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Abstract
Excessive delays of railway tra�c at border crossing points as a consequence of poor planning of border
crossing procedures lower the performance of train service, increase its cost and reduce the satisfaction
of shippers. Mid-term prediction of tra�c �ows may improve the process of planning border-crossing
activities. In this paper, we model the intensity of cross-border railway tra�c on the Alpine-Western Balkan
Rail Freight Corridor (AWB RFC). For each of the four border crossing points: Dimitrovgrad, Presevo, Sid
and Subotica, time series composed of 102 monthly export and import railway freight tra�c observations
are used for training and testing of alternative forecasting models. Traditional ARIMA, Long-Short-Term
Memory (LSTM) neural network, hybrid ARIMA-LSTM and Singular Spectrum Analysis (SSA) models, are
�tted to each of the eight time series. To enable the practical applicability of the proposed approach the
“Best �t forecast” tool is developed.

1. Introduction
Rail freight transport represents the most environmentally friendly mode of transport and plays an
important role in the freight transport market. Besides its environmental advantage rail freight transport
can provide more reliable, safer, cheaper and faster transport service under the higher level of
harmonisation of transport and technological processes. Increasing requirements in terms of quality and
availability of rail freight services in Europe have led to the need for the creation of a single European rail
area by establishing international rail corridors for competitive freight.

The Alpine-Western Balkan Rail Freight Corridor (AWB RFC) belongs to a recently extended network of
TEN-T corridors. This corridor connects central Europe and South-East Europe and together with branches
Xb (Nis-So�a-Istanbul) and Xc (Belgrade-Novi Sad-Budapest) brings signi�cant improvements to railway
transport in the direction from Central Europe to Turkey. The AWB RFC is the �rst RFC to include Serbia in
the European rail network for competitive freight. However, to utilize the potential of AWB RFC it is needed
to improve services and infrastructure along the RFC. One of the main bottlenecks is ine�cient the
border-crossing process. The average stopping times of freight trains at the AWB RFC border crossing
points (BCP) are around several hours. These times can be much longer leading to disturbances in train
tra�c from both directions. The main reasons lie in an insu�cient number of locomotives, an insu�cient
number of train crews and a low level of synchronization between neighbouring railway infrastructure
managers. Besides the technical means (such as equipping the BCPs with communication technologies)
for eliminating these bottlenecks, technological improvements may enable more e�cient and proactive
decision-making facilitators of technological improvements can be advanced forecasting of import and
export train �ows that are passing through a BCP. Forecasting of railway border crossing tra�c may
represent an essential component of planning and control of the border crossing process. Accurate
prediction of import and export train tra�c may contribute to reduced transit time on corridors, increased
reliability of rail service, reduced cost for the operator and shipper and higher satisfaction of shipper
which will ultimately lead to a higher share of rail transport.



Page 3/37

Several forecasting approaches are applicable to forecasting train tra�c through BCPs. In the context of
this paper, all forecasting approaches can be classi�ed as linear, nonlinear and hybrid. Traditional linear
models include historical average (Smith and Demetsky 1997; Stephanedes et al. 1981), smoothing
techniques (Williams et al. 1998) and Autoregressive Integrated Moving Average (ARIMA) models (Box
and Jenkins 1976; Box et al. 2008; Milenkovic et al. 2016). Purely linear models have limited performance
in real-world time series modelling which is commonly characterized by a mix of linear and nonlinear
temporal patterns. Arti�cial Neural Networks (ANN) represent the most popular nonlinear forecasting
models. ANNs can handle complex patterns and generate models which adequately re�ect nonlinear
relationships (Milenkovic et al. 2019). ANNs represent non-parametric models, therefore, there is no need
to de�ne an explicit model form. The model is adaptively determined based on the characteristics of the
time series. However, the adoption of single ANN may not be su�cient for modelling both linear and
nonlinear patterns well due to problems with misspeci�cation, under-�tting or over�tting of the model
(Santos Junior, de Oliveira, de Mattos Neto, 2019). Therefore, since the real-world time series are almost
always linear and nonlinear in terms of their correlation structure, neither ARIMA nor ANN can be solely
applied to adequately model the time series. In that scenario, hybrid approaches that combine classical
statistical models and ANNs are providing a good choice in terms of accuracy. Hybrid ARIMA-Long Short-
term Memory (LSTM) neural network which hybridizes the ARIMA model and LSTM model to obtain the
linear tendency and nonlinear tendency represents one very competitive alternative in comparison with
other approaches based on many recent contributions (Khozani et al. 2022; Deng et al. 2020; Fan et al.
2021; Manowska et al. 2021; Abebe et al. 2022).

In this paper, we model cross-border train tra�c �ow time series by using the traditional ARIMA approach,
Long Short Term Memory (LSTM), hybrid ARIMA-LSTM and Singular Spectrum Analysis (SSA) approach.
The traditional Box-Jenkins method is used for �tting the ARIMA models. In comparison with ARIMA
models, LSTM models are capable to look for nonlinear, non-stationary and intermittent or transient
behaviour in an observed time series. The third used approach is based on combining the ARIMA with
LSTM neural network to capture the linear and nonlinear dynamics in time series. This process is
composed of three levels: linear modelling, non-linear modelling and prediction of future values (Phan
and Nguyen 2020; Khozani et al. 2022). SSA represents an additional non-parametric technique based on
the concept of separability between signal and noise components (Golyandina et al. 2001). Comparisons
of proposed approaches are performed for Dimitrovgrad, Presevo, Sid and Subotica border crossing
points, all within the railway network of Serbia. Performances of approaches were evaluated according to
a set of relevant criteria independently for export and import train tra�c �ows. At the time of our analysis,
a time series of monthly train tra�c �ows from January 2013 to June 2021 (102 monthly observations)
were available. To make proposed techniques usable for the end-users (planners and managers at BCPs)
a forecasting software application is developed. This application is based on a “best-�t forecasting”
principle. It compares all considered forecasting models, automatically calculates the error for each
model and assigns the forecast model to the forecasted train tra�c �ow.

