[1] O'Seaghdha CM, Fox CS. Genome-wide association studies of chronic kidney disease: what have we learned? Nat Rev Nephrol. 2012;8(2):89-99.
[2] Regele F, Jelencsics K, Shiffman D, Paré G, McQueen MJ, Mann JF, Oberbauer R. Genome-wide studies to identify risk factors for kidney disease with a focus on patients with diabetes. Nephrol Dial Transplant. 2015;30 Suppl 4:iv26-34.
[3] Cañadas-Garre M, Anderson K, McGoldrick J, Maxwell AP, McKnight AJ. Genomic approaches in the search for molecular biomarkers in chronic kidney disease. J Transl Med. 2018;16(1):292.
[4] Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, Maxwell AP. Genetic susceptibility to chronic kidney disease - Some more pieces for the heritability puzzle. Front Genet. 2019;10:453.
[5] Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, et al. New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010 ;42(5):376-84.
[6] Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M, Yang Q, Gudnason V, Launer LJ, Harris TB, et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet. 2009 Jun;41(6):712-7.
[7] Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS, Gale DP, Wass MN, Ahmadi KR, Bakker SJ, et al. Genetic loci influencing kidney function and chronic kidney disease. Nat Genet. 2010;42(5):373-5.
[8] https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
[9]Liu CT, Garnaas MK, Tin A, Kottgen A, Franceschini N, Peralta CA, de Boer IH, Lu X, Atkinson E, Ding J, et al. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet. 2011;7(9): e1002264.
[10] Kazancio˘glu, R. Risk factors for chronic kidney disease: an update. Kidney Int. 2013;Suppl. 3(4), 368–371.
[11] Taal MW, Brenner BM. Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int. 2006 Nov;70(10):1694-705.
[12] Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 2015;6(1):87-123.
[13] Albuquerque D, Stice E, Rodríguez-López R, Manco L, Nóbrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics. 2015; 290(4):1191-221.
[14] Dai X, Wiernek S, Evans JP, Runge MS. Genetics of coronary artery disease and myocardial infarction. World J Cardiol. 2016; 8(1):1-23.
[15] Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331-344.
[16]Padmanabhan S, Caulfield M, Dominiczak AF. Genetic and molecular aspects of hypertension. Circ Res. 2015;116(6):937-59.
[17] Liu Z, Wang Y, Zhang Y, Chu X, Wang Z, Qian D, Chen F, Xu J, Li S, Jin L, et al. Cohort Profile: The Rugao Longevity and Ageing Study (RuLAS). Int J Epidemiol. 2016;45 (4):1064-1073.
[18] Shi GP, Ma T, Zhu YS, Wang ZD, Chu XF, Wang Y, Chen ZK, Xu WD, Wang XF, Guo JH, et al. Frailty phenotype, frailty index and risk of mortality in Chinese elderly population- Rugao longevity and ageing study. Arch Gerontol Geriatr. 2019; 80:115-119.
[19] Chen K, Zhou YX, Li K, Qi LX, Zhang QF, Wang MC, Xiao JH. A novel three-round multiplex PCR for SNP genotyping with next generation sequencing. Anal Bioanal Chem. 2016; 408(16):4371-7.
[20] Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.
[21] National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.
[22] Nyunt MS, Fones C, Niti M, Ng TP. Criterion-based validity and reliability of the Geriatric Depression Screening Scale (GDS-15) in a large validation sample of community-living Asian older adults. Aging Ment Health. 2009 May; 13(3):376-82. doi: 10.1080/13607860902861027.
[23] Friedman B, Heisel MJ, Delavan RL. Psychometric properties of the 15-item geriatric depression scale in functionally impaired, cognitively intact, community-dwelling elderly primary care patients. J Am Geriatr Soc. 2005 Sep;53(9):1570-6.
[24] Lee C, Scherr HM, Wallingford JB. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development. 2007;134(7):1431–41
[25] Böger CA, Chen MH, Tin A, Olden M, Köttgen A, de Boer IH, Fuchsberger C, O'Seaghdha CM, Pattaro C, Teumer A, et al. CUBN is a gene locus for albuminuria. J Am Soc Nephrol. 2011;22(3):555-70.
[26] Sveinbjornsson G, Mikaelsdottir E, Palsson R, Indridason OS, Holm H, Jonasdottir A, Helgason A, Sigurdsson S, Jonasdottir A, Sigurdsson A, et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum Mol Genet. 2014;23(25):6935–43.
[27] Ellis JW, Chen MH, Foster MC, Liu CT, Larson MG, de Boer I, Köttgen A, Parsa A, Bochud M, Böger CA, et al.: O'Seaghdha CM; CKDGen Consortium; CARe Renal Consortium: Validated SNPs for eGFR and their associations with albuminuria. Hum Mol Genet 2012;21 (14): 3293–3298.
