3,000 Rice Genomes Project. (2014) The 3,000 rice genomes project. GigaScience 3 (1):2047-2217X-2043-2047
Barker R (2011) The origin and spread of early-ripening champa rice: It’s impact on Song Dynasty China. Rice 4 (3):184
Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. The Plant Journal 90 (4):708-719
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6 (2):80-92
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & development 18 (8):926-936
Edgar RC (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics 5 (1):113
Edgar RC (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32 (5):1792-1797
He Q, Kim KW, Park YJ (2017) Population genomics identifies the origin and signatures of selection of Korean weedy rice. Plant biotechnology journal 15 (3):357-366
History of Son Dynasty 1 (1343) History of Son Dynasty 8:151
History of Son Dynasty 2 (1343) History of Son Dynasty 173: 4162
Ho P-T (1956) Early-ripening rice in Chinese history. The Economic History Review 9 (2):200-218
Hori K, Matsubara K, Yano M (2016) Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theoretical and applied genetics 129 (12):2241-2252
Huang X, Kurata N, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490 (7421):497-501
Huang X, Lu T, Han B (2013) Resequencing rice genomes: an emerging new era of rice genomics. Trends in Genetics 29 (4):225-232
International RGSP (2005) The map-based sequence of the rice genome. Nature 436 (7052):793
Ishikawa R, Toki N, Imai K, Sato Y, Yamagishi H, Shimamoto Y, Ueno K, Morishima H, Sato T (2005) Origin of weedy rice grown in Bhutan and the force of genetic diversity. Genetic Resources and Crop Evolution 52 (4):395-403
Itoh H, Izawa T (2013) The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice. Molecular plant 6 (3):635-649
Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nature genetics 42 (7):635
Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome research 17 (2):175-183
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6 (1):4
Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant molecular biology 35 (1-2):25-34
Kim S-R, Torollo G, Yoon M-R, Kwak J, Lee C-K, Prahalada G, Choi I-R, Yeo U-S, Jeong O, Jena KK (2018) Loss-of-Function Alleles of Heading Date 1 (Hd1) Are Associated With Adaptation of Temperate Japonica Rice Plants to the Tropical Region. Frontiers in plant science 9:1827
Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135 (4):767-774
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33 (7):1870-1874
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27 (21):2987-2993
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26 (5):589-595
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25 (16):2078-2079
Li L-F, Li Y-L, Jia Y, Caicedo AL, Olsen KM (2017) Signatures of adaptation in the weedy rice genome. Nature genetics 49 (5):811-814
Lin H, Ashikari M, Yamanouchi U, Sasaki T, Yano M (2002) Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breeding Science 52 (1):35-41
Lin S, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theoretical and Applied Genetics 96 (8):997-1003
Liu C, Song G, Zhou Y, Qu X, Guo Z, Liu Z, Jiang D, Yang D (2015) OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Scientific reports 5 (1):1-11
Luan W, Chen H, Fu Y, Si H, Peng W, Song S, Liu W, Hu G, Sun Z, Xie D (2009) The effect of the crosstalk between photoperiod and temperature on the heading-date in rice. PLoS One 4 (6)
Mansueto L, Fuentes RR, Borja FN, Detras J, Abriol-Santos JM, Chebotarov D, Sanciangco M, Palis K, Copetti D, Poliakov A (2017) Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic acids research 45 (D1):D1075-D1081
McCouch SR (2008) Gene nomenclature system for rice. Rice 1 (1):72-84
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20 (9):1297-1303
Qiu J, Zhou Y, Mao L, Ye C, Wang W, Zhang J, Yu Y, Fu F, Wang Y, Qian F (2017) Genomic variation associated with local adaptation of weedy rice during de-domestication. Nature communications 8 (1):1-12
Qiu J, Zhu J, Fu F, Ye C-Y, Wang W, Mao L, Lin Z, Chen L, Zhang H, Guo L (2014) Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: a case study from southern China. Planta 240 (6):1353-1363
Reagon M, Thurber CS, Gross BL, Olsen KM, Jia Y, Caicedo AL (2010) Genomic patterns of nucleotide diversity in divergent populations of US weedy rice. BMC Evolutionary Biology 10 (1):180
Robson F, Costa MMR, Hepworth SR, Vizir I, Pin˜ eiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the flowering‐time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal 28 (6):619-631
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution 34 (12):3299-3302
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Annals of botany 114 (7):1445-1458
Song BK, Chuah TS, Tam SM, Olsen KM (2014) Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia. Molecular ecology 23 (20):5003-5017
Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nature genetics 50 (2):285-296
Sun J, Ma D, Tang L, Zhao M, Zhang G, Wang W, Song J, Li X, Liu Z, Zhang W (2019) Population genomic analysis and de novo assembly reveal the origin of weedy rice as an evolutionary game. Molecular plant 12 (5):632-647
Sun J, Qian Q, Ma DR, Xu ZJ, Liu D, Du HB, Chen WF (2013) Introgression and selection shaping the genome and adaptive loci of weedy rice in northern China. New Phytologist 197 (1):290-299
Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105 (2):437-460
Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123 (3):585-595
Takahashi Y, Shimamoto K (2011) Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes & genetic systems 86 (3):175-182
Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proceedings of the National Academy of Sciences 106 (11):4555-4560
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316 (5827):1033-1036
Tsuji H, Taoka K-i, Shimamoto K (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Current Opinion in Plant Biology 16 (2):228-235
Vergara BS, Chang T-T (1985) The flowering response of the rice plant to photoperiod: a review of the literature. Int. Rice Res. Inst.,
Wang C, Zheng X, Xu Q, Yuan X, Huang L, Zhou H, Wei X, Ge S (2014) Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity 112 (5):489-496
Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theoretical population biology 7 (2):256-276
Wei F-J, Tsai Y-C, Wu H-P, Huang L-T, Chen Y-C, Chen Y-F, Wu C-C, Tseng Y-T, Yue-ie CH (2016) Both Hd1 and Ehd1 are important for artificial selection of flowering time in cultivated rice. Plant Science 242:187-194
Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant physiology 153 (4):1747-1758
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics 40 (6):761
Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154 (2):885-891
Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical and Applied Genetics 95 (7):1025-1032
Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell 12 (12):2473-2483
Zhang J, Lu Z, Dai W, Song X, Peng Y, Valverde BE, Qiang S (2015) Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice. Scientific reports 5:10591
Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nature genetics 50 (2):278-284