The paper is organized as follows. In the next section, a review of relevant literature is given. Section 3
describes the methodology used in the modelling and forecasting of train tra�c �ows through selected
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border crossing points. In Section 4 proposed models have been tested on eight different time series
related to the export and import �ows of Dimitrovgrad, Sid, Presevo and Subotica border crossing points.
Performances of proposed models are compared in Section 4. Section 5 describes the best �t forecasting
tool for the practical use of developed approaches. Concluding remarks and future research directions are
given in the last section.

2. Literature Review
There are different classi�cations of quantitative forecasting approaches. All quantitative approaches
can be decomposed into univariate or projective and multivariate or causal (Milenkovic et al. 2019). Both
categories can be decomposed into parametric and non-parametric (Milenkovic et al. 2016) whereas
within these two groups there are linear, nonlinear and hybrid approaches (Petropoulos et al. 2022). There
is a plethora of contributions in literature which address the tra�c �ow forecasting problems. Excellent
reviews can be found in Medina-Salgado et al. (2022), Kashyap et al. (2022), Liu et al. (2020) and
Vlahogianni et al. (2004). Relevant transport �ow forecasting contributions are discussed in this section.

Traditional linear or parametric forecasting techniques have been widely used for forecasting transport
�ows over the last few decades. Li (2013) compared exponential smoothing and brown exponential
smoothing for freight turnover forecasting. Moiseev (2021) applies an exponential smoothing model in
the oil shipping market forecasting. Alhindawi et al. (2020) applied double exponential smoothing for the
projection of GHG emissions from the road transport sector.

In the domain of passenger tra�c, Grubb and Mason (2001) used the Holt-Winters method for a very long
time series about air passenger tra�c. Jighjigh et al. (2021) formulated a multiplicative Holt-Winters
method to forecast the volume of passenger tra�c in Nigerian airports in the future. Dantas et al. (2017)
combined the Bootstrap aggregating (Bagging) method with the exponential smoothing Holt Winters to
predict future demand for passenger air transportation. Ge et al. (2013) compared exponential smoothing
with the trend moving average method for bus passenger tra�c prediction. Zhi-Peng et al. (2008)
proposed an improved adaptive exponential smoothing model for short-term travel time forecasting of
the urban arterial street. Sitzimis (2022) compares Winters’ multiplicative method, simple seasonal
model, decomposition multiplicative trend and seasonal model with Box-Jenkins ARIMA approach for
forecasting passenger tra�c in Greek coastal shipping. Milenkovic et al. (2016) developed Seasonal
Autoregressive Integrated Moving Average (SARIMA) model for forecasting railway passenger demand.
Williams et al. (2003), model short-term tra�c condition data streams as SARIMA processes. Ding et al.
(2011) propose a space-time autoregressive integrated moving average (STARIMA) model to predict the
tra�c volume in urban areas. Chen et al. (2009) proposed the Holt-Winters method, the seasonal ARIMA
(SARIMA) model, and the GM(1,1) grey forecasting model to replicate monthly inbound air travel arrivals
to Taiwan and to compare the models’ forecasting performance. Kim et al. (2011) forecasted future
customer volume by using the ARIMA model, time series analysis and system dynamics. Chen et al.
(2009) applied the Holt-Winters method, the seasonal ARIMA (SARIMA) model, and the GM(1,1) grey
forecasting model to replicate monthly inbound air travel arrivals to Taiwan and to compare the models’
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forecasting performance. Miller (2018) applies the autoregressive integrated moving average (ARIMA)
methodology to develop forecasts for three time series of monthly archival trucking prices. Tang and
Deng (2016) applied ARIMA(1,1,8) model to adequately �t the civil aviation passenger turnover. Kumar
and Vanajakshi (2015) proposed a prediction scheme using the Seasonal ARIMA (SARIMA) model for
short-term prediction of road tra�c �ow using only limited input data.

Nonlinear dynamics forecasting models represent data-driven self-adaptive methods capable to learn
from examples and capture complex functional relationships within the time series. Jiang and Luo
(2022) made a comprehensive review of the application of Graphical Neural Networks for road tra�c
forecasting. Wei and Chen (2012) combined empirical mode decomposition (EMD) and back-propagation
neural networks (BPN) is developed to predict the short-term passenger �ow in metro systems. Murat and
Ceylan (2006) developed an ANN model for transport energy demand forecasting. Dia (2001) developed
an object-oriented neural network model for freeway short-term tra�c forecasting. Peng et al. (2020)
proposed a spatial-temporal incidence dynamic graph neural networks framework for urban tra�c
passenger �ow prediction. Jiang and Adeli (2005) developed a nonparametric dynamic time-delay
recurrent wavelet neural network model is developed for forecasting road tra�c �ow. Huang et al. (2021)
proposed the Grey model GM (1,1) and Back Propagation (BP) neural network model for simulation and
forecasting the logistics demand of Guangdong province from 2000 to 2019. Gallo et al. (2019) proposed
Arti�cial Neural Networks (ANNs) approach for forecasting metro on-board passenger �ows as a function
of passenger counts at station turnstiles. Mostafa M. M. (2004) investigated the Suez Canal tra�c
forecasting and compared the performance of ARIMA models with that of neural networks on an example
of a large monthly dataset. Blinova (2007) proposed a neural network model to forecast air intraregional
and interregional passenger tra�c �ows. Jiang et al. (2014) developed a short-term demand forecasting
approach by combining the ensemble empirical mode decomposition (EEMD) and grey support vector
machine (GSVM) models. Zhang and Liu (2009) proposed least squares support vector machines (LS-
SVMs) to forecast the travel time index. Wang and Shi (2013) proposed a short-term tra�c speed
forecasting hybrid model (Chaos–Wavelet Analysis-Support Vector Machine model to model the real
tra�c speed data. Cong et al. (2016) combined the least squares support vector machine (LSSVM) fruit
�y optimization algorithm (FOA), to study the potential of tra�c �ow forecasting. Wang et al. (2018)
proposed a novel hybrid model combining the support vector machine overall online (SVMOOL) model
and the support vector machine partial online model (SVMPOL) model for short-term metro ridership
forecasting. Bao et al. (2012) proposed an ensemble empirical mode decomposition (EEMD) based
support vector machines (SVMs) modelling framework incorporating a slope-based method (EEMD-
Slope-SVMs) to model the monthly air passenger tra�c series including six selected airlines in USA and
UK. Bin et al. (2006) analysed the feasibility and applicability of SVM in bus arrival time prediction.
Syriopoulos et al. (2021) developed a support vector regression (SVR) model for ship price predictions for
different vessel types and shipping markets. Zhongzhen et al. (2011) proposed a wavelet transform-SVM
combined model to forecast the freight index of Panamax bulk carriers. Based on the Baltic Supermax
Index and historical decision data of different companies, Guan et al. (2019) used the support vector
machine model to predict the dry bulk carrier route selection. Cheu et al. (2006) compared two trip
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forecasting approaches, namely neural networks and support vector machines, for a multiple-station
shared-use vehicle system. Yang et al. (2016) developed the prediction model of bus arrival time based
on a Support Vector Machine with a genetic algorithm (GA-SVM). Milenkovic et al. (2019) proposed a
fuzzy neural network prediction approach based on metaheuristics for container �ow forecasting.
Glisovic et al. (2016) presented a hybrid model based on the integration of the genetic algorithm (GA) and
the arti�cial neural networks (ANN) for forecasting the monthly volume of passengers on the Serbian
railways.