[28] Foster MC, Hwang SJ, Larson MG, Parikh NI, Meigs JB, Vasan RS, Wang TJ, Levy D, Fox CS. Cross-classification of microalbuminuria and reduced glomerular filtration rate: associations between cardiovascular disease risk factors and clinical outcomes. Arch Intern Med. 2007;167(13):1386-92.
[29] Leon JM, Freedman BI, Miller MB, North KE, Hunt SC, Eckfeldt JH, Lewis CE, Kraja AT, Djoussé L, Arnett DK.. Genome scan of glomerular filtration rate and albuminuria: the HyperGEN study. Nephrol Dial Transplant. 2007;22(3):763-71.
[30] Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2003 Jan; 41(1):1-12.
[31] Menon MC, Chuang PY, Li Z, Wei C, Zhang W, Luan Y, Yi Z, Xiong H, Woytovich C, Greene I, et al. Intronic locus determines SHROOM3 expression and potentiates renal allograft fibrosis. J Clin Invest 2015,125 (1): 208-221
[32] Yan L, Li Y, Tang JT, An YF, Luo LM, Dai B, Shi YY, Wang LL. The influence of living donor SHROOM3 and ABCB1 genetic variants on renal function after kidney transplantation. Pharmacogenet Genomics. 2017;27(1):19-26.
[33] Wei C, Banu K, Garzon F, Basgen JM, Philippe N, Yi Z, Liu R, Choudhuri J, Fribourg M, Liu T, et al. SHROOM3-FYN Interaction regulates nephrin phosphorylation and affects albuminuria in allografts. J Am Soc Nephrol. 2018;29(11):2641-2657.
[34] Prokop JW, Yeo NC, Ottmann C, Chhetri SB, Florus KL, Ross EJ, Sosonkina N, Link BA, Freedman BI, Coppola CJ, et al. Characterization of Coding/Noncoding Variants for SHROOM3 in Patients with CKD. J Am Soc Nephrol. 2018;29(5):1525-1535.
[35] Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017 Jul 6;101(1):5-22. doi:10.1016/j.ajhg.2017.06.005.
[36] Wuttke M, Köttgen A. Insights into kidney diseases from genome-wide association studies. Nat Rev Nephrol. 2016;12(9):549-62.
[37] Deshmukh HA, Palmer CNA, Morris AD, Colhoun HM. Investigation of known estimated glomerular fltration rate loci in patients with type 2 diabetes. Diabet Med. 2013;30(10):1230–5.
[38] Pattaro C, Köttgen A, Teumer A, Garnaas M, Böger CA, Fuchsberger C, Olden M, Chen MH, Tin A, Taliun D,, et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 2012;8(3): e1002584. doi: 10.1371/journal.pgen.1002584.
[39] de Moor MH, Costa PT, Terracciano A, Krueger RF, de Geus EJ, Toshiko T, Penninx BW, Esko T, Madden PA, Derringer J, et al. Meta-analysis of genome-wide association studies for personality. Mol Psychiatry. 2012;17(3):337-49. doi: 10.1038/mp.2010.128.
[40] Bae HT, Sebastiani P, Sun JX, Andersen SL, Daw EW, Terracciano A, Ferrucci L, Perls TT. Genome-wide association study of personality traits in the long life family study. Front Genet. 2013; 4:65.
[41] Rocco MV, Gassman JJ, Wang SR, Kaplan RM. Cross-sectional study of quality of life and symptoms in chronic renal disease patients: the Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1997;29(6):888-96.
[42] Chow FY, Briganti EM, Kerr PG, Chadban SJ, Zimmet PZ, Atkins RC. Health-related quality of life in Australian adults with renal insufficiency: a population-based study. Am J Kidney Dis. 2003;41(3):596-604.
[43] Martens RJH, Kooman JP, Stehouwer CDA, Dagnelie PC, van der Kallen CJH, Kroon AA, et al. Albuminuria is associated with a higher prevalence of depression in a population-based cohort study: the Maastricht Study. Nephrol Dial Transplant. 2018;33(1):128-138.
[44] Jhee JH, Lee E, Cha MU, Lee M, Kim H, Park S, et al. Prevalence of depression and suicidal ideation increases proportionally with renal function decline, beginning from early stages of chronic kidney disease. Medicine (Baltimore). 2017;96(44):e8476.
[45] Gorski M, Tin A, Garnaas M, McMahon GM, Chu AY, Tayo BO, et al. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int. 2015 May;87(5):1017-29. doi: 10.1038/ki.2014.361. Epub 2014 Dec 10.