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6

In this article, we use artificial intelligence algorithms to show how to enhance the resolution of the7

elementary particle track fitting in dense detectors, such as plastic scintillators. We use deep learning8

to replace more traditional Bayesian filtering methods, drastically improving the reconstruction of9

the interacting particle kinematics. We show that a specific form of neural network, inherited from10

the field of natural language processing, is very close to the concept of a Bayesian filter that adopts a11

hyper-informative prior. Such a paradigm change can influence the design of future particle physics12

experiments and their data exploitation.13

I. INTRODUCTION14

Understanding the behaviour of subatomic particles15

traversing dense materials, often immersed in magnetic16

fields, has been crucial to their discovery, detection, iden-17

tification and reconstruction, and it is a critical compo-18

nent for exploiting any particle detector [1–6]. Modern19

radiation detectors have evolved towards “imaging de-20

tectors”, in which elementary particles leave individual21

traces called “tracks” [7–11]. These imaging detectors re-22

quire a “particle flow” reconstruction: particle signatures23

are precisely reconstructed in three dimensions, and the24

kinematics (energy and momentum vector) of the pri-25

mary particle can be measured track-by-track. It also26

means that a more significant amount of details can be27

obtained on each particle. These features open the ques-28

tion of which methods are best suited to handle the “im-29

ages” created by the subatomic particles.30

Common Monte Carlo (MC) based methods used in31

the track fitting flow belong to the family of Bayesian32

filters and, more specifically, they are extensions to the33

standard Kalman filter [12] or particle filters algorithms,34

with special mention to the Sequential Importance Re-35

sampling particle filter (SIR-PF) [13]. The knowledge36

about how an electrically charged subatomic particle37

propagates through a medium (i.e., the energy loss, the38

effect of multiple scattering, and the curvature due to39

magnetic field) can be embedded into a prior (often in the40

form of a covariance matrix for Kalman filters). In par-41

ticle filters, the nodes of the track are fitted sequentially:42

given a node state, the following node in the particle43

track is obtained by throwing random samples - known44

as “particles” - and making a guess of the following state45

by applying a likelihood between the sampled particles46

and the data (which could be, for instance, the signatures47

obtained from the detector readout channels). The result48

can be the position of the fitted nodes of a particle track49

or directly its momentum vector and its electric charge.50

∗ E-mail: saul.alonso.monsalve@cern.ch

Usually, the problem is simplified using a prior that fol-51

lows a Gaussian distribution, like in the Kalman filter,52

which also considers a simplified version of the detector53

geometry. Examples can be found in [14–16]. However,54

the filtering is not trivial since both the particle energy55

loss and multiple scattering angles depend on the mo-56

mentum, which changes fast in dense materials, and ap-57

proximations are often necessary. Moreover, it is hard to58

incorporate finer details of a realistic detector geometry59

and response (e.g., signal crosstalk between channels, air60

gaps in the detector active volume, presence of different61

materials, or non-uniformities in the detector response as62

a function of the particle position, inhomogeneous mag-63

netic field) or to deal with deviations in the particle tra-64

jectory due to the emission of high-energy δ-rays, with65

photon Bremsstrahlung emission, with the Bragg peak66

of a stopping particle, or with inelastic interactions. All67

these pieces of information are available in the simulation68

of a particle physics experiment [17–21] and can be val-69

idated or tuned with data but it is not straight-forward70

to use them in the reconstruction of the particle interac-71

tion. Hence, developing new reconstruction methods ca-72

pable of analysing all the information available becomes73

essential.74

The most promising solution is given by artificial in-75

telligence and, more specifically, by deep learning, a sub-76

field of machine learning based on artificial neural net-77

works [22–25]. Initially inspired by how the human brain78

functions, these mathematical algorithms can efficiently79

extract complex features in a multi-dimensional space af-80

ter appropriate training. Neural networks (NNs) have81

been found to be particularly successful in the reconstruc-82

tion and analysis of particle physics experiments [26–30].83

Thus far, deep learning has been used in high-energy84

physics (HEP) for tasks such as classification [27, 31–85

33], semantic segmentation [30, 34], or regression [35–37].86

Typically, the raw detector signal is analysed to extract87

the physics information. This approach is quite com-88

mon in experiments studying neutrinos, for example, to89

classify the flavour of the interaction (νµ, νe, or ντ ) by90

using convolutional neural networks (CNNs) [27, 31, 38],91

or the different types of signatures observed in the detec-92
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tor [30, 34]. These methods have been shown to outper-93