Nonlinear models such as ANN are usually di�cult to interpret and test for the statistical signi�cance of
the parameters (Medeiros and Veiga 2000). Therefore, over recent years, new formulations appeared that
combine the traditional linear time series models and nonlinear models to handle both linear and
nonlinear structures in time series equally well.

For the prediction of the number of goods subject to inspection at European Border Inspections Post Ruiz-
Aguilar et al. (2014) applied a hybrid two-step procedure based on integrating the data obtained from
autoregressive integrated moving averages (SARIMA) model in the arti�cial neural network model (ANN).
Shahriari et al. (2020) combined bootstrap with the conventional parametric ARIMA model to improve the
prediction accuracy of tra�c count on four main arterial roads in Sydney. A hybrid model combining
symbolic regression and Autoregressive Integrated Moving Average Model (ARIMA) was proposed by Li et
al. (2017) for metro passenger �ow forecasting. Xie et al. (2014) proposed two hybrid approaches based
on seasonal decomposition and the least squares support vector regression (LSSVR) model for short-
term forecasting of air passengers. Xu et al. (2019) proposed the SARIMA-SVR model is proposed to
forecast statistical indicators in the aviation industry. Ge et al. (2021) proposed a hybrid of ARIMA and
fuzzy support vector regression machine (FSVR) to predict the passenger �ow at the Shanghai-
Guangzhou high-speed railway.

Based on this detailed and comprehensive review of relevant literature we may draw the following
conclusions:

Forecasting models were developed mainly for non-rail and/or passenger transportation;

To our knowledge, there are no attempts in the past that paid particular attention to forecasting
tra�c �ow on railway border crossings;

None of the reviewed contributions do consider the practical usability of the proposed approach.

Therefore, to eliminate these research gaps we model the cross-border train tra�c �ows by applying
ARIMA, LSTM, ARIMA-LSTM and SSA approaches and propose a best-�t forecasting tool, desktop client
application, as a solution for practical use of developed approaches. Comprehensiveness as an
additional feature of this approach is based on separate analysis, assessment and forecasting of import
and export train �ow for each of the four border crossing points which produces a more detailed input to
the corridor managers as support for solving a diversity of corridor-related decision-making problems.



Page 7/37

3. Methodology
The �ow chart in Fig. 1. illustrates the methodology applied in this paper. Each forecasting approach
requires a set of steps to be conducted. ARIMA modelling is based on Box and Jenkins methodology that
includes identi�cation of a suitable model, estimation of parameters and diagnostic checking. LSTM
neural network includes the transformation of a sequence of observations and the de�nition of the
model. ARIMA-LSTM is composed of �ltering the linear tendencies in the data and passing on the
residual values to the LSTM model. Decomposition and reconstruction represent the main steps of the
SSA approach. Included forecasting models are �tted on a training data sample and their optimal
con�gurations are selected and compared on a test data sample. The model which produces the best
performances can be used for forecasting freight train �ows at a speci�c border-crossing. Included
approaches are packed into a desktop software application named as Best-Fit Forecasting (BFF) tool to
provide its practical usability.

The following subsections contain a brief description of included approaches.

3.1. ARIMA
ARIMA models represent one of the most widely used linear univariate time series modelling techniques.
ARIMA models are composed of the Autoregressive (AR) model, the Moving Average (MA) model and
ARMA as a combination of AR and MA models. AR model includes a linear combination of past values of
the variable. AR model of order p (AR(p)) can be expressed as:

1

Where c is a constant and  is a white noise sequence assumed to be a normal random variable with
zero mean and variance .

MA model uses past forecast errors as forecast variables. MA model of order q (MA(q)) can be expressed
as:

2

To apply the ARIMA models the time series needs to be stationary. The letter “I” (integrated) means that
the �rst-order difference is applied to transform a considered time series into stationary. The full ARIMA
model can be written as follows:

Yt = c +
p

∑
i=1

ϕiYt−i + εt

εt
σ2

Yt = c + εt +
q

∑
i=1

θiεt−i
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3

 is differenced time series. Equivalent integrated form of any ARIMA model looks as follows:

4

B represents the backshift operator, whose effect on a time series  can be summarized as:

5

Seasonal ARIMA models (SARIMA) represent an extension to cover seasonal variations in the time series.
The seasonal part of the model consists of terms similar to the non-seasonal part, the difference is that
the seasonal part includes backshifts of the seasonal period (not the �rst period like in the ARIMA model).
In integrated form SARIMA model can be expressed as follows:

6

Equation (5) represents a  model where  and  are the seasonal ARMA
coe�cients and seasonal differencing operator  of order is applied to eliminate seasonal
patterns. The modelling procedure of an ARIMA (SARIMA) model can be summarized in Fig. 2. Arima
modelling was conducted in Python 3.10 using the pmdarima package (Smith et al., 2017).

