[1] Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ open. 2016;6(6).
[2] Staud R, Craggs JG, Perlstein WM, Robinson ME, Price DD. Brain activity associated with slow temporal summation of C‐fiber evoked pain in fibromyalgia patients and healthy controls. European Journal of Pain. 2008;12(8):1078-1089.
[3] Petersel DL, Dror V, Cheung R. Central amplification and fibromyalgia: disorder of pain processing. Journal of neuroscience research. 2011;89(1):29-34.
[4] López‐Solà M, Pujol J, Wager, T. D., Garcia‐Fontanals, A., Blanco‐Hinojo, L., Garcia‐Blanco S, ... Garcia‐Fructuoso F. Altered functional magnetic resonance imaging responses to nonpainful sensory stimulation in fibromyalgia patients. Arthritis & Rheumatology. 2014;66(11):3200-3209.
[5] López-Solà M, Woo CW, Pujol J, Deus J, Harrison, B. J. M, J., Wager TD. Towards a neurophysiological signature for fibromyalgia. . Pain. 2017;158(1):34.
[6] Jensen KB, Kosek, E., Petzke, F., Carville, S., Fransson, P., Marcus H, ... Gracely R. Evidence of dysfunctional pain inhibition in Fibromyalgia reflected in rACC during provoked pain. Pain. 2009;144(1-2):95-100.
[7] Suhnan AP, Finch PM, Drummond PD. Hyperacusis in chronic pain: neural interactions between the auditory and nociceptive systems. International journal of audiology. 2017;56(11):801-809.
[8] Bendtsen L, Nørregaard J, Jensen R, Olesen J. Evidence of qualitatively altered nociception in patients with fibromyalgia. . Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 1997;40(1):98-102.
[9] Morris V, Cruwys S, Kidd B. Increased capsaicin-induced secondary hyperalgesia as a marker of abnormal sensory activity in patients with fibromyalgia. . Neuroscience letters. 1998;250(3):205-207.
[10] Desmeules JA, Cedraschi, C., Rapiti, E., Baumgartner E, Finckh A, Cohen P, ... Vischer TL. Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis & Rheumatism. 2003;48(5):1420-1429.
[11] Geisser ME, Casey KL, Brucksch CB, Ribbens CM, Appleton BB, Crofford LJ. Perception of noxious and innocuous heat stimulation among healthy women and women with fibromyalgia: association with mood, somatic focus, and catastrophizing. Pain. 2003;102(3):243-250.
[12] Julien N, Goffaux P, Arsenault P, Marchand S. Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain. 2005;114(1-2):295-302.
[13] Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G. Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain. 1994;58(2):185-193.
[14] Lorenz J, Grasedyck K, Bromm B. Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1996;100(2):165-168.
[15] Montoya P, Sitges C, García‐Herrera M, Rodríguez‐Cotes A, Izquierdo R, Truyols M, et al. Reduced brain habituation to somatosensory stimulation in patients with fibromyalgia. . Arthritis & Rheumatism. 2006;54(6):1995-2003.
[16] Diers M, Koeppe C, Diesch E, Stolle AM, Hölzl R, Schiltenwolf M, et al. Central processing of acute muscle pain in chronic low back pain patients: an EEG mapping study. Journal of clinical neurophysiology. 2007;24(1):76-83.
[17] de Tommaso M, Federici A, Santostasi R, Calabrese R, Vecchio E, Lapadula G, et al. Laser-evoked potentials habituation in fibromyalgia. The journal of pain. 2011;12(1):116-124.
[18] de Tommaso M, Nolano M, Iannone F, Vecchio E, Ricci K, Lorenzo M, et al. Update on laser-evoked potential findings in fibromyalgia patients in light of clinical and skin biopsy features. Journal of neurology. 2014;261(3):461-472.
[19] Geisser ME, Glass JM, Rajcevska LD, Clauw DJ, Williams DA, Kileny PR, et al. A psychophysical study of auditory and pressure sensitivity in patients with fibromyalgia and healthy controls. The Journal of Pain. 2008;9(5):417-422.
[20] Wilbarger JL, Cook DB. Multisensory hypersensitivity in women with fibromyalgia: implications for well being and intervention. Archives of physical medicine and rehabilitation. 2011;92(4):653-656.
[21] Hollins M, Harper D, Gallagher S, Owings EW, Lim PF, Miller V, et al. Perceived intensity and unpleasantness of cutaneous and auditory stimuli: an evaluation of the generalized hypervigilance hypothesis. Pain. 2009;141(3):215-221.
[22] Carrillo-de-la-Peña MT, Vallet M, Perez MI, Gomez-Perretta C. Intensity dependence of auditory-evoked cortical potentials in fibromyalgia patients: a test of the generalized hypervigilance hypothesis. The Journal of Pain 2006;7(7):480-487.
