Agata R, Hori T, Ariyoshi K, Ichimura T (2019) Detectability analysis of interplate fault slips in the Nankai subduction thrust using seafloor observation instruments. Marine Geophysical Research. https://doi.org/10.1007/s11001-019-09380-y
Akuhara T, Tsuji T, Tonegawa T (2020) Overpressured Underthrust Sediment in the Nankai Trough Forearc Inferred From Transdimensional Inversion of High‐Frequency Teleseismic Waveforms. Geophys Res Lett 47:0–3. https://doi.org/10.1029/2020GL088280
Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: Precedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. NOAA Technical Memorandum NESDIS NGDC-24 National Geophysical Data Center, NOAA 19. https://doi.org/10.7289/V5C8276M
Annoura S, Hashimoto T, Kamaya N, Katsumata A (2017) Shallow episodic tremor near the Nankai Trough axis off southeast Mie prefecture, Japan. Geophys Res Lett 44:3564–3571. https://doi.org/10.1002/2017GL073006
Aoi S, Asano Y, Kunugi T, et al (2020) MOWLAS: NIED observation network for earthquake, tsunami and volcano. Earth, Planets and Space 72:. https://doi.org/10.1186/s40623-020-01250-x
Asano Y, Obara K, Ito Y (2008) Spatiotemporal distribution of very-low frequency earthquakes in Tokachi-oki near the junction of the Kuril and Japan trenches revealed by using array signal processing. Earth, Planets and Space 60:871–875. https://doi.org/10.1186/BF03352839
Asano Y, Obara K, Matsuzawa T, et al (2015) Possible shallow slow slip events in Hyuga-nada, Nankai subduction zone, inferred from migration of very low frequency earthquakes. Geophys Res Lett 42:331–338. https://doi.org/10.1002/2014GL062165
Baba S, Obara K, Takemura S, et al (2021) Shallow Slow Earthquake Episodes Near the Trench Axis off Costa Rica. J Geophys Res Solid Earth 126:. https://doi.org/10.1029/2021JB021706
Baba S, Takemura S, Obara K, Noda A (2020a) Slow earthquakes illuminating interplate coupling heterogeneities in subduction zones. Geophys Res Lett 4–5. https://doi.org/10.1029/2020gl088089
Baba S, Takeo A, Obara K, et al (2020b) Comprehensive Detection of Very Low Frequency Earthquakes Off the Hokkaido and Tohoku Pacific Coasts, Northeastern Japan. J Geophys Res Solid Earth 125:2019JB017988. https://doi.org/10.1029/2019JB017988
Beroza GC, Ide S (2011) Slow Earthquakes and Nonvolcanic Tremor. Annu Rev Earth Planet Sci 39:271–296. https://doi.org/10.1146/annurev-earth-040809-152531
Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009. https://doi.org/10.1029/JB075i026p04997
DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
Fan W, Barbour AJ, McGuire JJ, et al (2022) Very Low Frequency Earthquakes in Between the Seismogenic and Tremor Zones in Cascadia? AGU Advances 3:. https://doi.org/10.1029/2021AV000607
Funasaki J, Earthquake Prediction Information Division of JMA (2004) Revision of the JMA Velocity Magnitude. Quarterly Journal of Seismology 67:11–20
Furumura T, Singh SK (2002) Regional wave propagation from Mexican subduction zone earthquakes: The attenuation functions for interplate and inslab events. Bulletin of the Seismological Society of America 92:2110–2125. https://doi.org/10.1785/0120010278
Ghosh A, Huesca-Pérez E, Brodsky E, Ito Y (2015) Very low frequency earthquakes in Cascadia migrate with tremor. Geophys Res Lett 42:3228–3232. https://doi.org/10.1002/2015GL063286
Goldstein P, Snoke A (2005) SAC Availability for the IRIS Community. In: Incorporated Institutions for Seismology Data Management Center Electronic Newsletter. https://ds.iris.edu/ds/newsletter/vol7/no1/193/sac-availability-for-the-iris-community/
Hashimoto Y, Sato S, Kimura G, et al (2022) Décollement geometry controls on shallow very low frequency earthquakes. Sci Rep 12:2677. https://doi.org/10.1038/s41598-022-06645-2
Hayes GP (2017) The finite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet Sci Lett 468:94–100. https://doi.org/10.1016/j.epsl.2017.04.003
Helffrich G, Wookey J, Bastow I (2013) The Seismic Analysis Code. Cambridge University Press, Cambridge
