replaced

by a value function approximation V̂i,ωi
(τt,i) ≈ V π̂

i (st) which is learned with

parameter vector ωi [13]. For simplicity, we omit the parameter indices θi, ωi

and write π̂i, V̂i instead.

3 Related Work

3.1 Multi-Agent Reinforcement Learning in Social

Dilemmas

MARL is a long standing research field with rapid progress and success in

challenging domains [44, 26, 6, 49]. Different studies have been conducted

on various complex SSDs, where interesting phenomena like group hunting,

attacking and dodging, or flocking have been observed [23, 31, 15, 36]. Inde-

pendent MARL like naive learning has been widely used in most studies to

model agents with individual rationality [44, 13].

3.2 Non-Stationarity in Multi-Agent Reinforcement

Learning

Non-stationarity is one reason why naively learning agents fail to cooperate

in SDs [44, 26, 6, 22, 17]. To mitigate this issue, different learning rates can

be used depending on the outcome [5, 30, 50]. Another approach is to inte-

grate ”opponent awareness” into the learning rule by using or approximating

other agents’ gradients [13, 25]. For that, the objectives and histories of other

agents’ need to be known thus requiring full observability. Furthermore, higher

order derivatives (at least second order) are required which is computation-

ally expensive for function approximators with many learnable parameters like

deep neural networks.
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3.3 Peer-Incentivization

PI approaches have been introduced recently to encourage cooperative behav-

ior in a distributed fashion via additional rewards. Multi-agent Gifting has

been proposed in [29], which extends the action space of each agent i with a

gifting action to give a positive reward to other agents j ∈ Nt,i. Learning to

Incentivize Other learning agents (LIO) is a related approach, which learns

an incentive function for each agent i that conditions on the joint action of

all other agents j ̸= i (thus assuming full observability) in order to compute

nonnegative incentive rewards for them [52]. Both Gifting and LIO are unidi-

rectional PI approaches, where agents have neither the ability to respond nor

to penalize each other.

3.4 Peer-Incentivization with Global Information

A market-based PI approach was devised in [37], where the action space

is extended by joint market actions to enable bilateral agreements between

agents. A central market function is required which redistributes rewards

depending on selling-buying relationships. This approach is intractable for

large and complex scenarios because of the exponential growth of the indi-

vidual action space, since each agent has to additionally decide on a joint

market action. Furthermore, this approach does not enable penalization of

agents. Another approach based on public sanctioning has been proposed in

[48]. Agents can reward or penalize each other which is made public to all other

agents. Learning is conditioned on these public sanctioning events and agents

can decide based on known group behavior patterns, whether to reward or to

penalize other agents’ behavior.
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3.5 Reciprocity

Strategies based on reciprocity are able to establish stable cooperation in SDs

by adequately responding to other agents’ actions [35, 2, 1, 7]. Tit-for-Tat

(TFT) is a well-known reciprocal strategy for repeated 2-player games, which

cooperates in the first time step and then imitates the action of the other

agent [35]. TFT is able to achieve and maintain emergent cooperation in simple

games like the iterated prisoner’s dilemma while being able to defend itself

against exploitation based on the following characteristics [2, 1]:

• Niceness: Never be the first to defect.

• Retaliation: Respond with defection after the other agent defected.

• Forgiveness: Resume cooperation after the other agent cooperated regard-

less of any prior defection.

• Clarity: Be clear and recognizable.

Direct reciprocity (DR) is an analogous approach to TFT in evolutionary set-

tings [46]. Agents in a population can choose either to cooperate or defect

based on previous interactions and the probability of future interactions. How-

ever, TFT and DR require full observability of other agents’ actions and a

clear notion of cooperation and defection which can only be assumed for simple

games [23, 31].

4 Mutual Acknowledgment Token Exchange

(MATE)

We assume a decentralized MARL setting as formulated in Algorithm 1, where

at every time step t each agent i with history τt,i, policy approximation π̂i, and

value function approximation V̂i observes its neighborhood Nt,i and executes

an action at,i ∼ πi(at,i|τt,i) in state st. After all actions at ∈ A have been
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executed, the environment transitions into a new state st+1 ∼ P(st+1|st, at)

which is observed by each agent i through reward rt,i and observation zt+1,i.

All agents collect their respective experience tuple et,i = ⟨τt,i, at,i, rt,i, zt+1,i⟩

for PI [29, 52, 37] and independent adaptation of π̂i and V̂i [23, 31, 13].

Algorithm 1 Multi-Agent Reinforcement Learning with MATE

1: Initialize parameters for π̂i and V̂i for all agents i ∈ D.
2: for episode m← 1, E do

3: Sample s0 and set τ0,i for all agents i ∈ D
4: for time step t← 0, T − 1 do

5: for agent i ∈ D do ▷ Decision making in parallel
6: Observe neighborhood Nt,i

7: at,i ∼ π̂i(at,i|τt,i)
8: end for

9: at ← ⟨at,i⟩i∈D

10: Execute joint action at
11: ⟨rt,i⟩i∈D ← R(st, at)
12: st+1 ∼ P(st+1|st, at)
13: ⟨zt+1,i⟩i∈D ← Ω(st+1)
14: for agent i ∈ D do ▷ Communication in parallel
15: et,i ← ⟨τt,i, at,i, rt,i, zt+1,i⟩

16: r̂MATE
t,i ← MATE(MIi, V̂i,Nt,i, τt,i, et,i) (See Algorithm 2)

17: et,i ← ⟨τt,i, at,i, r̂
MATE
t,i , zt+1,i⟩

18: Update τt,i to τt+1,i and store et,i
19: end for

20: end for

21: for agent i ∈ D do ▷ Update in parallel

22: Update π̂i and V̂i via RL using all et,i of episode m

23: end for

24: end for

4.1 Monotonic Improvement

After obtaining their respective experience tuples et,i, all agents can evaluate

themonotonic improvement of their individual situation with a metricMI
et,i,V̂i

or MIi for short based on local information, i.e., rewards rt,i, histories τt,i, and

messages exchanged with other agents j ∈ Nt,i. Given some arbitrary reward
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r̂t,i, which could be either the original reward rt,i or some shaped reward, agent

i can assume a monotonic improvement of its situation when MIi(r̂t,i) ≥ 0.