3.2. Long Short Term Memory (LSTM) models
LSTM represents a type of Recurrent Neural Network (RNN). RNNs, due to their looped architecture, are
capable to recognize sequential characteristics in data and therefore very suitable for sequence
prediction problems (Hewamalage 2021). However, RNNs do suffer from a long-term dependency
problem. Due to vanishing and exploding gradient issues RNNs, have di�culty in learning long-term
dependencies (Somu et al. 2020). Another issue with standard RNN architecture is that the training of
RNN model requires a predetermined delay window length, but it is di�cult to automatically obtain the
optimal value of this parameter (Xu et al. 2022).

LSTM provides a solution for long term dependency problems thanks to improved recursive neural
network architecture with feedback so it can process not only individual data points but entire sequences
as well (Sepp and Schmidhuber 1997; Manowska et al. 2021). A LSTM neural network is composed of

Y ′
t = c +

p

∑
i=1

ϕiY
′
t−i + εt +

q

∑
i=1

θiεt−i

Y ′
t

ϕp(B)(1 − B)dYt = θq(B)εt

Yt

BdYt = Yt−d

ϕp(B)ΦP (BS)(1 − B)d(1 − BS)DYt = θq(B)ΘQ(BS)εt

SARIMA(p,d,q) × (P,D,Q) Φ Θ
(1 − BS)D
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one input layer, one recurrent hidden layer and one output layer. Improvement in architecture relates to
replacing the hidden layer of RNN cells with LSTM cells (hereafter memory blocks) to achieve long-term
memory. Self-connected LSTM memory blocks enable the model to learn the long-term dependencies
while handling sequential data (Somu et al. 2020). In contrast to RNNs which have only one hidden state,
in LSTM neural network to each cell two states are transferred, the cell state and the hidden state. The
cell state enables long-term memory capability, whereas the hidden state enables a working memory
capability that contains only near-past information and uncontrollably overwrites at every step.

Memory blocks are responsible for memorizing, and manipulations between blocks are done by special
multiplicative units called gates. Gates control the �ow of information (Ma et al. 2015; Hrnjica and Mehr
2020). The input gate controls the �ow of input activations into the memory cell. The output gate controls
the output �ow of the cell activation. Besides these two gates, there is also a forget gate which �lters the
information from the input and previous output and decides which one should be remembered, forgotten
and dropped (Hrnjica and Mehr 2020). The adaptive gating mechanism enables that whenever the
content of the cell is outdated, the forget gate resets the cell state, so the input and the output gates
control the input and the output, respectively. In essence, the gates represent different neural networks
that decide which information is allowed in the cell state. Besides the gates, the core of the memory cell is
a recurrently self-connected linear unit-Constant Error Carousel (CEC), whose activation represents the cell
state. Due to the presence of CEC the problem of vanishing or exploding gradient is solved since
multiplicative gates can learn to open and close enabling the LSTM cell state to enforce the constant
error �ow.

Figure 3. provides an insight into the internal architecture of LSTM. Symbols , , and represent the input
gate, forget gate the cell state vector and the output gate, respectively.  and tanh are sigmoid and
hyperbolic tangent activation functions, respectively. The elementwise multiplication of two vectors is
denoted by .

For the tth data, an LSTM takes as input , ,  and produces the hidden state as well as the
cell state  based on the following formulas:

7

8

9

σ

⊗

xt ht−1 Ct−1 ht
Ct

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)

Ct = ft ⊗ Ct−1 + it ⊗ C––t

C––t = tanh(Wcxt + Ucht−1 + bc)
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10

11

12

where ,  are weight matrices and are bias vectors, for .
The symbols  and  refer to element-wise sigmoid and hyperbolic target functions. Element-
wise multiplication is represented by the symbol .

In this paper, the LSTM network was built based on the Keras framework of the Python 3.10 platform.
Before modelling each training data that belong to a time series for each border crossing is normalized or
rescaled from the original range so that all values are within the range of 0 and 1. Then the methods and
parameters of the LSTM model need to be con�gured. Depending on the time series, the hidden layer was
built from 100 to 200 LSTM cells, the number of iterations varied from 100 to 300 and the batch size
spanned from 2 to 12. The activation function was set to recti�ed linear activation function (ReLu), the
loss function was MSE, and the optimizer was stochastic gradient descent (SGD).

3.3. ARIMA-LSTM models
ARIMA models can only recognize linear patterns of the time series whereas LSTM models are capable to
mine the nonlinear relationships. Since it is proven that some of the time series related to rail cross-border
tra�c have some remaining nonlinearity, a hybrid ARIMA and LSTM model was proposed as an
alternative model for forecasting cross-border tra�c.

The modelling �ow chart of the ARIMA-LSTM approach is shown in Fig. 4. In essence, the residuals of
ARIMA models are regarded as the input of the LSTM model, and the LSTM model is utilized to train the
nonlinear tendency by modelling the residual series (Deng et al. 2020). The linear part ( ) and nonlinear
part ( ) were combined to obtain the prediction results ( ) of the hybrid ARIMA-LSTM model:

13

3.4. Singular Spectrum Analysis (SSA) algorithm
Singular Spectrum Analysis algorithm is a very useful tool to forecast different phenomena in the �eld of
transportation. Many of authors use the SSA algorithm to �lter monitored time series i.e. to separate
signal component from noisy components. After that, the signal component is used as a principal
component to forecast future values of time series and different methods can be used to forecast these
values. Such approaches are known as hybrid forecasting algorithms.

ot = σ(Woxt + Uoht−1 + bo)

ht = ot ⊗ tanh(Ct)

Wk ∈ Rn×m Uk ∈ Rn×n bk ∈ Rn k = {i, f, c, o}
σ(⋅) tanh(⋅)

⊗

Lt

Nt Yt

Yt = Lt + Nt
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Kolidakis et al. (2020) developed the hybrid model which is composed of Singular spectrum analysis and
Arti�cial neural networks to forecast intraday tra�c volume. Shang et al. (2016) used Singular spectrum
analysis to �lter tra�c �ow data and Kernel extreme learning machine to make prediction of short-term
tra�c �ow. Zhou et al. (2020) forecasted passenger �ow in metro transfer station by novel model which
is composed of Singular spectrum analysis and AdaBoost-Weighted Extreme Learning Machine. Shuai et
al. (2021) applied Singular spectrum analysis, Long-short memory, and Support vector regression for the
purpose of the tra�c �ow prediction of expressway.