[23] Lorenz J. Hyperalgesia or hypervigilance? An evoked potential approach to the study of fibromyalgia syndrome. Zeitschrift für Rheumatologie 1998;57(2):S19-S22.
[24] Carrillo‐de‐la‐Peña MT, Triñanes Y, González‐Villar A, Gómez‐Perretta C, García‐Larrea L. Filtering out repetitive auditory stimuli in fibromyalgia: A study of P50 sensory gating. European Journal of Pain. 2015;19(4):576-584.
[25] Peters ML, Vlaeyen JW, van Drunen C. Do fibromyalgia patients display hypervigilance for innocuous somatosensory stimuli? Application of a body scanning reaction time paradigm. Pain. 2000;86(3):283-292.
[26] McDermid AJ, Rollman GB, McCain GA. Generalized hypervigilance in fibromyalgia: evidence of perceptual amplification. Pain. 1996;66(2-3):133-144.
[27] Hollins M, Walters S. Experimental hypervigilance changes the intensity/unpleasantness ratio of pressure sensations: evidence for the generalized hypervigilance hypothesis. Experimental brain research. 2016;234(6):1377-1384.
[28] Schmidt-Wilcke T, Kairys A, Ichesco E, Fernandez-Sanchez ML, Barjola P, Heitzeg M, et al. Changes in clinical pain in fibromyalgia patients correlate with changes in brain activation in the cingulate cortex in a response inhibition task. Pain medicine. 2014;15(8):1346-1358.
[29] Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex. 2017;89:120-134.
[30] Hauck M, Lorenz J, Domnick C, Gerloff C, Engel AK. Top-down and bottom-up modulation of pain-induced oscillations. Frontiers in human neuroscience. 2015;9:375.
[31] Tiemann L, May ES, Postorino M, Schulz E, Nickel MM, Bingel U, et al. Differential neurophysiological correlates of bottom-up and top-down modulations of pain. Pain. 2015;156(2):289-296.
[32] Carrillo-de-la-Peña MT. Effects of intensity and order of stimuli presentation on AEPs: an analysis of the consistency of EP augmenting/reducing in the auditory modality. Clinical neurophysiology. 1999;110(5):924-932.
[33] Carrillo-de-la-Peña MT. One-year test–retest reliability of auditory evoked potentials (AEPs) to tones of increasing intensity. Psychophysiology 2001;38(3):417-424.
[34] Nathan PJ, Segrave R, Phan KL, O'Neill B, Croft RJ. Direct evidence that acutely enhancing serotonin with the selective serotonin reuptake inhibitor citalopram modulates the loudness dependence of the auditory evoked potential (LDAEP) marker of central serotonin function. Human Psychopharmacology: Clinical and Experimental. 2006;21(1):47-52.
[35] Hegerl U, Juckel G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biological psychiatry. 1993;33(3):173-187.
[36] Juckel G, Molnár M, Hegerl U, Csépe V, Karmos G. Auditory-evoked potentials as indicator of brain serotonergic activity first evidence in behaving cats. Biological psychiatry. 1997;41(12):1181-1195.
[37] Juckel G, Hegerl U, Molnár M, Csépe V, Karmos G. Auditory evoked potentials reflect serotonergic neuronal activity—a study in behaving cats administered drugs acting on 5-HT 1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology. 1999;21(6):710-716.
[38] Wutzler A, Winter C, Kitzrow W, Uhl I, Wolf RJ, Heinz A, et al. Loudness dependence of auditory evoked potentials as indicator of central serotonergic neurotransmission: simultaneous electrophysiological recordings and in vivo microdialysis in the rat primary auditory cortex. Neuropsychopharmacology. 2008;33(13):3176-3181.
[39] Bardin L. The complex role of serotonin and 5-HT receptors in chronic pain. Behavioural pharmacology. 2011;22(5-6):390-404.
[40] Martin SL, Power A, Boyle Y, Anderson IM, Silverdale MA, Jones AK. 5-HT modulation of pain perception in humans. Psychopharmacology, 2017;234(19):2929-2939.
[41] Paul-Savoie E, Potvin S, Daigle K, Normand E, Corbin JF, Gagnon R, et al. A deficit in peripheral serotonin levels in major depressive disorder but not in chronic widespread pain. The Clinical journal of pain. 2011;27(6):529-534.
[42] Wolfe F, Smythe HA, Yunus MB, Bennett RM, Bombardier C, Goldenberg DL, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. . Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 1990;33(2):160-172.
[43] Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Katz RS, Mease P, et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis care & research. 2010;62(5):600-610.