Note that we consider the case of MIi(r̂t,i) = 0 as monotonic improvement in

particular to encourage agents to maintain their cooperative behavior instead

of falling back to defective strategies.

MIi represents a heuristic local reliability measure to predict if an agent

i can rely on its environment represented by other agents j ∈ Nt,i without

loosing performance. Since MIi can be measured online, agent i is able to

reciprocate at any time step t by either encouraging other agents j to reinforce

their behavior if MIi(r̂t,i) ≥ 0 or by discouraging them if MIi(r̂t,i) < 0.

In this paper, we regard a reward-based and a temporal difference (TD)-

based approach to compute MIi.

The reward-based approach computes MIi = MIrewi as follows:

MIrewi (r̂t,i) = r̂t,i − rt,i (3)

where rt,i = 1

t

∑t−1

k=0
r̂k,i is the average of all (shaped) rewards before time

step t. MIrewi estimates the expected short-term improvement of agent i, i.e.,

how r̂t,i compares to all rewards obtained so far.

The TD-based approach computes MIi = MITD
i as follows:

MITD
i (r̂t,i) = r̂t,i + γV̂i(τt+1,i)− V̂i(τt,i) (4)

which corresponds to the TD residual w.r.t. to some arbitrary reward r̂t,i

and estimates the expected long-term improvement of agent i, i.e., how r̂t,i

and τt+1,i improve or degrade the situation of agent i w.r.t. future time steps

[41, 42].
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Note that both MIrewi and MITD
i only depend on local information like

the reward r̂t,i, the value function V̂i, or the experience tuple et,i and enable

efficient online evaluation at every time step.

4.2 MATE Protocol and Reward

MATE defines a two-phase communication protocol consisting of a request

phase and a response phase as shown in Fig. 1.

In the request phase (Fig. 1a), each agent i evaluates its current situation

with its original reward rt,i. If MIi(rt,i) ≥ 0, the agent sends a token xi =

xtoken > 0 as an acknowledgment request to all neighbor agents j ∈ Nt,i which

can be interpreted as a reward. We assume all tokens to have a fixed value

xtoken which can be set specifically for particular domains. The request phase

may be viewed as an opportunity to ”thank” other agents for supporting one’s

own monotonic improvement which is common practice in human society. Note

that the fixed token value xtoken does not directly reveal an agent’s objective

or value function.

In the response phase (Fig. 1b), all request receiving agents j ∈ Nt,i check if

the request token xi is sufficient to monotonically improve their own situation

along with their respective original reward rt,j . If MIj(rt,j + xi) ≥ 0, then

agent j accepts the request with a positive response token yj = +xi which

establishes a mutual acknowledgment between agent i and j for time step t.

However if MIj(rt,j +xi) < 0, then agent j rejects the request with a negative

response token yj = −xi, because the received request token xi is not sufficient

to preserve or to compensate for the situation of agent j.
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After both communication phases, the shaped reward r̂MATE
t,i for each agent

i is computed as follows:

r̂MATE
t,i = rt,i + r̂req + r̂res

= rt,i +max{⟨xj⟩j∈Nt,i
}+min{⟨yj⟩j∈Nt,i

}

(5)

where r̂req = max{⟨xj⟩j∈Nt,i
} ∈ {0, xtoken} is the aggregation of all received

requests xj and r̂res = min{⟨yj⟩j∈Nt,i
} ∈ {−xtoken, 0, xtoken} is the aggregation

of all received responses yj . When r̂req + r̂res = 0 for all time steps t, then

agent i would adapt like a naive learner. Although r̂req and r̂res could be

formulated as sums over all requests or responses respectively, we prefer max

and min aggregation to prevent single neighbor agents to be ”voted out” by all

other agents in Nt,i thus pushing the interaction towards overall cooperation

in a completely decentralized way. Furthermore, the max and min operators

keep the reward r̂MATE
t,i bounded within [rt,i − xtoken, rt,i +2xtoken] which can

alleviate undesired exploitation of the PI mechanism, e.g., by becoming ”lazy”

to avoid harming other agents while getting rewarded or by deviating from the

protocol such that only positive rewards are used for learning, e.g., by ignoring

responses.

The complete formulation of MATE at time step t for any agent i is given in

Algorithm 2. MIi is a metric for estimating the individual monotonic improve-

ment, V̂i is the approximated value function, Nt,i is the current neighborhood,

τt,i is the history, and et,i is the experience tuple obtained at time step t.

MATE computes and returns the shaped reward r̂MATE
t,i (Eq. 4.2), which can

be used to update π̂i and V̂i according to line 22 in Algorithm 1.