form more traditional ones, such as likelihood inference94

or decision trees. However, asking a neural network to95

extract high-level physics information directly from the96

raw signatures left in the detector by the charged parti-97

cles produced by a neutrino interaction is conceivable as98

challenging. An example is the neutrino flavour identifi-99

cation (as mentioned before), which incorporates diverse100

contributions, from the modelling of the neutrino inter-101

action cross-section to the propagation of the particles in102

matter and, finally, the particular response of the detec-103

tor. Expecting a neural network to learn and parametrise104

all these contributions could become unrealistic and lead105

to potential deficiencies.106

An alternative and promising approach is to use deep107

learning to assist the more traditional particle flow meth-108

ods in reconstructing particle propagation, which consists109

of a chain of different analysis steps that can include the110

three-dimensional matching of the voxelised signatures111

in the detector readout 2D views, the definition of more112

complex objects such as tracks and, finally, the fit of113

the track in order to reconstruct the particle kinematics.114

As described above, the last step is critical and is usu-115

ally performed by a Bayesian filter that has to contain116

as much information as possible in its multi-dimensional117

prior. It becomes clear that, overall, the reconstruction118

performance depends on the detector design (e.g., gran-119

ularity or detection efficiency) and on the a priori knowl-120

edge of the particle propagation in the detector, the prior.121

Although prohibitive for traditional Bayesian filters, the122

problem of parameterising a high-dimensional space can123

be overcome with deep learning since neural networks can124

be explicitly designed for it.125

Even though the generic idea of using deep learning126

as an alternative to Bayesian filtering has already been127

explored [39], common applications focus on tasks such128

as enhancing and predicting vehicle trajectories [40, 41].129

Furthermore, the closest application we can currently130

find in HEP and other fields like biology is to use deep131

learning to perform “particle tracking” [42–44], which re-132

lies on connecting detected hits to form and select par-133

ticles, distinct from the idea of fitting the detected hits134

to obtain a good approximation to the actual particle135

trajectory.136

In this article, we propose the design of a recurrent137

neural network (RNN) and a Transformer to fit particle138

trajectories. We found that these neural nets, inherited139

from the field of natural language processing, are very140

close to the concept of a Bayesian filter that adopts a141

hyper-informative prior. Hence, they become excellent142

tools for drastically improving the accuracy and resolu-143

tion of elementary particle trajectories.144

II. PROOF-OF-PRINCIPLE145

In order to train and test the developed neural net-146

works and compare their performance with a more clas-147

sical Bayesian filter, an idealized three-dimensional fine-148

grain plastic scintillator detector was taken as a case149

study. We simulated a cubic detector composed of a ho-150

mogeneous plastic scintillator with a size of 2×2×2 m3.151

A uniform magnetic field is applied, aligned to one axis152

of the detector (X-axis) and its strength is chosen to be153

0.5 T. The detector is divided into small cubes of size 1154

cm3, summing 200× 200× 200 cubes in total. Each cube155

is assumed to be equipped with a sensor that collects the156

scintillation light produced when a particle traverses it.157

We simulate the signals read from each sensor and recon-158

struct the event based on these signals. The track input159

to the fitters will be extracted from event reconstruction.160

Overall, the simulation and reconstruction are divided161

into three steps:162

1. Energy deposition simulation: this step uses163

the Geant4 toolkit [17–19] to simulate particle tra-164

jectories in the detector and their energy deposition165

along the path.166

2. Detector response simulation: this step simu-167

lates detector effects and converts the energy de-168

position into signals the detector can receive. The169

current detector effect being considered is the light170

leakage from one cube to the adjacent one (named171

crosstalk). The leakage probability per face is as-172

sumed to be 3%. The energy deposition is con-173

verted from the physics unit (MeV) into the “signal174

unit” (depending on the detector) by using a con-175

stant factor, which is fixed to be 100 / MeV for this176

analysis. Besides, a threshold is also implemented177

on the sensor, requiring that at least one signal unit178

be received to activate the sensor.179

3. Reconstruction: this step takes the signals gen-180

erated from the former steps and reconstructs ob-181

jects, such as tracks, that can be input to the fit-182

ter. Starting from 3D “cube hits” (what we have183

after the detector response simulation), we then184

apply the following two methods to find track seg-185

ments from the whole event: (1) the Density-Based186

Spatial Clustering of Applications with Noise (DB-187

SCAN) [45], which groups hits into large clusters188

that, in each cluster, all hits are adjacent to each189

other; (2) the minimum spanning tree (MST) [46]190

for each cluster to order hits and break the cluster191

into smaller track segments at each junction point.192

Afterwards, the primary track segment will be se-193

lected for track fitter input.194

The simulation and reconstruction processes resulted195

in single-charged particles (protons, pions π±, muons µ±,196

and electrons e±) starting at random positions in the de-197

tector active volume with isotropic directions and uni-198

form distributions of their initial momentum: between199

0 and 1.5 GeV/c (protons), 0 and 1.5 GeV/c (pions), 0200

and 2.5 GeV/c (muons) and 0 and 3.5 GeV/c (electrons).201

Each particle consisted of a number of reconstructed 3D202

hits belonging to the track, where each hit is represented203
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FIG. 1. Workflow of a crossing muon track fitting using the three algorithms: recurrent neural network (RNN), Transformer,
and Sequential Importance Resampling particle filter (SIR-PF). From left to right, the diagram shows the steps from the
particle simulation/detection until the particle is fitted using the different algorithms.

by a three-dimensional spatial position and an energy204

deposition in an arbitrary signal unit. For each recon-205

structed hit in a particle, there is a true node (to be206

learnt during the supervised training) which represents207

the closest 3D point to the hit in the actual particle tra-208

jectory; in that way, there is a 1-to-1 correspondence be-209

tween reconstructed hits (even for crosstalk) and true210

nodes. We refer in the rest of the article to the output of211

the algorithms developed as fitted nodes, which form212

the fitted trajectory for each particle.213

III. RESULTS214

In this section, we discuss the performance of a re-215

current neural network (RNN) [47–49] and a Trans-216

former [50], comparing their results with the ones from a217

custom SIR-PF (as described in Sec. I). The developed218

methods, described in detail in Sec. V, were run on a test219

dataset of simulated elementary particles (statistically in-220

dependent of the dataset used for training) consisting of221

1,759,491 particles (412,092 protons, 432,807 pions π±,222

447,003 µ±, and 467,589 e±). For each simulated parti-223

cle, the goal was to use the reconstructed hits to predict224

the actual track trajectory and then to analyse its physics225

impact on the detector performance, as described later226

in this section. The output of the different methods was227

a list of fitted nodes, i.e. the predicted 3D positions of228

the elementary particle in the detector. A visual exam-229

ple of the particle trajectory fitting using the different230

techniques is shown in Fig. 1.231

A. Fitting of the particle trajectory232

For the SIR-PF, we have considered two different sce-233

narios that vary in the reconstructed input information234

to the filter: (1) all the reconstructed 3D hits are used as235

input; (2) only real track hitsi are used as input, which is236

unavailable information for actual data (and represents a237

nonphysical scenario) but allows us to test the ideal per-238

formance for the current filter. The input for the RNN239

and Transformer always consisted of all the reconstructed240

3D hits. Figure 2 shows a comparison of the performance241

for the three methods (considering the SIR-PF variant242

with all the reconstructed hits as input). The results in-243

dicate that the Transformer outperforms the other tech-244

niques (even for the case with only track hits). Besides,245

the RNN reports significantly better results than the SIR-246

PF with only track hits used as input and slightly bet-247

ter fittings concerning the SIR-PF with all hits used as248

input, which demonstrates not only that the NN-based249

approaches can handle crosstalk hits but also go beyond250

i With “real track hits” we refer to hits from cubes the actual

particle has passed through.
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FIG. 2. The distribution of the three-dimensional Euclidean distance between the actual elementary particle position and the
corresponding fitted node predicted by the Transformer, the recurrent neural network (RNN), and the Sequential Importance
Resampling particle filter (SIR-PF, with only track hits and all hits as input). The sample used to generate the histograms
contains all the simulated particles. Results show the distributions for a log-scale (left) and normal-scale (right, cropped to a
maximum distance of 5 mm) densities, as well as the one-sided area ranges, representing 68% and 95% of the distributions.

algorithm input particle mean (µ) [mm] std (σ) [mm] 68% area [mm] 95% area [mm]

all 0.92 0.97 [0, 2.10] [0, 5.07]
stopping escaping stopping escaping stopping escaping stopping escaping

“ 1.10 0.80 1.16 0.78 [0, 2.57] [0, 1.64] [0, 5.76] [0, 4.30]

Transformer all hits
p 1.11 0.81 1.18 0.80 [0, 2.73] [0, 1.71] [0, 5.48] [0, 4.29]
π± 1.07 0.83 1.09 0.78 [0, 2.40] [0, 1.70] [0, 5.63] [0, 4.22]
µ± 0.94 0.71 1.04 0.66 [0, 1.80] [0, 1.33] [0, 4.57] [0, 3.81]
e± 1.18 1.07 1.23 1.06 [0, 2.74] [0, 2.44] [0, 6.81] [0, 5.36]
all 1.13 1.25 [0, 2.31] [0, 7.54]

stopping escaping stopping escaping stopping escaping stopping escaping

“ 1.27 1.03 1.50 1.02 [0, 2.79] [0, 1.96] [0, 9.03] [0, 5.95]

RNN all hits
p 1.26 0.99 1.48 0.98 [0, 2.92] [0, 1.86] [0, 9,52] [0, 5.48]
π± 1.20 1.04 1.35 0.99 [0, 2.47] [0, 1.94] [0, 8.14] [0, 5.57]
µ± 1.12 0.95 2.48 0.90 [0, 2.20] [0, 1.72] [0, 12.49] [0, 5.15]
e± 1.45 1.35 1.51 1.36 [0, 3.16] [0, 2.84] [0, 9.06] [0, 8.02]
all 1.40 1.50 [0, 3.35] [0, 7.98]

stopping escaping stopping escaping stopping escaping stopping escaping

“ 1.53 1.30 1.69 1.35 [0, 3.70] [0, 3.08] [0, 9.28] [0, 6.91]

track hits
p 1.38 1.19 1.39 1.16 [0, 3.45] [0, 2.98] [0, 6.36] [0, 5.49]
π± 1.46 1.29 1.74 1.26 [0, 3.59] [0, 3.04] [0, 9.45] [0, 6.05]
µ± 1.24 1.19 1.22 1.22 [0, 2.76] [0, 2.73] [0, 5.87] [0, 6.25]