Herrmann RB (2013) Computer Programs in Seismology: An Evolving Tool for Instruction and Research. Seismological Research Letters 84:1081–1088. https://doi.org/10.1785/0220110096
Hok S, Fukuyama E, Hashimoto C (2011) Dynamic rupture scenarios of anticipated Nankai-Tonankai earthquakes, southwest Japan. J Geophys Res 116:B12319. https://doi.org/10.1029/2011JB008492
Ichinose GA, Thio HK, Somerville PG, et al (2003) Rupture process of the 1944 Tonankai earthquake ( M s 8.1) from the inversion of teleseismic and regional seismograms. J Geophys Res Solid Earth 108:. https://doi.org/10.1029/2003JB002393
Ide S (2021) Empirical Low‐Frequency Earthquakes Synthesized From Tectonic Tremor Records. J Geophys Res Solid Earth 126:. https://doi.org/10.1029/2021JB022498
Ide S (2014) Modeling fast and slow earthquakes at various scales. Proc Jpn Acad, Ser 90:259–277
Ide S (2008) A Brownian walk model for slow earthquakes. Geophys Res Lett 35:L17301. https://doi.org/10.1029/2008GL034821
Ide S (2016) Characteristics of slow earthquakes in the very low frequency band: Application to the Cascadia subduction zone. J Geophys Res Solid Earth 121:5942–5952. https://doi.org/10.1002/2016JB013085
Ide S, Beroza GC, Shelly DR, Uchide T (2007) A scaling law for slow earthquakes. Nature 447:76–79. https://doi.org/10.1038/nature05780
Ide S, Imanishi K, Yoshida Y, et al (2008) Bridging the gap between seismically and geodetically detected slow earthquakes. Geophys Res Lett 35:2–7. https://doi.org/10.1029/2008GL034014
Ide S, Maury J (2018) Seismic Moment, Seismic Energy, and Source Duration of Slow Earthquakes: Application of Brownian slow earthquake model to three major subduction zones. Geophys Res Lett 45:3059–3067. https://doi.org/10.1002/2018GL077461
Ide S, Yabe S (2014) Universality of slow earthquakes in the very low frequency band. Geophys Res Lett 41:2786–2793. https://doi.org/10.1002/2014GL059712
Ito Y, Obara K, Matsuzawa T, Maeda T (2009) Very low frequency earthquakes related to small asperities on the plate boundary interface at the locked to aseismic transition. J Geophys Res Solid Earth 114:1–16. https://doi.org/10.1029/2008JB006036
Kaneko L, Ide S, Nakano M (2018) Slow Earthquakes in the Microseism Frequency Band (0.1-1.0 Hz) off Kii Peninsula, Japan. Geophys Res Lett 45:2618–2624. https://doi.org/10.1002/2017GL076773
Kano M, Aso N, Matsuzawa T, et al (2018) Development of a slow earthquake database. Seismological Research Letters 89:1566–1575. https://doi.org/10.1785/0220180021
Kato A, Fukuda J, Kumazawa T, Nakagawa S (2016) Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 Earthquake. Sci Rep 6:24792. https://doi.org/10.1038/srep24792
Kato A, Obara K, Igarashi T, et al (2012) Propagation of slow slip leading up to the 2011 Mw9.0 Tohoku-Oki earthquake. Science (1979) 335:705–708. https://doi.org/10.1126/science.1215141
Kikuchi M, Nakamura M, Yoshikawa K (2003) Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth, Planets and Space 55:159–172. https://doi.org/10.1186/BF03351745
Kobayashi A (2014) A long-term slow slip event from 1996 to 1997 in the Kii Channel, Japan. Earth, Planets and Space 66:1–7. https://doi.org/10.1186/1880-5981-66-9
Koketsu K, Miyake H, Suzuki H (2012) Japan Integrated Velocity Structure Model Version 1. Proceedings of the 15th World Conference on Earthquake Engineering 1–4
Maeda T, Obara K (2009) Spatiotemporal distribution of seismic energy radiation from low-frequency tremor in western Shikoku, Japan. J Geophys Res Solid Earth 114:. https://doi.org/10.1029/2008JB006043
Maeda T, Takemura S, Furumura T (2017) OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth, Planets and Space 69:102. https://doi.org/10.1186/s40623-017-0687-2
Masuda K, Ide S, Ohta K, Matsuzawa T (2020) Bridging the gap between low-frequency and very-low-frequency earthquakes. Earth, Planets and Space 72:. https://doi.org/10.1186/s40623-020-01172-8