Springer Nature 2021 LATEX template

Emergent Cooperation from Mutual Acknowledgment Exchange in MARL 15

Algorithm 2 Mutual Acknowledgment Token Exchange (MATE)

1: procedure MATE(MIi, V̂i,Nt,i, τt,i, et,i)
2: r̂req ← 0, r̂res ← 0
3: if MIi(rt,i) ≥ 0 then

4: Send acknowledgment request xi = xtoken to all j ∈ Nt,i

5: end if

6: for neighbor agent j ∈ Nt,i do ▷ Respond to requests
7: if request xj received from j then

8: r̂req ← max{r̂req, xj}
9: if MIi(rt,i + xj) ≥ 0 then

10: Send response yi = +xj to agent j
11: else

12: Send response yi = −xj to agent j
13: end if

14: end if

15: end for

16: if MIi(rt,i) ≥ 0 then ▷ If requests have been sent before
17: r̂res ← 1
18: for neighbor agent j ∈ Nt,i do ▷ Receive responses
19: if response yj received from j then

20: r̂res ← min{r̂res, yj}
21: end if

22: end for

23: end if

24: return rt,i + r̂req + r̂res (r̂MATE
t,i as defined in Eq. 4.2)

25: end procedure

4.3 Discussion of MATE

4.3.1 Practicability

MATE aims to incentivize all agents to learn cooperative behavior with a

decentralized two-phase communication protocol. Agents using MATE com-

pletely rely on local information, i.e., their own value function approximation

V̂i, their own experience tuples et,i, and messages exchanged within their

local neighborhood Nt,i thus do not require knowledge about other agent’s

objectives, or central instances like market functions or public information as

suggested in [28, 13, 25, 37, 48]. Locality of information is more practicable in



Springer Nature 2021 LATEX template

16 Emergent Cooperation from Mutual Acknowledgment Exchange in MARL

real-world scenarios as global communication is typically expensive or infeasi-

ble, and disturbances mainly occur locally therefore should not affect the whole

MAS [45]. As mentioned above, MATE does not directly reveal an agent’s

objective due to merely exchanging acknowledgment tokens xtoken instead of

actual environment rewards rt,i, values V̂i(τt,i), or TD residuals. This can be

useful for open scenarios like adhoc teamwork or IoT settings, where arbi-

trary agents can join the system without revealing any private information or

depending on central instances [4, 40]. Since MATE only modifies the environ-

ment reward for independent learning, our approach does not depend on any

particular RL or distributed optimization algorithm.

4.3.2 Reciprocity

In contrast to Gifting and LIO, MATE ensures reward-level reciprocity in order

to achieve and maintain emergent cooperation. While behavioral adaptation

through RL is generally slow [16], MATE is able to respond immediately using

rewards or penalties. Therefore, MATE exhibits the characteristics listed in

Section 3.5 given that all agents use r̂MATE
t,i according to Eq. 4.2 for adaptation:

• Niceness: The request phase of MATE only uses positive rewards xtoken > 0

thus never defects first on the reward-level.

• Retaliation: MATE enables penalization of other agents by explicitly

rejecting acknowledgment requests when MIi(rt,i+xtoken) < 0, which has an

immediate negative effect on the requesting agent’s reward, i.e., the response

term r̂res = min{⟨yj⟩j∈Nt,i
} in Eq. 4.2.

• Forgiveness: MATE does not keep track of previous penalizations therefore

being able to respond positively to any request as long as MIi(rt,i+xtoken) ≥

0.
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• Clarity: MATE according to Fig. 1 and Algorithm 2 defines a simple and

easily recognizable communication protocol.

In contrast to TFT and DR as described in Section 3.5, MATE is devised

for general stochastic games thus neither assumes full observability of other

agents’ actions nor a clear notion of cooperation and defection which is not

trivial in complex domains [23, 31]. Instead, MATE uses MIi to evaluate its

local surroundings for adequate responses on the reward-level. Thus, MATE

can be regarded as a reciprocal approach to self-interested MARL at a larger

scale than TFT or DR.

4.3.3 Acknowledgment Tokens

In this paper, we focus on fixed token values xtoken to simplify evaluation and

to focus on the main aspects of our approach like [29]. The choice of xtoken

determines the degree of reciprocity by defining the reward and penalty scale.

If xtoken is smaller than the highest positive reward, then agents might not be

sufficiently incentivized for cooperation. However, if xtoken significantly exceeds

the highest domain penalty, then single agents may learn to ”bribe” all other

agents thus leading to imbalance. In Section 6.4, we evaluate the sensitivity of

MATE w.r.t. the choice of xtoken in different domains. An adaptation of xtoken

to more flexible values like in LIO [52] is left for future work. We note that

agent-wise adaption of xtoken might affect clarity according to Section 4.3.2

though.

4.3.4 Complexity

MATE scales with O(4(N − 1)) in the worst case according to Algorithm 2, if

Nt,i = D − {i} and MIi(rt,i) ≥ 0 for all agents. In this particular setting, all

agents would send N − 1 requests, receive N − 1 requests, respond positively
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to these requests, and receive N − 1 positive responses. Other PI approaches

like LIO or Gifting have a worst case scaling of O(2(N − 1)) for sending and

receiving rewards because they lack a response phase. Since MATE scales

linearly w.r.t. N , it can still be considered feasible compared to alternative

PI approaches which scale exponentially [37]. Furthermore, the neighborhood

size is typically |Nt,i| ≪ N in practice such that the worst case complexity

becomes negligible in most cases.

5 Experimental Setup

5.1 Evaluation Domains

We implemented three SD domains based on previous work [13, 31, 29]. At

every time step, the order of agent actions is randomized to resolve conflicts,

e.g., when multiple agents step on a coin or tag each other simultaneously.

For all domains, we measure the degree of cooperation by the efficiency (U )

according to Eq. 2.1. Further details are in the Appendix A. Our code is

available at https://github.com/thomyphan/emergent-cooperation.