SIR-PF
e± 1.92 1.79 1.99 1.78 [0, 4.29] [0, 3.94] [0, 11.85] [0, 9.87]
all 2.21 2.00 [0, 3.88] [0, 10.74]

stopping escaping stopping escaping stopping escaping stopping escaping

“ 2.33 2.13 2.34 1.72 [0, 4.19] [0, 3.68] [0, 12.30] [0, 9.54]

all hits
p 2.33 2.14 2.21 1.83 [0, 4.33] [0, 3.84] [0, 12.37] [0, 10.08]
π± 2.23 2.15 2.35 1.72 [0, 3.90] [0, 3.73] [0, 11.80] [0, 9.30]
µ± 2.18 2.03 3.53 1.56 [0, 3.82] [0, 3.41] [0, 21.26] [0, 8.57]
e± 2.51 2.50 2.24 2.16 [0, 4.59] [0, 4.63] [0, 12.43] [0, 11.37]

TABLE I. Euclidean distance (mean µ, standard deviation σ, and ranges for the one-sided 68% and 95% areas) between the
predicted and the true nodes for the Transformer, recurrent neural network (RNN), and the Sequential Importance Resampling
particle filter (SIR-PF) algorithms. For the latter, the table shows the results after inputting: (1) all the hits, (2) track hits only.
It also shows the results independently for each particle type (proton p, pion π±, muon µ±, and electron e±) and distinguishes
whether the particle escaped or stopped at the detector.

and accomplish spatial determination <1.5 mm far (on251

average) from the real physical case.252

A more exhaustive analysis of the performance of both253

methods is presented in Tab. I, which reveals the effec-254
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FIG. 3. (Top) Behaviour of the mean-squared-error (MSE) loss concerning ∥ ⃗(∆x,∆y,∆z)∥ (magnitude of the vector resulting
from the differences in position between consecutive nodes) and ∆E (differences in energy deposition between successive nodes)
for the three algorithms: Sequential Importance Resampling particle filter (SIR-PF) with all hits (left), recurrent neural network
(RNN, middle), and Transformer (right). After standardisation, each bin corresponds to the average mean-squared error (MSE)
loss applied to the pair (true node, fitted/predicted node). All fitted nodes are considered. (Bottom) Behaviour of the mean-
squared-error (MSE) loss concerning the distance from each fitted node to the closest cluster hit and |clusterE − nodeE|
(absolute difference between the energy depositions of the fitted node and the nearest cluster hit) for the three algorithms:
SIR-PF with all hits (left), RNN (middle), and Transformer (right). After standardisation, each bin corresponds to the average
mean-squared error (MSE) loss applied to the pair (true node, fitted/predicted node). Only nodes from muon (µ±) particles
are considered.

tiveness of the NNs compared to the SIR-PF variants.255

The table also confirms that the track fitting becomes256

more manageable when the crosstalk hits are removed257

from the input and more precise information is given to258

the filter (the SIR-PF version with only track hits out-259

performs the one with all hits as input). This last fact260

also evidences the power of deep learning, which is, on261

average, able to predict more accurately the node posi-262

tions and thus the true track trajectory, even if its input263

consists of all the reconstructed hits without any type of264

pre-processing (e.g., removal of crosstalk hits), meaning265

that it could understand the relations between hits in-266

ternally, confirming the ability to discard the crosstalk267

hits during the fitting calculation. In order to compare268

the Transformer and the RNN, it is worth looking at the269

muon fitting at Tab. I: the Transformer reports the best270

results for fitting muon particles (for both mean and stan-271

dard deviation) in contrast to the RNN, which reports an272

atypically large std dev. for muon tracks contained in the273

detector. The explanation relies on the length of the par-274

ticles and the properties of the algorithms: since muons275

tend to have the most extended track length among the276

simulated stopping particles (protons and pions tend to277

have more secondary interactions and electrons produce278

electromagnetic showers), and the RNN depends on its279

memory mechanisms to bring features from faraway hits280

to fit a particular reconstructed hit (see Sec.VII, Sup-281

plementary Information, for more details), it is habitual282

to omit some information from remote hits during the283

fitting; on the other hand, the Transformer reduces its284

mistakes by having a complete picture of the particle285

thanks to its capacity to learn the correlations among all286

reconstructed hits.287

To understand the behaviour of the fittings for the dif-288

ferent physical structures of the particles, we have cal-289

culated the mean-squared error (MSE, which is the loss290

function used during the neural network trainings) be-291

tween each fitted and true node and visualised the infor-292
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mation in Fig. 3. The MSE loss, which penalises outliers293

by construction, seems flatter for the RNN and Trans-294

former than for the SIR-PF, indicating more stability295

in the fitting. Besides, it is notorious for highlighting296

the tendency for particular negative ∆E values to report297

high losses in the NN cases, caused mainly due to the298

low charge of crosstalk compared to track hits. Besides,299

Fig. 3, as expected, also reveals that the three algorithms300

report worse fittings when getting closer to cluster hits301

connected to the track. For instance, in the case of muon302

particles, these clusters are typically due to the ejection303

of δ-rays, i.e. orbiting electrons knocked out of atoms,304

often causing a kink on the muon track; however, both305

NNs seem to deal much better with this attribute.306

Even if the primary goal of this article is to show the307

performance of the fitting from a physics perspective, it308

is worth comparing the different algorithms in terms of309

computing time. Table II manifests the average time it310

takes for each algorithm to run the fitting on a single par-311

ticle. The results exhibit a considerable speedup for both312

the RNN and the Transformer models (with speedups of313

∼ ×4 and ∼ ×35, respectively) with a single thread on314

the CPU. The table does not show the SIR-PF results315

for the distributed computing scenarios since it would316

require some time to parallelise the SIR-PF code to run317

it with multiple threads or to adapt it to GPU compu-318

tation, which is clearly beyond the scope of the study;319

that being said, the table shows the parallel results for320

the RNN and Transformer cases since these are features321

available in the PyTorch framework, which show how in-322

expensive it would be to achieve significant speedups for323

an ordinary user.324

Processor Parallelisation SIR-PF RNN Transformer

CPU
single-thread 435.71± 5.18 91.16± 1.17 12.25± 0.19
multi-thread - 82.22± 1.00 6.58± 0.04

GPU
batch size = 1 - 31.27± 0.99 8.96± 0.31
batch size = 16 - 4.02± 0.12 1.24± 0.12
batch size = 64 - 1.43± 0.05 0.71± 0.04

TABLE II. Average computing time each algorithm takes to
process a single particle (in milliseconds). The test shows
the average results of running the three methods (Sequential
Importance Resampling particle filter (SIR-PF) with all hits,
recurrent neural network (RNN), and Transformer) on the
same ten random subsets of the testing dataset consisting
of 10,000 particles each. CPU: AMD EPYC 7742 64-Core
3200MHz Processor, GPU: NVIDIA A100 Tensor Core (8GB
of memory). Note that the SIR-PF implemented does not
support multi-threading nor GPU computation since it is out
of the scope of the article; parallelising the computation for
the RNN and Transformer becomes trivial thanks to PyTorch.
The parameter “batch size” indicates the number of particles
processed together in each step.