This section explains the Singular Spectrum Analysis (SSA) algorithm for time series forecasting. For
more information, readers are referred to the papers of Hassani and Zhigljavsky (2009), Hassani and
Mahmoudvand (2013), Hassani (2007), Harris and Yan (2010). Brie�y, the algorithm is composed of the
two main stages: decomposition and reconstruction. In the �rst stage, monitored time series is
represented as a spectrum of independent components such as trend, periodic oscillatory and noise
components. In the second stage, monitored time series is reconstructed by using the less noisy
components, i.e., principal components of the time series are created.

In the decomposition stage, there are two following steps: embedding and singular value decomposition.
The embedding process transforms one-dimensional time series into a matrix of dimension,
where is the window length, equals  and N is the amount of data. The size of the window
length should be an integer within the following interval  The concept of the window length
is similar to the concept of the  order autoregressive model of time series, but taking into account
original data from  to . Consider a stochastic process  and suppose
there are realizations of  this process. Set X(t) is time-invariant series
and for simplicity, we can rewrite it as follows . An output of the embedding
process is the trajectory matrix of the following form:

14

The trajectory matrix is known as Hankel matrix and all elements along diagonal are equal and 
. Main objective of the singular value decomposition is to express Hankel matrix as a sum

of weighted orthogonal matrices. Spectral decomposition is performed over the lag-covariance matrix 
. Let  be eigenvalues (singular values) of  arranged in decreasing

order , ,…,  and  be corresponding eigenvectors. If the number of
nonzero eigenvalues equals the rank of matrix , then trajectory matrix can be represented as:

L × K

N + 1 − L

2 ⩽ L ⩽ N1
2

k − th

t = 1 t = L {x(t); t = 1, 2, . . . ,N}
X(t) = {x(1),x(2), . . . ,x(N)}

XN = {x1,x2, . . . ,xN}

H = |H1,H2, . . . ,HK| = ∣∣xij∣∣
L,K
i,j=1 =

∣
∣ 
∣ 
∣ 
∣ 
∣
∣

x1 x2 ⋯ xK

x2 x3 ⋯ xK + 1

⋮ ⋮ ⋱ ⋮
xL xL + 1 ⋯ xN

∣
∣ 
∣ 
∣ 
∣ 
∣
∣

i + j = const

HH T ∈ RL×L σ1,σ2, . . . ,σL HH T

σ1 ⩾ 0 σ2 ⩾ 0 σL ⩾ 0 U1,U2, . . . ,UL
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15

where is the rank of 

The second stage, called reconstruction, is accomplished in two steps: grouping and diagonal averaging

or Hankelization. In the grouping step, set of matrices  are divided in several

disjointed subsets: . After that, all matrices within
each subset are summed. The simplest case refers to the signal and noise component respectively: 

. In that case there are only two subsets, 

and . Subset  is associated with signal component while  is

associated with noise component. Selection of the appropriate value of is based on the plot of logarithms
of singular values, , . Point in the plot,
where a signi�cant drop in values occurs, can be treated as the start of noise components. Diagonal
averaging represents the transformation of each reconstructed trajectory matrix (16) into new time series
of length . Matrix elements over anti-diagonals are averaged, . Reconstructed trajectory
matrix is of the following form:

16

Elements of the new time series are extracted from  by following calculations:

17

Finally, original time series XN is expressed as a sum of d principal vectors:

18

Ĥ =
r

∑
i=1

UiU
T
i H = Ĥ 1 + Ĥ 2+. . . +Ĥ r

H.

{Ĥ 1, Ĥ 2, . . . , Ĥ r}

{Ĥ 1, Ĥ 2, . . . , Ĥ r} → {E1,E2, . . . ,Em},  m < r

{Ĥ 1, Ĥ 2, . . . , Ĥ r} → {E1,E2},m = 2,E1 ∩ E2 = ∅

E1 =
d

∑
i=1

Ĥ i E2 =
r

∑
i=d+1

Ĥ i E1 E2

log σ1, log σ1, . . . , log σL ∀σ > 0,   log σ1,   log σ2, . . . ,   log σL

i + j = k + 1

Ĥ = UU TH = ∣∣hij∣∣
L,K
i,j=1 =

∣
∣ 
∣ 
∣ 
∣ 
∣
∣

h11 h12 ⋯ h1K

h21 h22 ⋯ h2K

⋮ ⋮ ⋱ ⋮
hL1 hL2 ⋯ hLK

∣
∣ 
∣ 
∣ 
∣ 
∣
∣

Ĥ

X̂ N = {x1,x2, . . . ,xN} = {h11, , , . . . ,hLK}
h21 + h12

2
h31 + h22 + h13

3

XN =
d

∑
i=1

−→
X̂ iN =

−→
X̂ 1N +

−→
X̂ 2N+. . . +

−→
X̂ dN
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New time series is used to forecast future values for . Linear recurrent
formulae is used to forecast future values of monitored time series. Eigenvector obtained by the singular
value decomposition is as follows:

19

Let be the subset of composed of the �rst  coordinates, and 
be the last coordinate of the eigenvector. Accordingly, the verticality coe�cient is de�ned as:

20

Condition  meet if we want to use Singular spectrum analysis to forecast  ahead.
Obviously, the value of separates signal components from noise components, must be carefully selected
to satisfy previous inequality as well.