5.1.1 Iterated Prisoner’s Dilemma

The iterated prisoner’s dilemma (IPD) is a repeatedly played version of the 2-

player prisoner’s dilemma with the payoff table shown in Fig. 3a. Both agents

observe the previous joint action zt,i = at−1 at every time step t, which is the

zero vector at initial state s0. One nash equilibrium is to always defect (DD)

with an average efficiency of U = −2 − 2 = −4 per time step. Cooperative

policies are able to achieve higher efficiency up to U = −1 − 1 = −2 per

time step. An episode consists of 150 iterations and we set γ = 0.95. The

neighborhood Nt,i = {j} is defined by the other agent j ̸= i.

https://github.com/thomyphan/emergent-cooperation
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5.1.2 Coin

Coin[N] is an SSD as shown in Fig. 2a and consists of N ∈ {2, 4} agents

with different colors, which start at random positions and have to collect a

coin with a random color and a random position [24, 13]. If an agent collects

a coin, it receives a reward of +1. However, if the coin has a different color

than the collecting agent, another agent with the actual matching color is

penalized with -2. After being collected, the coin respawns randomly with a

new random color. All agents can observe the whole field and are able to move

north, south, west, and east. An agent is only able to determine if a coin

has the same or a different color than itself, but it is unable to distinguish

anything further between colors. An episode terminates after 150 time steps

and we set γ = 0.95. The neighborhood Nt,i = D − {i} is defined by all other

agents j ̸= i. In addition to the efficiency, we measure the ”own coin” rate

P (own coin) = # collected coins with same color
# all collected coins

based on the coins collected by

each agent.

5.1.3 Harvest

Harvest[N] is an SSD as shown in Fig. 2b and consists of N ∈ {6, 12} agents

(red circles), which start at random positions and have to collect apples (green

squares). The apple regrowth rate depends on the number of surrounding

apples, where more neighbor apples lead to a higher regrowth rate [31]. If all

apples are harvested, then no apple will grow anymore until the episode termi-

nates. At every time step, all agents receive a time penalty of -0.01. For each

collected apple, an agent receives a reward of +1. All agents have a 7× 7 field

of view and are able to do nothing, move north, south, west, east, and tag

other agents within their view with a tag beam of width 5 pointed to a specific

cardinal direction. If an agent is tagged, it is unable to act for 25 time steps.
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Tagging does not directly penalize the tagged agents nor reward the tagging

agent. An episode terminates after 250 time steps and we set γ = 0.99. The

neighborhood Nt,i is defined by all other agents j ̸= i being in sight of i. In

addition to the efficiency (U), we measure equality (E), sustainability (S), and

peace (P) to analyze the degree of cooperation in more detail [31]:

E = 1−

∑
i∈D

∑
j∈D |Ri −Rj |

2N
∑

i∈D Ri

,

S =
1

N

∑

i∈D

∆i, where ∆i = E[t|rt,i > 0],

P = N −
1

T

∑

i∈D

T∑

t=1

I[agent timed-out on time step t]

5.2 MARL Algorithms

We implemented MATE as specified in Algorithm 2 with MITD
i (Eq. 4.1) and

MIrewi (Eq. 4.1), which we refer to as MATE-TD and MATE-rew respectively

and set xtoken = 1 by default. Our base algorithm is an independent actor-

critic to approximate π̂i and V̂i for each agent i according to Eq. 2.3, which

we refer to as Naive Learning [13].

In addition, we implemented LIO [52], the zero-sum and replenishable

budget version of Gifting [29], and a Random baseline.

Due to the high computational demand of LOLA-PG, which requires the

computation of the second order derivative for deep neural networks, we

directly include the performance as reported in the paper [13] in IPD and

Coin[2] for comparison.

5.3 Neural Network Architectures and Hyperparameters

We implemented π̂i and V̂i for each agent i as multilayer perceptron (MLP).

Since Coin[N] and Harvest[N] are gridworlds, states and observations are
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encoded as multi-channel image as proposed in [14, 23]. The observations of

IPD are the vector-encoded joint actions of the previous time step [13]. The

multi-channel images of Coin[N] and Harvest[N] were flattened before being

fed into the MLPs of π̂i and V̂i. All MLPs have two hidden layers of 64 units

with ELU activation. The output of π̂i has |Ai| (|Ai| + 1 for Gifting) units

with softmax activation. The output of V̂i consists of a single linear unit. The

incentive function of LIO has a similar architecture with the joint action at

(excluding at,i) concatenated with the flattened observations as input andN−1

output units with sigmoid activation. The hyperparameters and architecture

information are listed in Table B1 and further details are in the Appendix B.

6 Results

For each experiment all respective algorithms were run 20 times to report the

average metrics and the 95% confidence interval. The Random baseline was

run 1,000 times to estimate its expected performance for each domain.

6.1 Performance Evaluation

The results for IPD are shown in Fig. 3b. MATE-TD, LIO, and LOLA-PG

achieve the highest average efficiency per step. Both Gifting variants, Naive

Learning, and MATE-rew converge to mutual defection, which is significantly

less efficient than Random.

The results for Coin[2] and Coin[4] are shown in Fig. 4. In both scenar-

ios, MATE-TD is the significantly most efficient approach with the highest

”own coin” rate. LIO is the second most efficient approach in both scenarios.

In Coin[2], LIO ’s efficiency first surpasses LOLA-PG and then decreases to

a similar level. However, the ”own coin” rate of LOLA-PG is higher, which

indicates that one LIO agent mostly collects all coins while incentivizing the
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-2

0 0Red agent defects Red agent cooperates

Coin[2] Coin[4]

(a) Coin

(b) Harvest (layout used for N = 6 and N = 12)

Fig. 2: SSD environments for evaluation: (a) In Coin[N], each agent gets a
reward of +1 when collecting a coin. However, other agents are penalized with
-2 when the collected coin does not match with the collecting agent’s color.
(b) In Harvest[N], all agents (red circles) need to collect apples (green squares)
while avoiding to be tagged and exhaustion of all apples which would prevent
regrowth of apples.

other respective agent to move elsewhere. In Coin[4], LIO is more efficient

than Random and achieves a slightly higher ”own coin” rate than the other PI

baselines. MATE-rew is the fourth most efficient approach in Coin[2] (after

LOLA-PG and LIO) and Coin[4] (after Random), but its ”own coin” rate is

similar to Random. Both Gifting variants and Naive Learning perform simi-

larly to Random in Coin[2] but are significantly less efficient than Random in

Coin[4].
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(a) Prisoner’s Dilemma payoffs

(b) Efficiency in IPD

Fig. 3: (a) Payoff matrix used in IPD (b) Learning progress of MATE variants,
Gifting variants, Naive Learning, and Random in IPD. The results of LIO and
LOLA-PG are taken from the respective papers [52, 13].