Finally, if we look at the size of the histogram used to325

calculate the likelihood, it consists of 3,948,724 bins with326

non-zero values, compared to the 213,553 learnt param-327

eters of the RNN (∼18 times fewer parameters) and the328

167,875 parameters of the Transformer (∼23 times fewer329

parameters than the SIR-PF histogram). Of course, it330

would be possible to design a more efficient version of the331

histogram (which is also out of the scope of the article)332

to reduce the difference in parameters among the meth-333

ods. Nevertheless, this first approximation already gives334

insights into how compact the information is encoded in335

the neural network cases in contrast to the Bayesian filter336

scenario with a physics-based likelihood calculation.337

338

B. Impact on the detector physics performance339

The reconstruction of the primary particle kinematics340

provides diverse information: the electric charge (neg-341

ative or positive); the identification of the particle type342

(protons, pions, muons, electrons), which mainly depends343

on the particle stopping power as a function of its mo-344

mentum; the momentum, either from the track range of345

the particle that stops and releases all its energy in the346

detector active volume or from the curvature of its track347

if the detector is immersed in a magnetic volume; the348

direction. An improved resolution on the spatial coor-349

dinate and, consequently, of the particle stopping power350

impacts the accuracy and precision of the physics mea-351

surement. This section compares the performance of the352

reconstruction of particle interactions provided by the353

Transformer and RNN to the one using the SIR-PF.354

The charge identification (charge ID) is performed by355

reconstructing the curvature of the particle track in the356

detector immersed in the 0.5 T magnetic field. The357

charge ID performance was studied for muons (resp. elec-358

trons) with momenta between 0 and 2.5 GeV/c (resp.359

0 and 3.5 GeV/c) and isotropic direction distribution.360

From Fig. 4, it is evident that the NNs outperform the361

SIR-PF. For instance, the muon charge can be identi-362

fied with an accuracy better than 90% if the track has a363

length projected on the plane transverse to the magnetic364

field of ∼33 and ∼36 cm for the Transformer and RNN,365

respectively. Instead, the SIR-PF (with all the hits, the366

version with the same input as the neural network cases)367

requires a track of at least ∼42 cm in order to achieve the368

same performance. Similar conclusions can be derived369

from the charge ID study on electrons and positrons.370

In Fig. 4, the case of a 0.6 GeV/c muon was also stud-371

ied, showing the node positions fitted with the NNs and372

SIR-PF, with the Transformer better capturing the cur-373

vature due to the magnetic field. It was found that if374

the tracking resolution is accurate, it is possible to either375

improve the detector performance beyond its design or to376

aim for a more compact design of the scintillator detec-377

tor deployed in a magnetic field. For instance, the spatial378

resolution achieved with the NNs in a magnetic field of379

0.5 T allows measuring the momentum of a 0.6 GeV/c380

muon from its curvature with a resolution of about 15%381

with a length of the track projected on the plane trans-382

verse to the magnetic field of almost 40 cm, shorter by383

about 20 cm than the length needed by the SIR-PF with384
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FIG. 4. (Top) Charge ID probability for muons and antimuons (µ±, left) and electrons and positrons (e±, right) as a function
of the track length projected on the plane perpendicular to the 0.5 T magnetic field. An equal number of particles and
antiparticles are considered in both cases. (Bottom) A muon example of 0.6 GeV/c with a 0.5 T magnetic field is considered
to show the momentum-by-curvature resolution as a function of the track length projected on the plane perpendicular to the
magnetic field (left), as well as the angular resolution as a function of the particle length in the detector. The average Euclidean
distance (between true and fitted nodes) per muon particle was considered, and the results are presented for the different fitting
techniques: Transformer, recurrent neural network (RNN), and Sequential Importance Resampling particle filter (SIR-PF) with
all hits and only track hits as input.

all the hitsO. Such an improvement implies the possibil-385

ity of accurately reconstructing the momentum of muons386

escaping the detector for a larger sample of data. At387

the same time, improved methods for the reconstruction388

of particle interactions could become a new tool in the389

design of future particle physics experiments, for exam-390

ple leading to more compact detectors, thus lower costs.391

Similar conclusions can be achieved about the particle392

angular resolution, improved by about a factor of two393

and, simultaneously, requiring a track length three times394

shorter than the one obtained with traditional methods.395

The Transformer outperforms the SIR-PF also in the396

reconstruction of the particle momentum, both by range397

and curvature. For instance, the momentum-by-range398

resolution for protons stopping in the detector between399

0.9 and 1.3 GeV/c is improved by a factor of ∼15%, as400

shown in Fig. 5. Since protons typically have a much401

stronger stopping power towards the end of the track402

(Bragg peak), the total amount of energy leaked to the403

adjacent cubes is more significant. We observe that the404

fitting near the Bragg peak becomes more challenging405

for protons (for example, compared to muons) and less406

precise due to the presence of more crosstalk hits. This407

becomes particularly relevant for low momentum (true408

initial momentum from 0.4 to 0.8 GeV/c) - hence short409

- protons. However, the Transformer seems to deal well410

with this difficulty, whilst the RNN reports worse resolu-411

tions for this particular case, as shown in Fig. 5.412

The particle identification performance depends on413

the capability of reconstructing the particle stopping414

power along its path as a function of its initial momen-415

tum. The resolution to the particle dE/dx is shown416

in Fig. 5, where one can see that the energy deposited417

by a proton as a function of the fitted node position is418

neater and more refined for the NNs compared to the419

SIR-PF (with all hits as input), in particular for the420

Transformer that shows the most accurate Bragg peak.421

Automatically, this translates into a more performing422
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FIG. 5. Measured energy deposited by a stopping proton at each fitted node as a function of its distance from the last fitted
node for the Transformer (top left), the recurrent neural network (RNN, top right), and Sequential Importance Resampling
particle filter (SIR-PF) with all hits as input (bottom left). Note that we chose a different binning for the SIR-PF than the one
used for the NN versions for visualisation reasons since the former algorithm reports fewer fitted nodes per particle on average.
(Bottom right) The reconstructed momentum bias (dashed line) and resolution (solid line) for stopping protons as a function
of real initial proton momentum are shown for the different fitting algorithms.