The linear vector of coe�cients  is calculated by the following equation:

21

Future values forecasting is achieved by:

22

where

23

Many time series encountered in the real-world exhibit nonstationary behaviour. The main reason is due
to a presence of trend, seasonal variation, or a change in the local mean. For reducing a nonstationary
series with trend to a stationary series (without trend) we apply the �rst differences of monitored time
series as:

N + 1,N + 2, . . . ,N + p

U = [u1 u2 . . .  uL-1 uL]T

U∇ = [u1 u2 . . .  uL-1]T L − 1 π = {uL}

v2 =
d

∑
i=1

π2
i = π2

1 + π2
2 +. . . +π2

d

v2 < 1 p − values

R = [βL−1,βL−1, . . . ,β1]T

R =
d

∑
i=1

πiU
Δ
i

1

1 − v2

{x̃(t)}T = {
{x̃(1), x̃(2), . . . , x̃(t), t = 1, 2, . . . ,N}

RTXp(t), t = N + 1,N + 2, . . . ,N + p

Xp(t) = {x̃(N − L + p + 1), . . . , x̃(N + p − 1)}T
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24

The differenced data are often easier to model than the original data. Hence, Singular spectrum analysis
is now performed over the differenced time series  According to the Eqs. (9)
and (10), forecasting of differenced data is as follows:

25

where

26

Since we want to forecast the original values  not the differenced values  we must transform the
model from the  form to the  form. Recall that  forecasted values
become:

27

4. Results And Discussion
European Union (EU) has established RFCs in order support the competitiveness of rail freight transport.
Alpine-Western Balkan Rail Freight Corridor (AWP RFC) connects four EU member states (Austria,
Slovenia, Croatia, Bulgaria) and fully integrates the EU candidate state Serbia. The corridor represents the
shortest route from Central Europe to the Bulgarian/Turkish border for rail freight (EU and ITT, 2019).
Within the territory of Republic of Serbia on AWP RFC there are four main BCPs with different operational
conditions and volumes of freight tra�c. These are Dimitrovgrad, Presevo, Sid and Subotica. This study
focuses on the observation and prediction of import and export cross-border freight train �ows for these
BCPs. The historical data for import and export �ows are presented in Fig. 5. and Fig. 6., respectively. The
time series data are obtained from the Public Enterprise “Serbian Railways”. The sample data are
monthly observations of freight train �ows on four BCPs covering the period from January 2013 to June
2021. The �rst 96 monthly observations are used as a training dataset whereas the remaining 6
observations served for veri�cation of selected models. Both types of tra�c (import and export) for each
BCP are independently investigated and appropriate models are estimated. ARIMA, LSTM and ARIMA-
LSTM are implemented by the use of R and Python software packages, and SSA is developed in Python.

w(t) = x(t) − x(t − 1),  t = 2, 3, . . . ,N

WN = {w2,w3, . . .wN}

{w̃(t)}T = {
{w(2),w(3), . . . ,w(t)},  t = 2, 3, . . . ,N

RTWp(t),  t = N + 1,N + 2, . . . ,N + p

Wp(t) = {w̃(N − L + p + 1), . . . , w̃(N + p − 1)}T

XN WN

{w̃(t)} {x̃(t)} w(t) = x(t) − x(t − 1)

x̃(t) = x̃(t − 1) + w̃(t),  t = 2, 3, . . . ,N
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4.1. ARIMA results
Table 1. summarizes the process of ARIMA model selection. In a preliminary step, the time series is
visually examined, the procedure for detecting outliers is applied and variance (mean-variance
relationship) is analyzed. Presevo Export and Sid Import train �ow time series contain an outlier
(observation no. 50 and 71, respectively) which are replaced by linearly interpolated values using the
neighbouring observations (Hyndman and Athanasopoulos 2018).

In the �rst step, the ADF test is applied for detecting non-stationarity. Then in the second step, based on a
visual plot of ACF and PACF, a general structure of the ARIMA model is proposed. The third step includes
determining the best model based on the criteria of minimum AICc. In the last step, Ljung-Box statistics is
applied to check if the selected model is correctly speci�ed.  
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Table 1
ARIMA model selection for railway border crossing points

Time
series

Stationarity

(ADF test:
p-value)

Correlogram -

signi�cant values

Selected

model

MAPE AICc Adj
R2

Ljung-
Box Q
test

(p-
value)ACF PACF

Dimitrovgrad  

Import 0.016 1st lag
(0.284)

5th lag
(0.200)

1st lag
(0.284)

ARMA(2,1) 8.10 800.88 15.82 0.912

Export 0.011 1st lag
(0.386)

1st lag
(0.386)

ARMA(1,0) 9.04 810.35 14.09 0.841

Presevo  

Import 0.039 1st lag
(0.277)

11th lag

(-0.246)

1st
(0.277)

11th lag
(0.287)

ARMA(1,0) 14.41 816.65 6.71 0.723

Export 0.013 1st lag
(0.369)

1st
(0.369)

18th lag
(-0.234)

ARMA(1,0) 12.18 837.57 12.75 0.791

Sid  

Import 0.279 1st lag
(0.648)

to

5th lag
(0.274)

11th lag
(0.227)

12th lag
(0.341)

13th lag
(0.316)

14th lag
(0.211)

1st lag
(0.648)

12th lag
(0.202)

ARIMA(1,1,1) 9.59 792.81 53.7 0.754
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Time
series

Stationarity

(ADF test:
p-value)

Correlogram -

signi�cant values

Selected

model

MAPE AICc Adj
R2

Ljung-
Box Q
test

(p-
value)ACF PACF

Export 0.149 1st lag
(0.577) -

4th lag
(0.206)

12th lag
(0.380)

24th lag
(0.229)

1st lag
(0.577)

12th lag
(0.328)

SARIMA

(2,1,1)×

(1,1,3)

9.61 816.49 51.5 0.633

Subotica  

Import 0.561 1st lag
(0.571) to
10th lag
(0.221)

1st lag
(0.571)

2nd lag
(0.217)

ARIMA(1,1,1) 7.89 881.08 40.2 0.939

Export 0.487 1st lag
(0.581) to
10th lag
(0.247)

1st lag
(0.581)

3nd lag
(0.274)