The results for Harvest[6] and Harvest[12] are shown in Fig. 5 and 6

respectively. All MARL approaches are more efficient, sustainable, and peace-

ful than Random. In Harvest[6], MATE-TD, LIO, both Gifting variants, and

Naive Learning are similarly efficient and sustainable with similar equality,

while MATE-TD achieves slightly more peace than all other baselines. In Har-

vest[12], MATE-TD achieves the highest efficiency, equality, and sustainability

over time while being second most peaceful after MATE-rew. Both Gifting

variants are slightly more efficient, sustainable, and peaceful than Naive Learn-

ing in Harvest[12], while LIO is progressing slowlier than Gifting and Naive

Learning, but eventually surpasses them w.r.t. efficiency, sustainability, and

peace. MATE-rew is the least efficient and sustainable MARL approach which
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(a) Efficiency (2 agents) (b) Own coin (2 agents)

(c) Efficiency (4 agents) (d) Own coin (4 agents)

Fig. 4: Learning progress of MATE variants, LIO, Gifting variants, Naive
Learning, and Random in Coin[2] and Coin[4]. The results of LOLA-PG are
taken from the paper [13].

exhibits significantly less equality than Random. LIO, both Gifting variants,

and Naive Learning first improve w.r.t. to all metrics but then exhibit a grad-

ual decrease, indicating that agents become more aggressive and tag each other

in order to harvest all apples alone, which is known as tragedy of the com-

mons [31, 29]. However, MATE-TD remains stable w.r.t. efficiency, equality,

and sustainability in Harvest[12].
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(a) Efficiency (6 agents) (b) Equality (6 agents)

(c) Sustainability (6 agents) (d) Peace (6 agents)

Fig. 5: Learning progress of MATE variants, LIO, Gifting variants, Naive
Learning, and Random in Harvest[6].

6.2 Robustness against Protocol Defections

To evaluate robustness of MATE-TD against protocol defections, we introduce

a single defective agent or defector f ∈ D which deviates from the commu-

nication protocol defined in Algorithm 2 and Fig. 1 in one of the following

ways:

• Complete: The defector becomes a naive independent learner which does

not participate in the communication rounds by skipping line 16 and 17 in

Algorithm 1. Thus, the defector f simply learns with its original reward rt,f .

This defection strategy lacks niceness, retaliation, and forgiveness according

to Section 4.3.2.
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(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Fig. 6: Learning progress of MATE variants, LIO, Gifting variants, Naive
Learning, and Random in Harvest[12].

• Request: The defector f does not send any acknowledgment requests by

skipping line 4 in Algorithm 2 and receives no responses in return. However,

it can still receive requests from other agents j ∈ Nt,f and respond to

them. Thus, the defector’s reward is defined by r̂MATE
t,f = rt,f + r̂req =

rt,f + max{⟨xj⟩j∈Nt,f
}. This defection strategy lacks niceness according to

Section 4.3.2.

• Response: The defector f can send acknowledgment requests but ignores

all responses by skipping line 17-22 in Algorithm 2. In addition, it can receive

requests from other agents j ∈ Nt,f and respond to them. Thus, the defec-

tor’s reward r̂MATE
t,f is the same as in the Request case above. This defection
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(a) Efficiency (4 agents) (b) Own coin (4 agents)

Fig. 7: Learning progress of MATE, defective MATE variants, LIO, and Naive
Learning in Coin[4].

strategy does not lack any characteristic discussed in Section 4.3.2. How-

ever, the defector does not adapt its policy with the original MATE reward

defined in Eq. 4.2.

Note that we focus on variants that avoid penalization by other agents through

the response term r̂res = min{⟨yj⟩j∈Nt,i
} of Eq. 4.2. In our experiments, we

use the notation MATE-TD (defect=X) for the inclusion of a defector f using

a protocol defection strategy X ∈ {Complete,Request,Response} as explained

above.

The results for Coin[4] are shown in Fig. 7. All defective MATE-TD vari-

ants are less efficient than MATE-TD but still more efficient with a higher

”own coin” rate than Naive Learning. MATE-TD (defect=Complete) exhibits

the least degree of cooperation. MATE-TD (defect=Response) is slightly

more efficient than LIO and achieves a higher ”own coin” rate. MATE-TD

(defect=Request) is less efficient than LIO but its ”own coin” rate is higher

indicating that agents tend to refrain from collecting other agents’ coins rather

than greedily collecting them.
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(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Fig. 8: Learning progress of MATE, defective MATE variants, LIO, and Naive
Learning in Harvest[12].

The results for Harvest[12] are shown in Fig. 8. All defective MATE-TD

variants perform similarly to MATE-TD without any loss.