particle identification capability, as shown in Tab. III423

for different particles such as muons, pions, protons and424

electrons for a wide range of energies.425

426

IV. DISCUSSION427

Deep learning is starting to play a more relevant role428

in the design and exploitation of particle physics experi-429

ments, although it is still in a gestation phase within the430

high-energy physics community. If the optimal neural431

network is optimised, deep learning has the unique ca-432

pability of building a non-linear multi-dimensional MC-433

based prior probability function with many degrees of434

freedom (d.o.f.) that can efficiently and accurately model435

all the information acquired in a particle physics experi-436

ment and enhance the performance of the particle track437

fitting and, consequently, its kinematics reconstruction.438

Such a level of detail is, otherwise, nearly impossible to439

incorporate “by hand” in the form of, for example, a co-440

variance matrix to be used in a traditional particle filter.441

In this work, we show that a Transformer and a RNN can442

efficiently learn the details of the particle propagation in443

matter mixed with the detector response and lead to a444

significantly improved reconstruction of the interacting445

particle kinematics. We observed that the NNs capture446

better the details of the particle propagation even when447

its complexity increases, which is the case near the pres-448

ence of clusters of hits, for example, due to δ-rays.449

It is worth noting that, as mentioned in Sec. III, this450

work does not aim to report on the performance of the451

simulated particle detector but rather to show the added452

value provided by a NN-based fitting. Moreover, the pro-453

posed method does not replace the entire chain of algo-454

rithms traditionally adopted in a particle flow analysis455

(e.g., minimum spanning tree, vertex fitting, etc.) but456

is meant to assist and complement them as a more per-457

forming fitter. For instance, a possibility could be to458

apply SIR-PF several times with “ad-hoc” manipulation459

of the data between each step. However, this would be an460

unfair comparison as one could also implement multiple461
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Truth

Transformer

p π± µ± e±

p 0.907 0.057 0.071 0.020
π± 0.067 0.643 0.190 0.199
µ± 0.007 0.041 0.595 0.009
e± 0.019 0.259 0.144 0.772

RNN

p 0.896 0.080 0.089 0.027
π± 0.073 0.623 0.233 0.200
µ± 0.006 0.036 0.506 0.007
e± 0.025 0.261 0.172 0.766

SIR-PF (track hits)

p 0.858 0.080 0.082 0.017
π± 0.103 0.606 0.310 0.237
µ± 0.014 0.042 0.453 0.006
e± 0.025 0.272 0.155 0.740

SIR-PF (all hits)

p 0.891 0.092 0.126 0.024
π± 0.077 0.603 0.236 0.229
µ± 0.008 0.039 0.517 0.007
e± 0.024 0.266 0.121 0.740

TABLE III. Particle identification (proton p, pion π±, muon
µ±, and electron e±) confusion matrix for different methods:
RNN, Transformer, Sequential Importance Resampling parti-
cle filter (SIR-PF) with all hits, and SIR-PF with only track
hits as input. Each matrix element corresponds to the prob-
ability of correctly identifying an elementary particle. Each
column of the confusion matrix is normalized to 1 and repre-
sents the true particles, whereas the rows represent the pre-
dictions.

deep learning methods and focus on their optimisation.462

We believe this approach is a milestone in artificial in-463

telligence applications in HEP and can play the role of a464

game changer by shifting the paradigm in reconstructing465

particle interactions in the detectors. The prior, which466

is consciously built from the modelling of the underlying467

physics from data external to the experiment, becomes468

as essential as the real data collected for the physics mea-469

surement. De facto, the prior provides a strong constraint470

to the “interpretation” of the data, helping to remove471

outliers introduced by detector effects such as from the472

smearing introduced by the point spread functionand im-473

proving the spatial resolution well below the actual gran-474

ularity of the detector.475

Its accuracy also depends on the quality of the training476

sample, i.e. on the capability of the MC simulation to477

correctly reproduce the data. Although this is true for478

most of the charged particles, a careful characterisation479

of the detector response will be crucial to validate and,480

if necessary, tune the simulation (e.g., electromagnetic481

shower development or hadronic secondary interactions)482

used to generate the training sample.483

This study requires that, first, the signatures observed484

in the detector are analysed, and the three-dimensional485

hits that compose tracks belonging to primary parti-486

cles (directly produced at the primary interaction ver-487

tex) are distinguished and analysed independently. This488

approach is typical of particle flow analyses.489

This work is focused on physics exploitation in par-490

ticle physics experiments. However, the developed AI-491

based methods can also fulfil the requirements in appli-492

cations outside of HEP, as long as one has a valid train-493

ing dataset. One example is proton computed tomog-494

raphy [51–54] used in cancer therapy, where scintillator495

detectors are used to measure the proton stopping power496

along its track in the Bragg peak region to precisely pre-497

dict the stopping position of the proton in the human498

body. This measurement is analogous to the momen-499

tum regression described in Sec. VB, given the nearly500

complete correlation between the particle range and mo-501

mentum.502

Future improvements to the developed NNs may in-503

volve the direct computation of the node stopping power504

from the track, i.e., the combined fitting of both the node505

particle position and energy loss.506

V. METHODS507

A. Description of the fitting algorithms508

To test the capability of deep learning to fit particle509

trajectories using reconstructed hits as input, we devel-510

oped two neural networks that represent the state-of-511

the-art in the field of natural language processing (NLP,512

as detailed in the Supplementary Information): the re-513

current neural network (RNN) [47–49] and the Trans-514

former [50] (see Fig. 6 for a full picture of the archi-515

tectures). Both algorithms learn from input sequences,516

each of these sequences being, for instance, a succession517

of words forming a sentence in the NLP case; or recon-518

structed hits representing a detected elementary particle519

in our scenario. Their power rely on their capacity of520

learning relations between all elements of a sequence. In521

general terms, RNNs count with memory mechanisms522

to use information from the “past” (previous items in523

the sequence) and the “future” (following items in the524

sequence) to make predictions. Thus, RNNs assume the525

input sequences to be ordered. On the other hand, Trans-526

formers do not necessarily need sequences to be ordered:527

the correlations among different items in the sequence528

are learnt throughout the training process.529

We implemented a bi-directional RNN, and the530

memory mechanism used is the gated recurrent unit531

(GRU) [55]. Our RNN consists of five bi-directional532

GRU layers with 50 hidden units each. The output of533

each GRU layer is the concatenation of the forward and534

backward modules of the layer and is given as input for535

the following layer (except for the last layer). Instead of536

propagating only the output of the last GRU layer to the537

final dense layer, the outputs of all layers are summed to-538

gether, replicating the concept of “skipped connections”539

in a similar way to what the ResNet or DenseNet model540

do [56]. As regularisation, a dropout of 0.1 is applied to541

the output of each GRU layer (except for the last GRU542

layer) and to the summed output of the GRU layers,543
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FIG. 6. The architectures of the neural networks implemented: recurrent neural network (RNN, left) and Transformer (right).
In high-level terms, RNN consists of five bidirectional GRU layers, while the Transformer consists of five sub-encoder layers.
Both models are followed by a linear layer that projects the sum of the outputs of the GRU/encoder layers into a vector
of length three. Finally, the input hit position (xi, yi, zi) is summed to the network’s output, allowing it only to learn the

“residuals” of the reconstructed hits concerning the true node states (S⃗in → S⃗out).