ARIMA(0,1,1) 7.32 872.93 42.8 0.413

BDS test is applied to check if there is remaining nonlinearity in time series. According to BDS test,
nonlinearity exists if residuals dataset after �tting a selected ARIMA model still contain nonlinear
components (the null hypothesis of i.i.d. for the residuals can be not rejected at the 5% level of
con�dence). In that case there are p-values which are lower than 0.05. for any of embedding dimensions
(m = 2,3) and epsilon (0.5–1.5). m represents the embedding dimension. ε is equal to 0.5, 1.0 and 1.5
times the standard deviation. The critical value for con�dence level of 5% is 1.96. Table 6. contains the
outputs of BDS test for all considered border crossing points. From the results of the BDS test applied to
the residuals of chosen ARIMA models, it can be noticed that in �ve time series there is a remaining
nonlinearity in the residuals (bold p-values in Table 2.). In case of Presevo Import, Sid Import and
Subotica Import time series according to BDS test the hypothesis of the nonlinearity in the residuals of
the ARIMA models can be rejected.
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Table 2
Non-Linearity testing for ARMA residuals of time series

Time series Parameter ε/σ Dimension (m = 2) Dimension (m = 3)

Statistic Probability Statistic Probability

Dimitrovgrad

Import 0.5 0.5073 0.6119 -1.4224 0.1549

1.0 2.5701 0.0102 1.7656 0.0775

1.5 2.1101 0.0349 1.3466 0.1781

Export 0.5 -1.3262 0.1848 -2.5074 0.0122

1.0 -0.0664 0.9471 -1.2114 0.2258

1.5 -0.5545 0.5792 -1.6564 0.0976

Presevo

Import 0.5 0.5392 0.5897 0.0787 0.9373

1.0 1.4816 0.1384 0..8427 0.3994

1.5 1.9536 0.0508 1.4294 0.1529

Export 0.5 2.0909 0.0365 1.2162 0.2239

1.0 2.3033 0.0213 1.4670 0.1424

1.5 2.0196 0.0434 1.3052 0.1918

Sid

Import 0.5 -1.2372 0.2160 1.0224 0.3066

1.0 0.1405 0.8883 -1.1165 0.2642

1.5 0.2050 0.8376 -1.2092 0.2266

Export 0.5 -2.4533 0.0142 -2.6731 0.0075

1.0 -1.2745 0.2025 -1.6213 0.1050

1.5 -0.8544 0.3929 -1.5801 0.1141

Subotica

Import 0.5 0.6169 0.5373 -0.5381 0.5905

1.0 -0.0609 0.9520 -0.2339 0.8151

1.5 0.4575 0.6473 0.2993 0.7647

Export 0.5 3.4974 0.0005 3.1223 0.0018
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Time series Parameter ε/σ Dimension (m = 2) Dimension (m = 3)

Statistic Probability Statistic Probability

1.0 -0.5917 0.5541 -0.2711 0.7863

1.5 -0.4945 0.6209 -0.2038 0.8385

4.2. LSTM results
The best LSTM model con�gurations for each of the time series with associated MAPE value for train
and testing samples are given in Table 3.

 
Table 3

LSTM models con�guration
Time series LSTM model con�guration MAPE

Number of cells in hidden layer Number of epochs Batch size Train Test

Dimitrovgrad

Import 150 170 12 4.281 4.221

Export 100 150 12 6.430 3.684

Presevo

Import 200 170 12 9.033 5.391

Export 200 200 12 3.898 8.788

Sid

Import 160 300 3 7.604 19.217

Export 200 300 3 7.923 10.601

Subotica

Import 160 300 12 1.783 3.757

Export 180 350 2 6.597 5.640

4.3. ARIMA-LSTM results



Page 20/37

For each time series, residuals from selected ARIMA model are forwarded to LSTM model. The best
ARIMA-LSTM model con�gurations for residuals of each of the time series with associated MAPE value
for train and testing samples are given in Table 4.
Table 4 

ARIMA-LSTM models con�guration 

Time
series

ARIMA - LSTM model con�guration MAPE

ARIMA model LSTM model

Number of cells in
hidden layer

Number of
epochs

Batch
size

Train Test

Dimitrovgrad

Import ARIMA(2,1) 160 180 12 8.4845 5.474

Export ARIMA(1,0) 100 150 12 9.050 5.192

Presevo

Import ARIMA(1,0) 200 170 12 14.416 6.742

Export ARIMA(1,0) 200 200 12 12.187 8.257

Sid

Import  ARIMA(1,1,1) 150 170 12 5.487 15.856

Export SARIMA(2,1,1)
(1,1,3)

180 170 12 10.267 23.911

Subotica

Import  ARIMA(1,1,1) 150 170 12 8.167 3.700

Export ARIMA(0,1,1) 150 170 12 7.075 6.377

 

4.4. SSA results
SSA parameters for monitored time series are presented in Table 5.
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Table 5
SSA parameters and the accuracy of proposed SSA models for considered time series

Time series Window length Principal components

d

MAPE (%)

Training data

MAPE (%)

Forecasting data

Dimitrovgrad-Export 10 9 1.129 6.309

Dimitrovgrad-Import 10 9 1.020 6.594

Presevo-Export 10 8 2.702 9.692

Presevo-Import 10 8 2.820 4.684

Sid-Export 10 9 1.611 18.358

Sid-Import 10 9 1.559 14.182

Subotica-Export 10 7 2.300 6.954

Subotica-Import 10 7 2.473 7.455

4.5. Discussion of results
In this section, prediction accuracy of each of the four forecasting methods is analyzed. Actual
observations, as well as the predictions generated by each of the proposed models for training and
testing samples of import and output �ows for each border crossing point are graphically illustrated on
Fig. 7. (Import freight train �ows) and Fig. 8. (Export freight train �ows). Vertical dashed line divides the
training and testing samples.

To test forecasting performance, we applied the mean absolute error (MAE), mean average percent error
(MAPE) and root mean squared error (RMSE) de�ned as follows:

28

29

30

MAE = ∑
n

i=1
|yi − xi|

1
n

MAPE = ∑
n

i=1
|1 − |

100
n

¯̄¯̄¯
Yi

Yi

RMSE = √∑n
i=1 (Yi −

¯̄¯̄
Y i)

n
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where  and represent the actual and predicted values of the time series in period , respectively. MAE
represents the mean of absolute errors. MAPE is one of the most commonly used criteria to measure
forecast accuracy. It represents the sum of the individual absolute errors divided by the actual
observation. RMSE represents a square root of the average squared error.

