[1] Matteini M, Moles A. La Chimica nel Restauro. Firenze, Italy: Nardini; 1989.
[2] Mills JS, White R. The Organic Chemistry of Museum Objects. London, UK: Buttersworth; 1994.
[3] Berrie BH, Strumfels Y. Change is permanent: thoughts on the fading of cochineal-based watercolor pigments. Herit Sci 2017;5:5-30.
[4] Erhardt D, Tumosa CS, Mecklenburg MF. Long-term chemical and physical processes in oil paint films. Stud. Conservat. 2005;50:143-150.
[5] Meilunas RJ, Bentsen JG, Steinberg A. Analysis of aged paint binders by FTIR Spectroscopy. Stud. Conservat. 1990;35:33-51.
[6] Mallégol J, Lemaire J, Gardette JL. Drier influence on the curing of linseed oil. Progr. Org. Coat. 2009;39:107-13.
[7] Breitbach AM, Rocha JC, Gaylarde CC. Influence of pigment on biodeterioration of acrylic paint films in Southern Brazil. J. Coat. Technol. Res. 2011;8:619-28.
[8] Robinet L, Corbeil MC. The characterization of metal soaps. Stud. Conservat. 2003;48:23-40.
[9] Plater MJ, De Silva B, Gelbrich T, Hursthouse MB, Higgitt CL, Saunders DR. The characterization of lead fatty acid soaps in “protusions” in aged traditional oil paint”. Polyhedron. 2003;22:3171-79
[10] Cotte M, Checroun E, Susini J, Dumas P, Tchoereloff P, Bernard M, Walter P. Kinetics of oil saponification by lead salts in ancient preparations of pharmaceutical lead plasters and painting lead mediums. Talanta 2006;70:1136–42.
[11] Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M. Attenuated total reflection micro FTIR characterization of pigment-binder interaction in reconstructed paint films. Anal Bioanal Chem 2008;392:65-76.
[12] Keune K, van Loon A, Boon JJ. SEM Backscattered-Electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Micros Microanal 2011;22:448-57.
[13] Keune K, Boon JJ. Analytical imaging studies of Saint cross-sections illustrate the oil paint defect of lead soap aggregate formation. Stud Conservat 2007;52:161–76.
[14] Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta 2009;79:419-28.
[15] Genestar C, Pons C. Earth pigments in painting: characterization and differentiation by means FTIR spectroscopy. Anal Bioanal Chem 2005;382:269-74.
[16] Casanova-González E, García-Bucio A, Ruvalcaba-Sil JL, Santos-Vasquez V, Esquivel B, Falcón T, Arroyo E, Zetina S, Roldán ML, Domingo C. Surface-enhanced Raman spectroscopy spectra of Mexican dyestuffs. J Raman Spectrosc 2012;43:1551–59.
[17] Higgitt C, Spring M, Saunders D. Pigment-medium interactions in oil paint films containing red lead or lead-tin yellow. Natl Gallery Tech Bull 2003;24:75–96.
[18] Keune K, Van Loon A, Boon JJ. SEM backscatteredelectron images of paint cross-sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc Microanal 2011;17:696–701.
[19] Kirby J, Saunders D. Fading and colour Change of Prussian blue: Methods of Manufacture and the Influence of extenders. The National Gallery Technical Bulletin 2004;25:73–99.
[20] Samain L, Gilbert B, Grandjean F, Long GJ, Strivay D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J Anal Atom Spectrom 2013;28:524–535.
[21] Weerd J, Van Der Loon A, Boon JJ. FTIR Studies of the Effects of Pigments on the Aging of Oil. Stud Conservat 2005;50:3–22.
[22] Cotte M, Checroun E, De Nolf W, Taniguchi Y, De Viguerie L, Burghammer M, Walter P, Rivard C, Salomé M, Janssens K, Susini J. Lead soaps in paintings: Friends or foes?. Stud Conservat 2017;62:2–23.