which is then projected through a final dense layer to544

have fitted nodes of size 3, representing the coordinates545

in a three-dimensional space (x, y, and z). The imple-546

mented RNN has a total of 213,553 trainable parameters.547

The Transformer model designed consists of 5-stacked548

Transformer-encoder layers, with 8 heads per layer and a549

dimension of 128 for the hidden dense layer. The input550

hits are embedded into vectors of size 64. A dropout of551

0.1 is applied in each encoder layer and also to the output552

of the encoder layers to be further projected through a553

final dense layer (analogously to the RNN), making each554

fitted node have a length of three. There is no positional555

encoding since the goal is to make the network learn the556

relative ordering of the hits based on the 3D positions.557

The network has a total of 167,875 trainable parameters558

We implemented both networks in Python v3.10.4 [57]559

using PyTorch version 1.11.0 [58], and trained them on560

a dataset of simulated elementary particles consisting561

of 1,762,327 particles (414,824 protons, 432,855 pions,562

446,858 muons and antimuons, and 467,790 electrons and563

positrons). Each particle consists of a sequence of re-564

constructed hits with their known positions (centre of565

the matching cubes) and energy depositions (in an arbi-566

trary signal unit) represented for each hit with the tuple567

S⃗in = (xi, yi, zi, Ei) and truth node position to be learnt568

S⃗out = (xi, yi, zi). Each variable is normalised to the569

range [0,1]. We used 80% of the particles from this sam-570

ple for training and 20% for validation, ignoring particles571

with either less than 10 reconstructed hits or less than572

2 track hits, both representing less than 1% of the total573

particles. Note that this dataset is statistically indepen-574

dent of the one used for producing the results shown in575

Sec. III. Mean-squared error and Adam (batch size of576

128, learning rate of 10−4, β1 = 0.9, and β2 = 0.98) are577

the loss function (typical for regression) and optimiser,578

respectively, chosen for both networks. We trained the579

models on an NVIDIA A100 GPU for an indefinite num-580

ber of epochs but with an early stopping of 30, meaning581

that the training terminates when the loss on the vali-582

dation set does not improve for 30 epochs. The training583

and validation losses are shown in Fig. 7.584

It is necessary to mention that for both the RNN and585

the Transformer, we sum together (position-wise) the586

output of the models for each fitted node and the 3D587

position of the corresponding reconstructed hit given as588

input. In that way, we force the networks to learn the589

residuals between reconstructed hits and fitted nodes (in590

other words, what is learnt is how to adjust each recon-591

structed hit to a node position that matches the actual592

particle trajectory).593



11

0 25 50 75 100 125 150 175

epochs

10−6

10−5

10−4

R
N

N
 -
 M

S
E

 l
os

s
train loss

val. loss

min. val. loss

0 20 40 60 80 100 120 140

epochs

10−6

10−5

10−4

10−3

T
ra

n
sf

or
m

er
 -
 M

S
E

 l
os

s train loss

val. loss

min. val. loss

.

FIG. 7. Training and validation loss curves for the recurrent neural network (RNN, left) and the Transformer (right). The
loss function used is the mean-squared error (MSE). The dashed-vertical lines represent the epoch that minimises the loss and,
thus, the model weights used for the subsequent analysis. The Transformer network converges much faster than the RNN,
presumably because the former can learn the correlations among unordered reconstructed hits, and the latter assumes the
reconstructed hits are ordered, which can lead to confusion due to the inherent flaws of the ordering provided (impossibility of
arranging an optimal order from reconstructed information)

Regarding the Sequential Importance Resampling par-594

ticle filter (SIR-PF), for each particle, we use the first595

reconstructed hit as priorii, meaning we use it to sam-596

ple the first random particles inside that cube, and the597

energy deposition of each particle happens to be the one598

of the hitting cube. In each step, the random particles599

are propagated through the next 15 hitsiii (starting with600

counting from the position of the current state). For each601

random particle, the algorithm calculates the variation in602

x, y, z, θ (elevation angle defined from the XY-plane, in603

spherical coordinates), and energy deposition (in an ar-604

bitrary signal unit) between the particle and the current605

state and assigns a likelihood based on the value of the se-606

lected bin in a 5-dimensional histogramiv, pre-filled using607

the same dataset used to train the RNN and the Trans-608

former. In that way, the next state ends up being the609

weighted average (using the pre-computed likelihood) of610

the positions of the different sampled particles available.611

The filter is run from the start to the end of the particle612

(forward fitting) and from the end to the start (backward613

fitting); the results of the forward and backward fittings614

are averaged in a weighted manner, giving more relevance615

to nodes fitted last in both cases. The total number of616

random particles sampled in each step is 10,000.617

ii Hits are reordered with respect to the axis the particle is travel-

ling through the furthest; if there are several candidates for the

first position, we chose the one with the highest energy deposi-

tion.
iii We make sure the random particles are sampled inside the avail-

able reconstructed hits.
iv The histogram, used for the likelihood calculation of the SIR-PF,

is filled with the variation between consecutive true nodes in x,

y, z, θ, and energy deposition, named: ∆x, ∆y, ∆z, ∆θ, and

∆E, respectively. The histogram has 100 bins per dimension.

B. Computation of particle kinematics618

The RNN, Transformer, and SIR-PF outputs are anal-619

ysed to extract the kinematics from the fitted tracks. The620

performance of the methods depends on the accuracy of621

the fitted nodes compared to the true track trajectories.622

The same procedure has been applied to the nodes fitted623

with the different algorithms for a fair comparison.624

The following steps have been followed to perform625

the physics analysis, that is, particle identification626

(PID), momentum reconstruction and charge identifica-627

tion (charge ID):628

1. Extract “track” nodes: the input 3D hits can be629

divided into two categories: (1) track hits, directly630

crossed by the charged particle, (2) crosstalk hits,631

caused by the leakage of scintillation light from the632

cube containing the charged particle. After the633

track is fitted, the 3D hits are identified as track-634

like if there is a scintillator cube with a particu-635

lar energy deposition that contains the fitted node.636

The remaining nodes are classified as non-track,637

and they include crosstalk hits. The scintillation638

light observed in a non-track hit is summed to the639

nearest track hit. The position of the fitted node is640

then used to compute the stopping power (dE/dx).641

2. Node energy smoothing: the energy of the remain-642

ing “track” nodes is smoothed in order to elimi-643

nate fluctuations due, for example, to the different644

path lengths travelled by the particle in the adja-645

cent cubes (the scintillation light in a cube is nearly646

proportional to the distance travelled by the parti-647

cle). The smoothing of an energy node is performed648

by applying an average over the energy of nearby649

nodes weighted by a Gaussian distribution function650

of the respective distance.651

3. Particle identification and momentum regression: a652

gradient-boosted decision tree (GBDT) [59], avail-653
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able in the TMVA package of the CERN ROOT654

analysis software (https://root.cern.ch/), was655

used to perform the particle identification and the656

momentum regression. The GBDT input parame-657

ters were chosen as: (1) the first 5 and the last 10658

fitted node energies along the track; (2) the neigh-659

bouring node distances of those 15 nodes; (3) the660

track total length and energy deposition. Two in-661

dependent GBDTs with the same structure were662

trained to reconstruct the primary particle type663

(muon, proton, pion, or electron, classification) and664

its initial momentum (regression).665

The electric charge of the particle was identified by666

measuring the deflection of the track projected to the667

plane perpendicular to the magnetic field. The convex or668

concave deflection implies either a positive or a negative669

charge, where the positions of the fitted nodes were used.670

The momentum reconstruction from the track curva-671

ture produced by the magnetic field was estimated for the672

resolutions provided by different track fitters and studied673

for different configurations by using parameterised for-674

mulas that incorporate the spatial resolution from track-675

ing in a magnetic field as well as the multiple scattering676

in dense material [60, 61], that have been shown to re-677

produce data well enough for sensitivity studies.678
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Natural language processing and deep learning1042
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form an approximation to the true track trajectory can1044

