In this study, rheumatoid hands were divided into clusters using parameters describing representative deformities. Alterations in hand deformity and function over time were compared with disease duration as a covariate. Although there have been reports of the incidence of hand deformities within 10 years of RA onset [2, 3], comprehensive assessments of the rheumatoid hand, including thumb deformity, and alterations in deformities over time have not been performed to the best of our knowledge.
Four of the five clusters had similar disease durations but showed wide variation in deformities. Thus, the period of symptomatic time affecting hand joints was the same, but cumulative damage during this period differed between the clusters. Cumulative disease activity in RA has been shown to affect the prognosis of the joint [13]; therefore, differences in the degree of deformity between clusters could have resulted from differences in the effectiveness of drug therapy from disease onset. However, because the transition of disease activity since onset could not be followed in each patient, cumulative disease activity was unknown. Large differences in hand phenotypes emerged over the approximately 17 years of disease duration covered by our study. The hand clusters identified in this study revealed a typical pattern of deformity progression. We also identified a subset of hands that developed few and mild deformities, which is good news from a clinical standpoint. Conversely, type 2 and 3 thumb deformities may be a sign to consider aggressive treatment, as these deformities are associated with strong functional impairment complicated by severe ulnar drift.
Generally, RA disease activity and duration are assessed on a person-by-person basis, whereas the prevalence of arthritis in both hands is not symmetrical. Therefore, we conducted a cluster analysis of 134 hands from 67 subjects in 2004, when the study was initiated. However, the cluster analysis does not account for correlation between the two hands of a single subject. If the clusters for both hands are the same, age and disease duration will be counted twice. However, choosing a representative hand for a single subject cannot be performed without bias. Therefore, in this study, both hands were treated independently for analysis. Roughly two thirds (46 of 67) of patients had the same clusters for both hands, while 21 patients had different clusters for each hand (data not shown). Thus, our strategy of analyzing each hand independently was appropriate and we believe our results are valuable, even if the background information for each cluster is not completely accurate.
We found that swan-neck deformity progressed significantly over time, whereas boutonnière deformity and ulnar drift were relatively stable. The lattermost result conflicts with reports showing that ulnar drift progresses, leading to decreased hand function over time [3, 14]. Trajectory plots indicated that the clusters identified in this study could be clearly divided into progressive and non-progressive, suggesting the possibility of a type II error because only 63 hands were available in 2015.
There was no significant difference between functional assessment scores over time; in fact, some groups showed a slight increase in mean scores. Overall, however, deformity parameters deteriorated, suggesting that factors other than deformity may have influenced our results. During the 11-year observation period, C-reactive protein levels and erythrocyte sedimentation rates improved. The number of biologics used increased from 3 (4.5%) in 2004, to 7 (13.5%) in 2009 and 13 (35.1%) in 2015. The effectiveness of biologics in improving rheumatoid hand function has been widely reported [15], and their increased use might have improved the scores in the present study.
The Nalebuff classification divides thumb deformities into six types by the initially affected joint and its appearance [16, 17]; type change over time is not considered. To our knowledge, no studies have compared hand function by thumb deformity type, and none have quantitated the impact of deformity type on hand function. Our results have some interesting implications. First, type 1 deformity appears to be the primary phenotype, and type 2 and 4 deformities are secondary phenotypes arising from type 1. Second, seven of the type 2 deformities observed in our study arose from type 1 deformities. Thus, a rheumatoid thumb with the “initially metacarpophalangeal” joint affected changed over time to a hand with the “initially carpometacarpal” joint affected. This finding may be explained by initial flexion contracture of the metacarpophalangeal joint with secondary carpometacarpal joint involvement. Third, type 3 deformity, with the “initially carpometacarpal” joint affected, occurred mainly in thumbs without deformity, except for in one case. Type 3 deformity would thus represent a primary phenotype like type 1. The underlying mechanisms influencing these phenotypic differences are still unknown. Our results may raise controversy regarding the underlying pathological mechanism of thumb deformities.
Our comprehensive assessment has several implications for the development of hand deformities after the onset of RA (Fig. 4). The “minimal deformity” and “thumb type 1” clusters were considered conservative, while the “thumb and boutonnière deformity”, “thumb type 2, 3 and ulnar drift”, and “thumb and severe swan-neck deformity” clusters were considered progressive. Though we cannot indicate specific proportions, a majority of hands fit into the conservative subset, which is fortunate for patients and their clinical outcomes. Minimal finger deformity was considered to represent the conservative subset, whereas multiple deformities were characteristic of the progressive subset. It is difficult to confidently assign each hand to a subset. However, more attention should be paid to swan-neck deformity as this deformity progressed over our 11-year observation period. Type 2 and 3 thumb deformities may also be indicators of the progressive subset, complicated by severe ulnar drift. Similarly, type 6 thumb deformity is a clear indicator of progression.
Our study had several limitations. First, because the cohort was not followed from the onset of RA, we were unable to demonstrate how deformities developed in each subset. Understanding the order of occurrence of deformities might have enabled us to provide better treatments for these patients. Second, the cluster analysis assigned hands to each cluster retrospectively. Therefore, our clusters were explanatory in nature and cannot necessarily be applied to new single hands; additional studies are needed to assess the generalizability of these clusters. Third, the results of this study could have been more meaningful if the disabling effects of each type of thumb deformity were understood. A further comparison of thumb deformity in another cohort is warranted. Fourth, we used the Kapandji index as a functional evaluation. This index is usually used as a functional mobility measure and reflects functional impairment. Therefore, using an index that reflects unilateral disability, such as the Michigan Hand Outcomes Questionnaire [18], could be more reflective of disability in the rheumatoid hand. Unfortunately, we were unable to adopt these patient-reported outcome measures at the beginning of the study. Finally, the sample size was small and only eight patients were assigned to cluster 4. Therefore, the characteristics of this cluster were somewhat uncertain.