[23] De Santis A, Mattei E, Pelosi C. Micro-Raman and stratigraphic studies of the paintings on the 'Cembalo’ Model musical instrument (A.D. 1650) and laser-induced degradation of the detected pigments, J Raman Spectrosc 2007;38:1368-78.
[24] Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem 20:1-86 [25] Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A. Electrochemistry of Immobilized Particles and Droplets, 2nd edit. Berlin-Heidelberg: Springer; 2014.
[26] Doménech-Carbó A, Labuda J, Scholz F. Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem. 2013;85:609-631.
[27] Doménech-Carbó A, Doménech-Carbó MT, Costa V. Electrochemical Methods for Archaeometry, Conservation and Restoration (Monographs in Electrochemistry Series Scholz F Edit). Berlin-Heidelberg: Springer; 2009.
[28] Doménech-Carbó A. Electrochemistry for conservation science. J Solid State Electrochem 2010;14:349-51.
[29] Doménech-Carbó A, Doménech-Carbó MT. Electroanalytical techniques in archaeological and art conservation. Pure Appl Chem 2018;90:447-62.
[30] Ortiz-Miranda AS, Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Bolívar-Galiano FF, Martín-Sánchez I, López-Miras MM. Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. J Solid State Electrochem. 2016;20:3287-302.
[31] Ortiz-Miranda AS, Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Bolívar-Galiano FF, Martín-Sánchez I. Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles. Herit Sci 2017;5:8.
[32] VVAA. “Sant Francesc de Paula”. Anàlisi d’una restauració in Jornada tècnica sobre la restauració de l’obra pictòrica de Sant Francesv [Francesc] de Paula, 16 juny, 2017, Cardedeu, Barcelona.
[33] Gasol R. Memòria de la conservació-restauració del quadre “Sant Francesc de Paula” (Núm. Reg. 2258) del Museu Arxiu Tomàs Balvey de Cardedeu. Oficina de Patrimoni Cultural de la Diputació de Barcelona. Barcelona: 2016.
[34] Scholz F, Dostal A. The formal potentials of the solid metal hexacyanometalates. Angew Chem Int Ed 1995;34:2685− 87.
[35] Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ. Electrochemical study of microcrystalline solid prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction. J Phys Chem 1995;99:2096−103.
[36] Dostal A, Kauschka G, Reddy SJ, Scholz F. Lattice contractions and expansions which accompany the electrochemical conversion of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions. J Electroanal Chem 1996;406:155–63.
[37] Bond AM, Marken F, Hill E, Compton RG, Hügel H. The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. J Chem Soc Perkin Trans 2 1997:1735-42.
[38] Komorsky-Lovric S, Mircevski V, Scholz F. Voltammetry of organic microparticles. Mikrochim Acta 1999;132:67-77.
[39] Doménech-Carbó A, Doménech-Carbó MT, Vázquez De Agredos-Pascual ML. Dehydroindigo: a New Piece into the Maya Blue Puzzle from the Voltammetry of Microparticles Approach. J Phys Chem B 2006;110:6027−39.
[40] Doménech-Carbó A, Doménech-Carbó MT, Vázquez De Agredos-Pascual ML. Electrochemical monitoring Maya Blue preparation from Maya’s ancient procedures. J Solid State Electrochem 2007;11:1335−46.
[41] Grosjean D, Whitmore PM, Cass GR. Ozone fading of natural organic colorants - mechanisms and products of the reaction of ozone with indigos. Envir Sci Technol 1988;22:292–98.
[42] Novotná P, Boon JJ, van der Horst J, Pacákova V Photodegradation of indigo in dichloro-methane solution. Coloration Technology 2003;119:121–27.
[43] Yamazaki S, Sobolewski AL, Domcke W. Molecular mechanisms of the photostability of indigo. PhysChemChemPhys 2011;13:1618–28.
[44] Inga C, Ortíz E, Alvarez-Idaboy JR, Vivier-Bunge A. Molecular description of indigo oxidation mechanisms initiated by OH and OOH radicals. J Phys Chem A 2012;116:3643–651.