be modelled similarly to problems from the field of nat-1045

ural language processing (NLP). In NLP, it is common1046

to work with sequences of words, forming sentences, and1047

the aim is to perform tasks such as text translation, text1048

synthesis, or speech recognition, which require algorithms1049

that have the potential to deal with the possible differ-1050

ent relations of entities within a sentence [62–64]. Anal-1051

ogously, in the problem described in this article, the re-1052

constructed hits can be seen as an ordered (sorted along1053

with one axis) sequence of points, which would make it1054

straightforward for an algorithm brought from NLP to1055

exploit those points and predict the trajectory of the1056

track through the detector.1057

Nowadays, artificial intelligence (AI) is the leading1058

choice for handling the vast majority of NLP problems,1059

offering sophisticated algorithms that have set unprece-1060

dented results in the discipline [65, 66]. Most of these AI1061

algorithms are categorised in the sub-field of deep learn-1062

ing and, more concretely, the family of “recurrent” neu-1063

ral networks (RNNs) [47–49] stand out. Standard feed-1064

forward neural networks were the initial inspiration for1065

RNNs, but RNNs highlight an extraordinary ability to1066

learn from the semantics of temporal sequences by being1067

trained on large amounts of data.1068

1. Recurrent neural networks1069

In contrast to other neural networs, RNNs can handle1070

input sequences of different lengths and share features1071

learnt across different positions within the sequences,1072

mainly thanks to their capacity to use their internal1073

states as “memory”. Considering an input sequence1074

where each position corresponds to a different time step,1075

a standard RNN unit will produce the following activa-1076

tion a<t> and output y<t> for the input position xt of1077

the sequence at time step t:1078

a<t> = g(a<t−1>, xt; θa)

= g(Waaa
<t−1> +Waxx

t + ba)
(1)

ŷ<t> = g(a<t>; θŷ) = g(Wŷaa
<t> + bŷ) (2)

where g is the activation function (e.g, hyperbolic tan-1079

gent or ReLU), a<t−1> is the activation at time step t−1,1080

and θa and θŷ are the network parameters needed for1081

calculating a<t> (i.e., Waa, Wax, and ba) and ŷ<t> (i.e.,1082

Wŷa and bŷ), respectively. Note that, for each time step1083

t, the network is not only using the position xt of the se-1084

quence as input but also the activation of the immediate1085

previous time step to calculate the next activation and1086

output. In this way, RNNs can reuse previous activations1087

to learn about temporal information. This behaviour is1088

depicted graphically in Fig. 8. It is relevant to mention1089

that the network parameters are shared over time, mean-1090

ing that the model size does not increase with the length1091

of the input sequence.1092

 

FIG. 8. (Top) Internal structure of a recurrent neural network
(RNN) unit for the time step t, where the input position xt of
the sequence and the previous activation a<t−1> are used to
calculate the next activation a<t> and output ŷ<t>; (bottom)
unfolded structure of a standard RNN, where the activation
at one time step becomes an input to the next time step.

Having the output of the network ŷ and the true labels1093

y, the discrepancy between the two is evaluated with the1094

following loss function L:1095

L(ŷ, y) =
1

T

T
∑

t=1

L(ŷ, y) (3)
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where T is the total number of time steps. In RNNs,1096

the model weights θ are updated during backward prop-1097

agation at each time step, what is generally called back-1098

propagation through time:1099

∂L
∂θ

=
1

T

T
∑

t=1

∂L(ŷt, yt)
∂θ

(4)

In the above scenario, in order to make predictions on1100

the current position, the model can learn about the pre-1101

vious part of the sequence. However, all the following1102

positions are ignored. In other words, the model has the1103

ability to learn from the “past” but not from the “fu-1104

ture”. Accessing future information might be necessary1105

to report accurate results in some cases. For example,1106

coming back to the physics problem presented in this1107

manuscript, to precisely predict the closest 3D position1108

to the actual particle trajectory for a particular recon-1109

structed hit, it might be advantageous to access both1110

the previous and the next hits within the sequence. The1111

solution to also learn about the future is to put two in-1112

dependent RNNs together into what is called a bidirec-1113

tional recurrent neural network (BRNN) [67], where the1114

input is given from start to end to one RNN and from1115

back to the front to the other RNN; then, the outputs1116

at each time step usually are concatenated, as illustrated1117

in Fig. 9. In this way, for each time step, the network1118

has access to the activations coming from the previous1119

position and the following position in the sequence, giv-1120

ing the model the ability to learn from the past and the1121

future simultaneously.1122

concat concat concat concat concat

FIG. 9. Overview of a standard bidirectional recurrent neu-
ral network (BRNN) architecture. The architecture consists
of two RNNs combined together. The input sequence is given
from start to end (from left to right in the figure, in green) to
one of them, and from back to front (right to left, in yellow)
to the other one. The output of each RNN is normally con-
catenated for each time step.

Figures 8 and 9 show the case where the length of the1123

input sequence matches the length of the output; one1124

example of this could be a problem where the goal is to1125

categorise each word in a sentence into the corresponding1126

category (e.g., noun, pronoun, verb, or adjective). An-1127

other example, which is solved in this manuscript, is to1128

predict the closest track trajectory point for each input1129

reconstructed hit. Nevertheless, there are many other1130

RNN topologies: many-to-one, where only the output of1131

the last time step is considered (e.g., for sentiment classi-1132

fication); or many-to-many, but, in this case, the length1133

of the output sequence does not necessarily have to match1134

the length of the input sequence (e.g., text translation or1135

music generation).1136

2. GRU and LSTM1137

Some sequence models might be affected by very long-1138

term dependencies, meaning that, within a sequence, it1139

could be possible to find strong relations such as the de-1140

pendency of an arbitrary position i and a position i+ k,1141

being k a large positive integer. On top of that, since the1142

input sequences can have different lengths, the long-term1143

dependencies can be arbitrarily long.1144

Due to the continuous recalculation of the acti-1145

vations (shown in Equation 1), standard RNNs are1146

not good at catching long-term dependencies, aris-1147

ing vanishing/exploding gradient problems during back-1148

propagation [68–70]. Several architectures have been pro-1149

posed to deal with this issue, where gated recurrent and1150

long short-term memory units stand out.1151

A gated recurrent unit (GRU) [55, 71–73] is an alter-1152

native to the original RNN approach that handles long-1153

term dependencies by calculating a candidate ã<t> of the1154

activation (Eq. 5) using a gate to measure how relevant1155

the previous activation is to compute the next candidate1156

(Eq. 6).1157

ã<t> = tanh(a<t−1>, xt; θa)

= tanh(Waa(Γr ⊙ a<t−1>) +Waxx
t + ba)

(5)

Γr = σ(Wraa
<t−1> +Wrxx

t + br) (6)

where tanh and sigma are the hyperbolic tangent func-1158

tion and the sigmoid function, respectively. The activa-1159

tion is then updated using another gate (Eq. 7) to weight1160

the candidate and the previous activation into the new1161

activation (Eq. 8). Figure 10 represents the GRU work-1162

flow as a whole.1163

Γu = σ(Wuaa
<t−1> +Wuxx

t + bu) (7)

a<t> = Γu ⊙ ã<t> + (1− Γu)⊙ a<t−1> (8)