Matsuzawa T, Asano Y, Obara K (2015) Very low frequency earthquakes off the Pacific coast of Tohoku, Japan. Geophys Res Lett 42:4318–4325. https://doi.org/10.1002/2015GL063959
Maury J, Ide S, Cruz-Atienza VM, et al (2016) Comparative study of tectonic tremor locations: Characterization of slow earthquakes in Guerrero, Mexico. J Geophys Res Solid Earth 121:5136–5151. https://doi.org/10.1002/2016JB013027
Maury J, Ide S, Cruz-Atienza VM, Kostoglodov V (2018) Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone. J Geophys Res Solid Earth 123:1559–1575. https://doi.org/10.1002/2017JB014690
Miyazaki S, Segall P, McGuire JJ, et al (2006) Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J Geophys Res Solid Earth 111:1–17. https://doi.org/10.1029/2004JB003426
Miyazawa M (2019) Bayesian approach for detecting dynamically triggered very low-frequency earthquakes in the Nankai subduction zone and application to the 2016 M w 5.9 off-Kii Peninsula earthquake, Japan. Geophys J Int 217:1123–1140. https://doi.org/10.1093/gji/ggz073
Murotani S, Shimazaki K, Koketsu K (2015) Rupture process of the 1946 Nankai earthquake estimated using seismic waveforms and geodetic data. J Geophys Res Solid Earth 120:5677–5692. https://doi.org/10.1002/2014JB011676
Nadeau RM, Johnson JR (1998) Seismological Studies at Parkfield IV: Moment Releaase Rates and Estimates of Source Parameters for Small Repeating Earthquakes. Bull Seis Soc Am 88:790–814
Nakamura M, Sunagawa N (2015) Activation of very low frequency earthquakes by slow slip events in the Ryukyu Trench. Geophys Res Lett 42:1076–1082. https://doi.org/10.1002/2014GL062929
Nakano M, Hori T, Araki E, et al (2018) Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nat Commun 9:984. https://doi.org/10.1038/s41467-018-03431-5
Nakano M, Sugiyama D, Hori T, et al (2019a) Discrimination of Seismic Signals from Earthquakes and Tectonic Tremor by Applying a Convolutional Neural Network to Running Spectral Images. Seismological Research Letters 90:530–538. https://doi.org/10.1785/0220180279
Nakano M, Yabe S, Sugioka H, et al (2019b) Event Size Distribution of Shallow Tectonic Tremor in the Nankai Trough. Geophys Res Lett 46:5828–5836. https://doi.org/10.1029/2019GL083029
Nanjo KZ, Ishibe T, Tsuruoka H, et al (2010) Analysis of the Completeness Magnitude and Seismic Network Coverage of Japan. Bulletin of the Seismological Society of America 100:3261–3268. https://doi.org/10.1785/0120100077
National Research Institute for Earth Science and Disaster Resilience (2019a) NIED DONET. In: National Research Institute for Earth Science and Disaster Resilience
National Research Institute for Earth Science and Disaster Resilience (2019b) NIED F-net. In: National Research Institute for Earth Science and Disaster Resilience. https://doi.org/10.17598/NIED.0005
Nishida K (2017) Ambient seismic wave field. Proceedings of the Japan Academy, Series B 93:423–448. https://doi.org/10.2183/pjab.93.026
Nishikawa T, Ide S, Nishimura T (2023) A review on slow earthquakes in the Japan Trench. Prog Earth Planet Sci 10:1. https://doi.org/10.1186/s40645-022-00528-w
Nishimura T, Matsuzawa T, Obara K (2013) Detection of short-term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. J Geophys Res Solid Earth 118:3112–3125. https://doi.org/10.1002/jgrb.50222
Noda A, Saito T, Fukuyama E (2018) Slip-Deficit Rate Distribution Along the Nankai Trough, Southwest Japan, With Elastic Lithosphere and Viscoelastic Asthenosphere. J Geophys Res Solid Earth 123:8125–8142. https://doi.org/10.1029/2018JB015515
Noda A, Saito T, Fukuyama E, Urata Y (2021) Energy‐Based Scenarios for Great Thrust‐Type Earthquakes in the Nankai Trough Subduction Zone, Southwest Japan, Using an Interseismic Slip‐Deficit Model. J Geophys Res Solid Earth 126:. https://doi.org/10.1029/2020JB020417
Obara K (2020) Characteristic activities of slow earthquakes in Japan. Proc Jpn Acad Ser B Phys Biol Sci 96:297–315. https://doi.org/10.2183/PJAB.96.022