6.3 Robustness against Communication Failures

To evaluate robustness against communication failures, we introduce a failure

rate δ ∈ [0, 1) specifying that an agent can fail to send or receive a message

with a probability of δ. E.g., in the request phase in Fig. 1a, agent 1 could fail

to send any request by skipping line 4 in Algorithm 2 with a probability of

δ. If the requests are sent successfully, agent 2 or 3 can still fail at receiving

agent 1’s request by skipping lines 7-14 in Algorithm 2 with a probability of

δ. The response phase in Fig. 1b is modeled analogously.
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We evaluate the final performance of MATE-TD and LIO at the

end of training respectively w.r.t. communication failure rates of δ ∈

{0, 0.1, 0.2, 0.4, 0.8} in Coin[4] and Harvest[12]. According to the correspond-

ing neighborhood definitions in Section 5.1, communication in Coin[4] is global,

where all-to-all communication is possible, while communication in Harvest[12]

is local for MATE-TD, where all agents can only communicate with neighbor

agents that are in their respective 7× 7 field of view. LIO always uses global

communication due to its incentive function formulation [52]. In addition, we

compare to Naive Learning and Random as non-communicating baselines.

The results for Coin[4] are shown in Fig. 9. MATE-TD and LIO remain

more efficient and cooperative than Naive Learning despite both approaches

loosing performance with increasing δ. The average efficiency of MATE-TD is

always nonnegative, while the efficiency of LIO decreases below the level of

Random, when δ = 0.8. The average ”own coin” rate of MATE-TD is always

at least 0.5, while the average ”own coin” rate of LIO has a high variance

ranging from 0.3 to 0.4. However, when δ = 0.8, the average ”own coin” rate

of LIO is slightly above 0.3 with significantly less variance, while still being

higher than the ”own coin” rates of Naive Learning and Random.

The results for Harvest[12] are shown in Fig. 10. The performance of

MATE-TD is relatively robust for δ ≥ 0.4 but significantly drops when δ = 0.8.

However, MATE-TD still achieves the highest degree of cooperation w.r.t. all

metrics except equality which gets worse than Random when δ = 0.8. The

cooperation level of LIO decreases slightly w.r.t. δ and is higher than Random

except for equality which even falls below the level of Naive Learning when

δ ≤ 0.4.
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(a) Efficiency (4 agents) (b) Own coin (4 agents)

Fig. 9: Performance of MATE, LIO, Naive Learning, and Random in Coin[4]
after 5,000 epochs w.r.t. different communication failure rates.

(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Fig. 10: Performance of MATE, LIO, Naive Learning, and Random in Har-
vest[12] after 5,000 epochs w.r.t. different communication failure rates.
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(a) Efficiency (4 agents) (b) Own coin (4 agents)

Fig. 11: Learning progress of MATE with xtoken ∈ {0.25, 0.5, 1, 2, 4}, LIO,
Naive Learning, and Random in Coin[4].

6.4 Sensitivity to Token Values

To evaluate the sensitivity of MATE-TD w.r.t. the choice of xtoken, we conduct

experiments with xtoken ∈ {0.25, 0.5, 1, 2, 4}. Setting xtoken = 0 would reduce

MATE to Naive Learning.

We report both the learning progress and the final performance at the

end of training to assess stability and the relationship between xtoken and the

cooperation metrics explained in Section 5.1.

The results for Coin[4] are shown in Fig. 11 and 12. MATE-TD with

xtoken = 1 is the most efficient variant, achieving the highest ”own coin” rate.

MATE-TD is less efficient than LIO and Random when xtoken ̸= 1. However,

MATE-TD with xtoken ∈ {0.5, 2} is able to achieve a higher ”own coin” rate

than LIO and Random. MATE-TD is always more efficient with a higher ”own

coin” rate than Naive Learning.

The results for Harvest[12] are shown in Fig. 13 and 14. All MATE-TD

variants progress stably w.r.t. efficiency and sustainability without any gradual

decrease. MATE-TD achieves the highest efficiency, equality, and sustainabil-

ity with xtoken ∈ {0.5, 1, 2} and is always the most peaceful variant for any

xtoken. When xtoken = 0.25, MATE-TD is less efficient and sustainable than
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(a) Efficiency (4 agents) (b) Own coin (4 agents)

Fig. 12: Performance of MATE with xtoken ∈ {0.25, 0.5, 1, 2, 4}, LIO, Naive
Learning, and Random in Coin[4] after 5,000 epochs.

LIO, while achieving less equality than LIO, Naive Learning, and Random.

MATE-TD with xtoken = 4 also achieves less equality than LIO, Naive Learn-

ing, and Random but is more efficient, sustainable, and peaceful. MATE-TD

achieves the highest degree of peace when xtoken ∈ {0.25, 4} with notably high

variance in all other metrics.

7 Discussion

Our results show that MATE is able to achieve and maintain significantly

higher levels of cooperation than previous PI approaches in SSDs like Coin[2],

Coin[4], and Harvest[12]. Especially Harvest[12] emphasizes the capability of

MATE to establish stable cooperation despite the increased social pressure

compared to Harvest[6], where all alternative PI approaches easily learn to

cooperate.

Estimating the monotonic short-term improvement via MIrewi (Eq. 4.1) can

be beneficial compared to random acting and to some extent to naive learning

in Coin (Fig. 4). However, considering the monotonic long-term improvement

via MITD
i (Eq. 4.1) leads to significantly higher efficiency and cooperation

w.r.t. various metrics in all domains, except peace in Harvest[12]. MATE with



Springer Nature 2021 LATEX template

Emergent Cooperation from Mutual Acknowledgment Exchange in MARL 33

(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Fig. 13: Learning progress of MATE with xtoken ∈ {0.25, 0.5, 1, 2, 4}, LIO,
Naive Learning, and Random in Harvest[12].

MITD
i is able to maintain cooperative behavior, in contrast to other approaches

which become unstable and fall back to more defective strategies as observed

in Coin[2], Coin[4], and Harvest[12] (Fig. 4 and 6).