[44] Carrillo-de-la-Peña MT, Triñanes Y, González-Villar A, Romero-Yuste S, Gómez-Perretta C, Arias M, et al. Convergence between the 1990 and 2010 ACR diagnostic criteria and validation of the Spanish version of the Fibromyalgia Survey Questionnaire (FSQ). . Rheumatology international 2015;35(1):141-151.
[47] Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical care. 1992:473-483.
[48] Alonso J, Prieto L, Anto JM. The Spanish version of the SF-36 Health Survey (the SF-36 health questionnaire): an instrument for measuring clinical results. Medicina clínica. 1995;104(20):771-776.
[45] Burckhardt CS, Clark SR, Bennett RM. The fibromyalgia impact questionnaire: development and validation. The Journal of rheumatology. 1991;18(5):728-733.
[46] Monterde S, Salvat I, Montull S, Fernández-Ballart J. Validación de la versión española del Fibromyalgia Impact Questionnaire. Revista Española de Reumatología. 2004;31(9):507-13.
[49] Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical psychology review. 1988;8(1):77-100.
[50] Sanz J, Vázquez C. Fiabilidad, validez y datos normativos del inventario para la depresión de Beck. . Psicothema. 1998;10(2):303-318.
[51] Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry research. 1989;28(2):193-213.
[52] Macías JA, Royuela A. The Spanish version of the Pittsburgh Sleep Quality Index.
. Infor Psiquiatr. 1996;146(465):472.
[53] Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Häuser W, Katz RS, et al. Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. The Journal of rheumatology. 2011;38(6):1113-1122.
[54] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods. 2004;134(1):9-21.
[55] Makeig S, Bell AJ, Jung TP, Sejnowski TJ. Independent component analysis of electroencephalographic data. In Advances in neural information processing systems. 1996:145-151.
[56] Cohen J. Statistical power analysis for the behavioral sciences. Abingdon England: Routledge; 1998.
[57] Wolfe F. The relation between tender points and fibromyalgia symptom variables: evidence that fibromyalgia is not a discrete disorder in the clinic. . Annals of the rheumatic diseases. 1997;56(4):268-271.
[58] Sluka KA, Clauw DJ. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience. 2016;338(114):129.
[59] Hansen JC, Hillyard SA. Endogeneous brain potentials associated with selective auditory attention. Electroencephalography and clinical neurophysiology. 1980;49(3-4):277-290.
[60] Guymer EK, LittleJohn GO. Fibromyalgia: top down or bottom up? . APLAR Journal of Rheumatology. 2007;10(3):174-177.
[61] Kähkönen S, Jääskeläinen IP, Pennanen S, Liesivuori J, Ahveninen J. Acute trytophan depletion decreases intensity dependence of auditory evoked magnetic N1/P2 dipole source activity. Psychopharmacology. 2002;164(2):221-227.
[62] Segrave R, Croft RJ, Illic S, Phan KL, Nathan PJ. Pindolol does not augment central serotonin function increases to citalopram in humans: an auditory evoked potential investigation. Pharmacology Biochemistry and Behavior. 2006;85(1):82-90.
[63] Simmons JG, Nathan PJ, Berger G, Allen NB. Chronic modulation of serotonergic neurotransmission with sertraline attenuates the loudness dependence of the auditory evoked potential in healthy participants. . Psychopharmacology. 2011;2017(1):101-110.
[64] Triñanes Y, González-Villar A, Gómez-Perretta C, Carrillo-de-la-Peña MT. Profiles in fibromyalgia: algometry, auditory evoked potentials and clinical characterization of different subtypes. . Rheumatology international. 2014;34(11):1571-1580.
[65] Bou Khalil R, Khoury E, Richa S. Do fibromyalgia flares have a neurobiological substrate? Pain Medicine. 2016;17(3):469-475.
[66] Dierks T, Barta S, Demisch L, Schmeck K, Englert E, Kewitz A, et al. Intensity dependence of auditory evoked potentials (AEPs) as biological marker for cerebral serotonin levels: effects of tryptophan depletion in healthy subjects. . Psychopharmacology. 1999;146(1):101-107.
[67] Beauducel A, Debener S, Brocke B, Kayser J. On the reliability of augmenting/reducing: Peak amplitudes and principal component analysis of auditory evoked potentials. . Journal of Psychophysiology. 2000;14(4):226-240.
[68] Martínez-Jauand M, Sitges C, Femenia J, Cifre I, González S, Chialvo D, et al. Age-of-onset of menopause is associated with enhanced painful and non-painful sensitivity in fibromyalgia. Clinical rheumatology. 2013;32(7):975-981.