Obara K, Kato A (2016) Connecting slow earthquakes to huge earthquakes. Science (1979) 353:253–257. https://doi.org/10.1126/science.aaf1512
Okada Y (1992) Internal Deformation due to Shear and Tensile Faults in a Half-space. Bulletin of the Seismological Society of America 82:1018–1040
Saito T, Noda A (2022) Mechanically Coupled Areas on the Plate Interface in the Nankai Trough, Japan and a Possible Seismic and Aseismic Rupture Scenario for Megathrust Earthquakes. J Geophys Res Solid Earth 127:. https://doi.org/10.1029/2022JB023992
Shelly DR, Beroza GC, Ide S (2007) Non-volcanic tremor and low-frequency earthquake swarms. Nature 446:305–307. https://doi.org/10.1038/nature05666
Si H, Midorikawa S (1999) NEW ATTENUATION RELATIONSHIPS FOR PEAK GROUND ACCELERATION AND VELOCITY CONSIDERING EFFECTS OF FAULT TYPE AND SITE CONDITION. Journal of Structural and Construction Engineering (Transactions of AIJ) 64:63–70. https://doi.org/10.3130/aijs.64.63_2
Storchak DA, Giacomo D Di, Bondár I, et al (2013) Public Release of the ISC – GEM Global Instrumental Earthquake Catalogue ( 1900 – 2009 ). https://doi.org/10.1785/0220130034
Sugioka H, Okamoto T, Nakamura T, et al (2012) Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip. Nat Geosci 5:414–418. https://doi.org/10.1038/ngeo1466
Suito H (2017) Detectability of Interplate Fault Slip around Japan, Based on GEONET Daily Solution F3 (in Japanese with English abstract). Journal of the Geodetic Society of Japan 62:109–120. https://doi.org/10.11366/sokuchi.62.109
Takagi R, Nishida K, Maeda T, Obara K (2018) Ambient seismic noise wavefield in Japan characterized by polarization analysis of Hi-net records. 1682–1699. https://doi.org/10.1093/gji/ggy334
Takagi R, Obara K, Maeda T (2016) Slow slip event within a gap between tremor and locked zones in the Nankai subduction zone. Geophys Res Lett 43:1066–1074. https://doi.org/10.1002/2015GL066987
Takagi R, Uchida N, Obara K (2019) Along-Strike Variation and Migration of Long-Term Slow Slip Events in the Western Nankai Subduction Zone, Japan. J Geophys Res Solid Earth 124:3853–3880. https://doi.org/10.1029/2018JB016738
Takemura S, Baba S, Yabe S, et al (2022a) Source Characteristics and Along‐Strike Variations of Shallow Very Low Frequency Earthquake Swarms on the Nankai Trough Shallow Plate Boundary. Geophys Res Lett 49:e2022GL097979. https://doi.org/10.1029/2022GL097979
Takemura S, Emoto K, Yamaya L (2023a) High-frequency S and S-coda waves at ocean-bottom seismometers. Earth, Planets and Space 75:20. https://doi.org/10.1186/s40623-023-01778-8
Takemura S, Hamada Y, Okuda H, et al (2023b) A review of shallow slow earthquakes along the Nankai Trough. Earth, Planets and Space 75:164. https://doi.org/10.1186/s40623-023-01920-6
Takemura S, Kubo H, Tonegawa T, et al (2019a) Modeling of Long-Period Ground Motions in the Nankai Subduction Zone: Model Simulation Using the Accretionary Prism Derived from Oceanfloor Local S-Wave Velocity Structures. Pure Appl Geophys 176:627–647. https://doi.org/10.1007/s00024-018-2013-8
Takemura S, Matsuzawa T, Kimura T, et al (2018) Centroid Moment Tensor Inversion of Shallow Very Low Frequency Earthquakes Off the Kii Peninsula, Japan, Using a Three-Dimensional Velocity Structure Model. Geophys Res Lett 45:6450–6458. https://doi.org/10.1029/2018GL078455
Takemura S, Noda A, Kubota T, et al (2019b) Migrations and Clusters of Shallow Very Low Frequency Earthquakes in the Regions Surrounding Shear Stress Accumulation Peaks Along the Nankai Trough. Geophys Res Lett 46:11830–11840. https://doi.org/10.1029/2019GL084666
Takemura S, Obara K, Shiomi K, Baba S (2022b) Spatiotemporal Variations of Shallow Very Low Frequency Earthquake Activity Southeast Off the Kii Peninsula, Along the Nankai Trough, Japan. J Geophys Res Solid Earth 127:e2021JB023073. https://doi.org/10.1029/2021JB023073