MATE is not affected by single protocol defectors in Harvest[12], while its

cooperation level significantly decreases in Coin[4], where any deviation from

the protocol can affect the whole MAS (Fig. 7 and 8). The protocol defection

in Coin[4] emphasizes the importance of appropriate penalization mechanisms

as proposed in our reward formulation in Eq. 4.2 for immediate retaliation

according to Section 4.3.2 and [2, 1, 7]. Niceness through initiation of the

MATE protocol according to Section 3.5 is also important as MATE defec-

tors using the strategy Response lead to superior cooperation in Coin[4] than

defectors using Request. Forgiveness is always implicitly assumed except for
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(a) Efficiency (12 agents) (b) Equality (12 agents)

(c) Sustainability (12 agents) (d) Peace (12 agents)

Fig. 14: Performance of MATE with xtoken ∈ {0.25, 0.5, 1, 2, 4}, LIO, Naive
Learning, and Random in Harvest[12] after 5,000 epochs.

the defection strategy Complete which leads to the least cooperative behavior

in Coin[4].

MATE shows some robustness against communication failures in Fig. 9

and 10, where it is able to maintain its superior cooperation level even when

communication fails with a probability of 80%. The difference in cooperation

compared to LIO is especially evident in Harvest[12], where MATE only uses

local communication w.r.t. the agents’ local neighborhoods Nt,i. In this case,

local failures with a rate of δ ≤ 40% do not affect the whole MAS, in contrast

to Coin[4], where the cooperation level already drops when δ ≥ 10%.

xtoken is a key hyperparameter of MATE, since it defines the reward and

penalty scale which determines the degree of reciprocity in the system. As

noted in Section 4.3.3, setting xtoken to the highest positive reward yields
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the best results w.r.t. most metrics as shown in Fig. 11-14 except for peace

in Harvest[12]. MATE is very sensitive w.r.t. the choice of xtoken in Coin[4],

where only xtoken = 1 leads to the highest level of cooperation. The lower

xtoken, the more often agents tend to defect similarly to naive learning. On

the other hand if xtoken > 1, then a single agent often manages to ”bribe”

all other agents to move elsewhere in order to collect the coin on its own.

In Harvest[12], MATE is more robust w.r.t. choice of xtoken, as any xtoken ∈

{0.5, 1, 2} leads to higher levels of cooperation than alternative approaches.

However, setting xtoken = 0.25 leads to the least degree of cooperation w.r.t.

efficiency, equality, and sustainability. As indicated by the sustainability metric

in Fig. 14c, low values of xtoken can lead to greedy collection of apples, since

agents cannot compensate each other for backing off. However, when xtoken >

2, then most agents are not sufficiently incentivized to collect apples anymore,

since rewarding each other via MATE for ”doing nothing” is more profitable

if Nt,i ̸= ∅. The equality and sustainability results in Fig. 14b-c indicate that

only agents with Nt,i = ∅ tend to greedily collect apples, since they cannot be

rewarded by the MATE protocol. Therefore, the range of appropriate values

for xtoken also depends on each agent’s neighborhood in addition to the scale

of the highest positive reward.

8 Conclusion and Future Work

We presented MATE, a PI approach defined by a two-phase communication

protocol to mutually exchange acknowledgment tokens to shape individual

rewards. Each agent evaluates the monotonic improvement of its individual

situation in order to accept or reject acknowledgment requests from other

agents. MATE is completely decentralized and only requires local communi-

cation and information without knowledge about other agents’ objective or
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any public information. In addition to rewarding other agents, MATE enables

penalization for reward-level reciprocity by explicitly rejecting acknowledg-

ment requests, causing an immediate negative effect on the requesting agent’s

reward.

MATE was evaluated in the iterated prisoner’s dilemma, Coin, and Harvest.

We compared the results to other PI approaches w.r.t. different cooperation

metrics showing that MATE is able to achieve and maintain significantly higher

levels of cooperation than previous PI approaches even in the presence of social

pressure and disturbances like protocol defections or communication failures.

While being rather sensitive w.r.t. the choice of token values, MATE always

tends to learn more cooperative policies than naive learning thus being gener-

ally a more beneficial choice for self-interested MARL, when communication

is possible to some degree at least.

MATE is suitable for more realistic scenarios, e.g., in adhoc teamwork or

IoT settings with private information, where single agents can deviate from the

protocol, e.g., due to malfunctioning or selfishness, and where communication

is not perfectly reliable.

Future work includes the determination of appropriate bounds w.r.t. the

choice of token values, the automatic adjustment of token values for more

flexibility, e.g., by combining LIO and MATE, and an integration of emergent

communication techniques to create more adaptive and intelligent agents with

social capabilities [12, 39].

References

[1] Robert Axelrod. The Evolution Of Cooperation. Basic Books, 1984.

[2] Robert Axelrod and William D. Hamilton. The Evolution of Cooperation.

Science, 211(4489):1390–1396, 1981.



Springer Nature 2021 LATEX template

REFERENCES 37

[3] Monica Babes, Enrique Munoz de Cote, and Michael L. Littman. Social

Reward Shaping in the Prisoner’s Dilemma. In Proceedings of the

7th International Joint Conference on Autonomous Agents and Multia-

gent Systems-Volume 3, pages 1389–1392. International Foundation for

Autonomous Agents and Multiagent Systems, 2008.

[4] Samuel Barrett, Peter Stone, and Sarit Kraus. Empirical Evaluation of

Ad Hoc Teamwork in the Pursuit Domain. In The 10th International

Conference on Autonomous Agents and Multiagent Systems - Volume 2,

AAMAS ’11, page 567–574. International Foundation for Autonomous

Agents and Multiagent Systems, 2011.