Figure 9. graphically illustrates comparison of forecasting accuracy of proposed methods for import
freight train �ows on all border crossing points. In terms of performances on a training sample SSA
shows the lowest values of MAE, MAPE and RMSE. On the other side, SSA shows the lowest predictive
performances (the highest errors on test sample). If we compare average ratio between training and
testing performances, ARIMA and ARIMA-LSTM have the lowest ratio ( < = 1) whereas SSA signi�cantly
exceeds one ( , ,

). On test sample, LSTM has the best average performance for modelling
of import �ows of all border crossings (MAE = 11.595, MAPE = 7.853, RMSE = 13.201). The highest levels
of errors are in case of Sid Import, where the lowest errors on test and train sample has SSA model. If we
focus only on Presevo Import, Sid Import and Subotica Import, which do not contain remaining
nonlinearities (according to BDS test) we may conclude that linear ARIMA, as well as ARIMA-LSTM
provide competitive performances.

Figure 10. graphically illustrates comparison of forecasting accuracy of proposed methods for export
freight train �ows on all border crossing points. Again, SSA shows the best performances on training the
model, but the worst on testing sample. In case of export time series, in terms of average ratio between
training and testing performances, SSA again signi�cantly exceeds one (
, , ). On test sample, LSTM has again the
best average performance (MAE = 12.866, MAPE = 7.864, RMSE = 13.141). The highest levels of errors are
again in the case of Sid Export, where the lowest errors on test and train sample has SSA model.

5. Best Fit Forecasting Tool
To enable the practical use of proposed forecasting methods, a desktop client application “Best Fit
Forecast” (BFF) is developed. BFF tool was built using the WPF development platform and C#
programming language in Visual Studio 2019. A screenshot of the graphical user interface (GUI) is
displayed in Fig. 11. Proposed GUI design ful�ls the most important design principles (Lauesen 2005):

Clarity: all the information can be accurately conveyed to the user and prevents the user from making
mistakes;

User centric: potential end users were involved in the design process), users’ perspective of
understanding is taken into account;

KISS (Keep It Simple and Stupid): Users can use this tool without putting much effort into
interactions;

Yi
¯̄¯̄
Y i

RMSE(train/test) = 7.09 MAE(train/test) = 7.30
MAPE(train/test) = 5.05

RMSE(train/test) = 8.428
MAE(train/test) = 8.342MAPE(train/test) = 5.898
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Readability of the content: Font selection as a crucial factor of content readability is selected to
comply with preferences of potential user;

E�ciency: Users can reach their goals quickly and easily;

Well organized layout: Minimal effort that users have to spend in interaction with user interface.

User interface of BFF tool is composed of eight sections. The �rst section is for data manipulation, the
user can select the data �le, data range, divide time series on train and test (holdout) and specify the
forecast horizon. Second section is related to model selection. User can choose between all methods
used in this paper as well as to use Best Fit tool which provides the predictions by the method that
generates the lowest errors. Third section is related to predictions, it contains predicted values as an
output of a speci�c model, or Best Fit option. Forth section “Processing log” shows the info related to
modelling process. “Plot original data” section contains the time series which is subject of analysis.
Section “Plot predictions” plots the predicted and observed values of test sample in time series.
Performance section displays MAPE, MAE and RMSE values. “Error log” provides details about potential
error.

Figure 12. shows an example of using BFF. The user selected a time series (Presevo Import) with 6
observations as a testing sample and LSTM as a modelling approach. Original time series is plotted in
section “Plot original data”, predictions are displayed in “Predictions” window and plotted on “Plot
predictions” window. Performance section shows the values of relevant performance measures. Error log
summarizes errors which in this case are not related to feasibility of tool execution.

6. Concluding Remarks
A detailed analysis of operational conditions and procedures for rail freight at the border crossings of
AWB RFC showed that large improvements can be made by better planning of operations at such
locations. Time series forecasting represents a powerful tool to improve planning processes on border
crossings. In this paper we analyzed import and export freight tra�c �ows on four main border crossings
on Serbian railway network. The four prediction models (ARIMA, LSTM, ARIMA-LSTM, SSA) are applied
for modelling of considered eight time series. Three evaluation indices were selected to evaluate the
prediction accuracy of considered prediction models in the training and testing sample. On average, the
highest prediction accuracy have LSTM models (RMSE = 13.140, MAE = 12.866, MAPE = 7.864) then
ARIMA (RMSE = 17.348, MAE = 15.308, MAPE = 11.760) and ARIMA LSTM models (RMSE = 18.298, MAE 
= 15.339, MAPE = 10.934). SSA models demonstrated the lowest prediction accuracy (RMSE = 22.303,
MAE = 18.887, MAPE = 10.328). To provide practical usability of proposed approaches, a prototype
desktop client application is developed. Application enables modelling of any univariate time series by
the models included in this paper. Application also provides “Best Fit” feature, or prediction based on the
model that has the best performances. Future research will be devoted to the development of models that
will produce higher prediction accuracy, as well as to extending the features of Best Fit forecasting tool.
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Figures

Figure 1

Comparative analysis of ARIMA, ARIMA-LSTM and SSA methods for modelling of freight wagon �ows at
border crossing points.
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Figure 2

ARIMA (SARIMA) modelling �ow chart
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Figure 3

Memory cell and gate units of LSTM memory block.



Page 32/37

Figure 4

Hybrid ARIMA-LSTM model �ow chart
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Figure 5

Border-crossing points: railway import �ows expressed in the number of freight trains (January 2012 –
June 2021).

Figure 6



Page 34/37

Border-crossing points: railway export �ows expressed in the number of freight trains (January 2012 –
June 2021).

Figure 7

Import freight train �ows: The �tting performances of ARIMA, LSTM, ARIMA-LSTM and SSA.
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Figure 8

Import freight train �ows: The �tting performances of ARIMA, LSTM, ARIMA-LSTM and SSA

Figure 9

Forecast Accuracy - Import freight train �ows.
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Figure 10

Forecast Accuracy – Export freight train �ows

Figure 11

GUI of the BFF tool.
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Figure 12

BFF tool - LSTM modelling.


