In this study, 32 energetic compounds were designed using oxadiazoles (1,2,5-oxadiazole, 1,3,4-oxadiazole) as the parent by inserting different groups as well as changing the bridge between the parent. These compounds had high-density and excellent detonation properties. The electrostatic potentials of the designed compounds were analyzed using density functional theory (DFT). The structure, heat of formation (HOF), density, detonation performances (detonation pressure P , detonation velocity D , detonation heat Q ), and thermal stability of each compound were systematically studied based on molecular dynamics. The results showed that the -N 3 group has the greatest improvement in HOF. For the detonation performances, the directly linked, -N=N-, -NH-NH- were beneficial when used as a bridge between 1,2,5-oxadiazole and 1,3,4-oxadiazole, and it can also be found that bridge changing had little effect on the trend of detonation performance, while energetic groups changing influenced differently. The designed compounds (except for A2 , B2 , B4 ) all had higher detonation properties than TNT, A6 ( D = 9.41 km s -1 , P = 41.86 GPa, Q = 1572.251 cal g -1 ) was the highest, followed D6 had poorer performance ( D = 8.96 km s -1 , P = 37.46 GPa, Q = 1354.51 cal g -1 ).