[5] Michael Bowling and Manuela Veloso. Multiagent Learning using a

Variable Learning Rate. Artificial Intelligence, 136(2):215–250, 2002.
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Appendix A Evaluation Domain Details

A.1 IPD

An IPD episode consists of 150 iterations similar to [13]. The gifting action

of Gifting is treated as randomly picking C or D to avoid any bias (simply

picking C for gifting has the same effect though).

As a fully observable domain with just one opponent, all PI approaches use

global communication, where each agent exchanges messages with the other

respective agent.

A.2 Coin[N]

We adopt the setup of [13] in Coin[2] as shown in Fig. A1 with the same rules

and reward functions. In addition, we extend the domain to 4 agents in Coin[4]

(Fig. A1 right).

Since all agents are able to observe each other’s positions (albeit not

being able to distinguish agents by color) all PI approaches use global

communication, where each agent exchanges messages with N−1 other agents.

https://github.com/thomyphan/emergent-cooperation
https://github.com/thomyphan/emergent-cooperation
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-2

0 0Red agent defects Red agent cooperates

Coin[2] Coin[4]

Fig. A1: Coin[2] and Coin[4] as used in the paper.

Fig. A2: Domain layout with initial apple configuration used for Harvest[6]
and Harvest[12].

All agents are able to move freely and grid cell positions can be occupied by

multiple agents. Any attempt to move out of bounds is treated as ”do nothing”

action. The order of executed actions is randomized to resolve situations, where

multiple agents simultaneously step on a coin.

A.3 Harvest[N]

We adopt the setup of [31] in Harvest[6] and Harvest[12] as shown in Fig. A2

with the same dynamics and apple regrowth rates. The initial apple configu-

ration in Fig. A2 is used for both Harvest[6] and Harvest[12] to evaluate all

MARL approaches in the absence and presence of social pressure respectively.



Springer Nature 2021 LATEX template

REFERENCES 47

We modify the original reward function by adding a time penalty of 0.01

for each agent at every time step t to increase pressure. All agents are able to

observe the environment around their 7× 7 area and have no specific orienta-

tion. Thus, each agent has 4 separate actions to tag all neighbor agents which

are either north, south, west, or east of them.

While LIO uses global all-to-all communication in Harvest[N], all MATE

and Gifting variants use local communication, where all agents can only com-

municate with neighbor agents that are in their respective 7 × 7 field of

view.

All agents are able to move freely and grid cell positions can be occupied by

multiple agents. Any attempt to move out of bounds is treated as ”do nothing”

action. The order of executed actions is randomized to resolve situations, where

multiple agents simultaneously attempt to collect an apple or tag each other.

Appendix B Technical Details

B.1 Hyperparameters

All common hyperparameters used by all MARL approaches in the experi-

ments as reported in Section 6 are listed in Table B1. The final values are

chosen based on a coarse grid search to find a tradeoff between performance

and computation for LIO and Naive Learning in Coin[2] and Harvest[6]. We

directly adopt the final values in Table B1 for all other approaches and domains

from Section 5 and 6.

Similarly to xtoken = 1, we set the gift reward of both Gifting variants

introduced in Section 5.2 to 1 as originally proposed in [29].

For LIO, we set the cost weight for learning the incentive function to 0.001

and the maximum incentive value Rmax to the highest absolute penalty per
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domain (3 in IPD, 2 in Coin[N], and 0.25 in Harvest[N]) as originally proposed

in [52].

B.2 Neural Network Architectures

We coarsely tuned the neural network architectures from Section 5.3 w.r.t.

performance and computation by varying the number of hidden layers {1, 2,

3} as well as the number of units per hidden layer {32, 64, 128} for π̂i and V̂i.

All MATE variants, Naive Learning, and both Gifting variants use π̂i and V̂i

as separate MLPs. The policies π̂i of both Gifting variants have an additional

output unit for the gifting action, which is also part of the softmax activation.

The incentive function network of LIO has the same hidden layer architec-

ture as π̂i and V̂i. In addition, the joint action of the N − 1 other agents is

concatenated to the flattened observations before being input into the incen-

tive function which outputs an N − 1 dimensional vector. The output vector

is passed through a sigmoid function and multiplied with Rmax (Section B.1)

afterwards.

Using ELU or ReLU activation does not make any significant difference for

any MLP thus we stick to ELU throughout the experiments.
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Table B1: Common hyperparameters and their respective final values used by all algorithms evaluated in the paper. We also
list the values and ranges that have been tried during development of the paper.

Hyperparameter Final Value Values/Range Description

K 10 {1, 5, 10, 20} Number of episodes per epoch.

E 5000
{2000, 5000,
10000}

Number of epochs. E was gradually increased to assess
the stability of the learning progress until convergence.

# hidden layers 2 {1, 2, 3} Number of hidden layers of the MLPs. See Section B.2.
# units per
hidden layer

64 {32, 64, 128} Number of units per hidden layer. See Section B.2.

Hidden layer
activation

ELU {ReLU, ELU}
Activation function used for the hidden layer outputs. See
Section B.2.

Optimizer ADAM
{ADAM,
RMSProp}

Gradient-based optimization algorithm for MLP training.

α 0.001 {0.001}
Learning rate. We used the default value of ADAM in
torch for all MLPs without further tuning.

Clip norm 1 {1,∞}
Gradient clipping parameter. Using a clip norm of 1 leads
to better performance than disabling it with ∞.

λ 1 {0, 1} Trace parameter for TD(λ) learning of V̂i.

γ

0.95 (IPD,
Coin[N]) 0.99
(Harvest[N])

{0.9, 0.95, 0.99}
Discount factor for the return Gt,i. Any value ≥ 0.95
would have been sufficient.

|τt,i| 1 {1, 5, 10}
Local history length. It was set to 1 to reduce
computation because the other values did not significantly
improve performance.
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