[45] Van Espen P. Electron Probe X-ray Microanalysis. In Quantitative Microbeam Analysis (Ed. Fitzgerald AF, Storey BE, Fabian D) Institute of Physics Publishing, Bristol, 1992.
[46] Derjaguin BV, Muller VM, Toropov Yu P. Effect of contact deformations on the adhesion of particles. J. Colloid. Interface Sci. 1975;53:314-26.
[47] Lee Y, Martín-Rey S, Osete-Cortina L, Martín-Sánchez I, Bolívar-Galiano F, Doménech-Carbó MT Evaluation of a gelatin-based adhesive for historic paintings that incorporates citronella oil as an eco-friendly biocide. J Adhes Sci Technol 2018; 32:2320-49,
[48] Doménech-Carbó MT, Casas-Catalán MJ, Doménech-Carbó A, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F. Analytical study of canvas painting collection from the Basilica de la Virgen de los Desamparados using SEM/EDX, FT-IR, GC and electrochemical techniques. Fresenius’ J Anal. Chem 2001; 369:571-5.
[49] Woodward, J. Praeparato caeruli Prussiaci ex Germania missa ad Johannem Woodward. Philosophical Transactions. XXXIII, nº. 381, January-February 1724, pp. 15-17.
[50] Salvant J, Barthel E, Menu M. Nanoindentation and the micromechanics of Van Gogh oil paints, hal-00593798, 2011. Available: http://hal.archives-ouvertes.fr. [Accessed: 02/04/2020].
[51] Monico L, Rosi F, Miliani C, Daveri A, Brunetti BG, Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Spectrochim. Acta A: Molecular and Biomolecular Spectroscopy 2013; 116: 270-80.
[52] Christensen PA, Hamnett A, Higgins SJ. A study of electrochemically grown Prussian blue films using Fourier-transform infrared spectroscopy. J Chem Soc Dalton Trans 1990; 2233-8.
[53] Wang N, He L, Zhao X, Simon S. Comparative analysis of eastern and western drying-oil binding media used in polychromic artworks by pyrolysis–gas chromatography/mass spectrometry under the influence of pigments. Microchem J 2015; 123: 201–10.
[54] Diculescu VC, Kumbhat S, Oliveira-Brett AM. Electrochemical behaviour of isatin at a glassy carbon electrode. Anal Chim Acta 2006;575:190-7.
[55] Grandjean F, Long GJ, Samain L. The Pivotal Role of Mössbauer Spectroscopy in the Characterization of Prussian Blue and Related Iron Cyanide Complexes. Mössbauer Effect Ref Data J 2012;35:143-53.
[56] Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X. Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 2007;71:1569-79.
[57] Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA. ‘One-touch’ voltammetry of microparticles for the identification of corrosion products in archaeological lead. Electroanalysis 2011;23:1391-1400.
[58] Castañeda Delgado M. El índigo en la pintura de caballete novohispana: mecanismos de deterioro. Intervención 2019;1:25-35.
[59] Ben Hmida, S, Ladhari N. Study of Parameters Affecting Dry and Wet Ozone Bleaching of Denim Fabric. Ozone Sci Eng 2015;38:175-80.
[60] Chumming P, Xianqing J. Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem 2009;13:1273-78.
[61] Prabhu P, Suresh Babu, R, Sriman Narayanan S. Synergetic effect of Prussian blue film with gold nanoparticle graphite-wax composite electrode for the enzyme-free ultrasensitive hydrogen peroxide sensor. J Solid State Electrochem 2014;18:883-91.
[62] Noël J-M, Médard J, Combellas C, Kanoufi F. Prussian Blue Degradation during Hydrogen Peroxide Reduction: A Scanning Electrochemical Study on the Role of the Hydroxide Ion and Hydroxyl Radical. ChemElectroChem 2016;3:1178-84.
[63] Zhang W, Hu S, Yin JJ, He W, Lu W, Ma W, Gu N, Zhang Y. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavenger. J Am Chem Soc 2016;138:5860-65.
[64] Chen J, Wang Q, Huang L, Zhang H, Rong K, Zhang H, Dong S. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res 2018;11:4905-13.