Takemura S, Yabe S, Emoto K (2020) Modelling high-frequency seismograms at ocean bottom seismometers: effects of heterogeneous structures on source parameter estimation for small offshore earthquakes and shallow low-frequency tremors. Geophys J Int 223:1708–1723. https://doi.org/10.1093/gji/ggaa404
Takeo A, Idehara K, Iritani R, et al (2010) Very broadband analysis of a swarm of very low frequency earthquakes and tremors beneath Kii Peninsula, SW Japan. Geophys Res Lett 37:L06311. https://doi.org/10.1029/2010GL042586
Tamaribuchi K, Ogiso M, Noda A (2022) Spatiotemporal Distribution of Shallow Tremors along the Nankai Trough, Southwest Japan, as Determined from Waveform Amplitudes and Cross‐Correlations. J Geophys Res Solid Earth. https://doi.org/10.1029/2022JB024403
Todoriki M, Furumura T, Maeda T (2017) Effects of sea water on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes. Geophys J Int 208:226–233. https://doi.org/10.1093/gji/ggw388
Toh A, Chen WJ, Takeuchi N, et al (2020) Influence of a Subducted Oceanic Ridge on the Distribution of Shallow VLFEs in the Nankai Trough as Revealed by Moment Tensor Inversion and Cluster Analysis. Geophys Res Lett 47:0–3. https://doi.org/10.1029/2020GL087244
Toh A, Obana K, Araki E (2018) Distribution of very low frequency earthquakes in the Nankai accretionary prism influenced by a subducting-ridge. Earth Planet Sci Lett 482:342–356. https://doi.org/10.1016/j.epsl.2017.10.062
Tonegawa T, Araki E, Kimura T, et al (2017) Sporadic low-velocity volumes spatially correlate with shallow very low frequency earthquake clusters. Nat Commun 8:2048. https://doi.org/10.1038/s41467-017-02276-8
Tonegawa T, Takemura S, Yabe S, Yomogida K (2022) Fluid migration before and during slow earthquakes in the shallow Nankai subduction zone. J Geophys Res Solid Earth. https://doi.org/10.1029/2021JB023583
Uchida N, Bürgmann R (2019) Repeating Earthquakes. Annu Rev Earth Planet Sci 47:305–332. https://doi.org/10.1146/annurev-earth-053018-060119
Voss N, Dixon TH, Liu Z, et al (2018) Do slow slip events trigger large and great megathrust earthquakes ? Sci Adv 4:eaat8472
Walter JI, Schwartz SY, Protti M, Gonzalez V (2013) The synchronous occurrence of shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula, Costa Rica. Geophys Res Lett 40:1517–1522. https://doi.org/10.1002/grl.50213
Webb SC (1998) Broadband seismology and noise under the ocean. Reviews of Geophysics 36:105–142. https://doi.org/10.1029/97RG02287
Wessel P, Smith WHF, Scharroo R, et al (2013) Generic mapping tools: Improved version released. Eos (Washington DC) 94:409–410. https://doi.org/10.1002/2013EO450001
Williams CA, Wallace LM (2018) The impact of realistic elastic properties on inversions of shallow subduction interface slow slip events using seafloor geodetic data. Geophys Res Lett 45:7462–7470. https://doi.org/10.1029/2018GL078042
Yabe S, Baba S, Tonegawa T, et al (2021) Seismic energy radiation and along-strike heterogeneities of shallow tectonic tremors at the Nankai Trough and Japan Trench. Tectonophysics 800:228714. https://doi.org/10.1016/j.tecto.2020.228714
Yabe S, Tonegawa T, Nakano M (2019) Scaled Energy Estimation for Shallow Slow Earthquakes. J Geophys Res Solid Earth 124:1507–1519. https://doi.org/10.1029/2018JB016815
Yamamoto Y, Ariyoshi K, Yada S, et al (2022) Spatio-temporal distribution of shallow very-low-frequency earthquakes between December 2020 and January 2021 in Kumano-nada, Nankai subduction zone, detected by a permanent seafloor seismic network. Earth, Planets and Space 74:14. https://doi.org/10.1186/s40623-022-01573-x
Yamashita Y, Shinohara M, Yamada T (2021) Shallow tectonic tremor activities in Hyuga-nada, Nankai subduction zone, based on long-term broadband ocean bottom seismic observations. Earth, Planets and Space 73:196. https://doi.org/10.1186/s40623-021-01533-x
Yamashita Y, Yakiwara H, Asano Y, et al (2015) Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface. Science (1979) 348:676–679. https://doi.org/10.1126/science.aaa4242