Similarly to GRU, the long short-term memory1164

(LSTM) [74–76] unit handles long-term dependencies by1165

not only updating the activation a<t> at each time step1166

but also updating a new entity named the “memory” cell1167

c<t>. The LSTM unit uses three different gates: (1) a1168

gate Γu (Eq. 7, equivalent to th GRU version) that tells1169

how much the memory cell candidate c̃<t> (Eq. 9) should1170

affect the update of the new memory cell c<t> (Eq. 10);1171

(2) a gate Γf (Eq. 11) that measures how much to forget1172

about the previous memory cell c<t−1> during the new1173
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FIG. 10. Gated recurrent unit (GRU) structure. For each
time step, the input x<t> and the previous activation a<t−1>

are used to compute the new activation a<t> and the out-
put ŷ<t>. To do so, the gate Γr is used to give relevance to
the previous activation when calculating the activation candi-
date ã<t>, while the gate Γu is used to update the activation
by weighting the candidate ã<t> and the previous activation
a<t−1>.

memory cell c<t> calculation; and (3) a gate Γo (Eq. 12)1174

that weights the memory cell during the calculation of1175

the new activation a<t> (Eq. 13). Figure 11 helps under-1176

stand the above formulas for the LSTM unit by showing1177

the different calculations in a diagram.1178

c̃<t> = tanh(c<t−1>, xt; θc)

= tanh(Wcc(Γr ⊙ c<t−1>) +Wcxx
t + bc)

(9)

c<t> = Γu ⊙ c̃<t> + Γf ⊙ c<t−1> (10)

Γf = σ(Wfaa
<t−1> +Wfxx

t + bf ) (11)

Γo = σ(Woaa
<t−1> +Woxx

t + bo) (12)

a<t> = Γo ⊙ tanh(c<t>) (13)

In practice, both GRU and LSTM perform similarly1179

in terms of the quality of the results for different prob-1180

lems [77–80]. However, due to the lack of a memory unit1181

and thus requiring fewer calculations, GRU tends to be1182

the preferred choice over LSTM since the former is more1183

computationally efficient [81, 82].1184

3. Transformers1185

Even though RNNs and their variants GRU and LSTM1186

have reported remarkable results in the field of NLP, they1187

 

 

 

 

 

 

 

 

FIG. 11. Long short-term memory (LSTM) unit. For each
time step, the input x<t>, and the previous activation a<t−1>

and memory cell c<t−1> are used to compute the new acti-
vation a<t>, memory cell c<t>, and output ŷ<t>. The gates
Γu and Γf contribute to the computation of the new memory
cell c<t>, while the gate Γo is used to calculate the activation
a<t>.

still face a couple of drawbacks. On the one hand, se-1188

quences are processed position by position and not al-1189

together, with the risk of still forgetting information re-1190

gardless of the memory mechanisms, which might not1191

retain all the necessary relations among positions within1192

the sequence. On the other hand, in order to learn about1193

the “past” and the “future” for each time step, bidirec-1194

tional models are needed, which require twice the usual1195

computation.1196

A Transformer [50] is a type of neural network, initially1197

proposed for text translation but with many different cur-1198

rent applications, that resolves the issues above by treat-1199

ing each input sequence as a whole. Its main feature is1200

the multi-head self-attention mechanism (revolutionising1201

the attention proposed in [83] and [84]), which decides1202

the fragments of the input sequence that are more rele-1203

vant for the target task by capturing correlations among1204

all items in a sequence. Formally, an input sequence1205

X ∈ RN×dk (sequence of length N , each position rep-1206

resented by dk values) is multiplied by three weight ma-1207

trices WQ, WK , and WV ∈ Rdk×dmodel (where dmodel the1208

length of the new representation for each position of the1209

sequence after the attention mechanism) to produce Q1210

(queries), K (keys), and V (values) ∈ RN×dmodel , respec-1211

tively. The self-attention is calculated with the following1212

formula:1213

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (14)

The multi-head part implies repeating the self-1214

attention h times (each self-attention calculation with1215
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independent learnt parameters is known as a “head”) on1216

Q, K, and V projected through h sets of weight matri-1217

ces WQ

(i), W
K
(i), and WV

(i) ∈ Rdmodel×dk (in the multi-head1218

approach, dk = dmodel/h.). Then, the outputs of the1219

heads are concatenated and multiplied by a final weigh1220

matrix WO ∈ Rhdk×dmodel , as shown in Eqs. 15 and 161221

and Fig. 12:1222

Multi-head(Q,K, V ) = concat(head(1), ..., head(h))W
O

(15)

where:1223

head(i) = Attention(QWQ

(i),KWK
(i), V WV

(i)) (16)

FIG. 12. Multi-head attention. The input X is linearly pro-
jected into Q, K, and V (the initial WQ, WK , and WV matri-
ces are usually the same, resulting in equivalent Q, K, and W ;
in NLP problems, this first linear projection is called “embed-
ding”), which are processed h times (one per head) through
a self-attention mechanism. The output of the heads are con-
catenated and multiplied by a final weight matrix WO to
produce the output O.

In order to preserve the order of the input sequence1224

through the different projections and let the model1225

learn about relative positions, “positional encodings” are1226

summed to the first linear projection of the input. The1227

authors of the Transformer model chose sine and cosine1228

functions of different frequencies for the positional en-1229

coding [50]:1230

PE(pos,i) =

{

sin( pos

10000i/dmodel
) if i is even

cos( pos

10000(i−1)/dmodel
) if i is odd

(17)

where pos is the position in the sequence and i is the1231

dimension.1232

Before putting everything together, it is advised to1233

mention that the original Transformer architecture con-1234

sists of two main components: an encoder and a decoder.1235

In machine translation, the encoder learns relevant fea-1236

tures from the input sequence that are useful for the de-1237

coder to generate the translated sequence sequentially.1238

In the Transformer model, the inputs are first projected1239

through a linear layer in addition to applying the posi-1240

tional encoding to finally go through the encoder, which1241

consists of a multi-head attention module, an addition (of1242

the output and the input of the multi-head attention) and1243

a normalisation, followed by another linear layer and a1244

final addition+normalisation, all repeated N times. Sim-1245

ilarly, the outputs (shifted right) are projected through1246

a linear layer. A positional encoding is applied, to then1247

go through the decoder, which consists of a multi-head1248

attention module, an addition+normalisation, another1249

multi-head attention module (where the input queries Q1250

and keys K are the output of the encoder, which lets1251

the decoder decide which encoder input is relevant for1252

the decoding task), another addition+normalisation, a1253

linear layer, and a final addition+normalisation, all re-1254

peated N times. The procedure described is depicted in1255

Fig. 13.1256

FIG. 13. Transformer encoder-decoder architecture. Figure
based on the model published in [50].

The original architecture needs the decoder part since1257

it was designed for machine translation. However, for1258

other problems, such as sentiment analysis, the decoder1259

can be replaced with a simpler module (e.g., a linear1260

layer) [85–87] since there is no need to predict an output1261

sequence but, for example, a single label. In other cases,1262

like the model proposed in this article, the goal is to1263

predict an output for each item in the input sequence;1264

thus, the decoder can be omitted and substituted by a1265

linear layer.1266


