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Abstract
Rockpools are understudied systems of extreme importance due to their proven vulnerability to climate
change. Rockpool molluscs play essential ecological roles therein, directly by acting both as prey and
predator and, indirectly by in�uencing the topography via grazing. However, the environmental factors
driving their rockpool occupation remain largely unknown. Our study is one of the few to focus on
rockpool molluscs community patterns, particularly at a large scale between shores of differing exposure
to wave action, being the �rst focused assessment of rockpool molluscs in Portugal. Overall, 32 intertidal
rock pools on four rocky shores were studied during the summer spring tide of 2015. We used
multivariate analysis to evaluate the potential impact of sheltered versus exposed wave action, physical
pool structure (length, width, and depth), and relationships within the pool community on the abundance
and diversity of molluscs. Wave exposure signi�cantly in�uenced mollusc abundance and diversity.
Among the 37 different taxa identi�ed, there was a greater abundance of grazing gastropods (62.2%),
followed by bivalves (27.0%) and chitons (10.8%). We suggest that mollusc taxa may have preferences
for particular rock pool habitats depending on the type of algae present rather than pool size. We also
suggest that species-speci�c mollusc presence in rockpool can be related to their shell size, aperture, and
foot size due to corresponding variation in musculature needed to hold the snail to the substrate in
hydrodynamic conditions. Further investigation would bene�t from disentangling the potential role of
algal pool coverage as a predator refuge for molluscs.

Introduction
Intertidal communities are found at the boundary between sea and land and are in�uenced by tidal
�ooding and consequent dynamic periods of emersion and immersion (Coutinho et al. 2016; Legrand et
al. 2018). During low tides, seawater can get retained in eroded patchy depressions of rock, i.e. rockpools,
representing mesocosms of marine life (Legrand et al. 2018). Compared to the surroundings, the
environment inside these rock pools is substantially less harsh due to the lower amplitude of
physicochemical �uctuations (temperature, salinity, pH, and dissolved O2), offering refuge, feeding areas,
and nurseries for several marine species (Underwood and Jernakoff 1984; Dias et al. 2014; Vinagre et al.
2015; Mendonça et al. 2018). The study of rockpools is of extreme importance due to their proven
vulnerability to climate change, namely global warming, sea level rise, and overall anthropogenic
activities that can lead to an abrupt biodiversity loss in these coastal areas (Fairchild et al. 2018;
González-Murcia et al. 2020).

Whereas intertidal rocky shore platforms have been well studied, intertidal rock pools therein have
received relatively less attention, particularly on their community dynamics (Martins et al. 2007;
Mendonça et al. 2018). However, there has been growing interest in determining the biotic (e.g.
competition, predation, recruitment) and abiotic (e.g. tidal isolation, desiccation, salinity) factors
structuring their communities (Metaxas and Scheibling 1993, Arauújo et al. 2006, Brendonck et al. 2015,
Bezerra et al. 2017). Within these communities, the mollusc group is particularly understudied with only a
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few examples in literature (e.g. Underwood 1976, Breves and Moraes 2014, Souza and Matthews-Cascon
2019) and hence, the target group of our work.

Rockpool molluscs play essential ecological roles therein including acting both as prey and predator,
indirectly in�uencing the topography via grazing and, shaping the habitat resulting in a complex benthos
community, which in turn attracts other intertidal organisms to the area (Martins et al. 2007; Gartner et al.
2013; Souza and Matthews-Cascon 2019). Marine molluscs are also currently threatened by future ocean
acidi�cation conditions as it is predicted that they will produce thinner shells of lower structural integrity
(Fitzer et al. 2018), thus highlighting the importance of collecting data about this taxon.

Almost no environmental factors are known to affect the habitat selection of molluscs in intertidal rock
pools. Previous studies (Underwood and Skilleter 1996; Marsh et al. 1978; Carvalho et al. 2021) proved
that pool size does not affect species richness or abundance within rock pools, namely in molluscan
assemblages (Souza and Matthews-Cascon 2019), but this is still a matter of debate as other authors
reported differing results (Martins et al. 2007). Other studies on molluscs in rock pools have evaluated
grazing intensity (Noel et al. 2009), nutrient and sediment effects (Atalah and Crowe 2010), and trophic
relationships (Masterson et al. 2008, Breves and Moraes 2014). Recently, Sousa and Matthews-Cascon,
(2019) showed that variation of molluscan assemblages between pools within the same site is not due to
different pool sizes but rather due to the association between these organisms and the substrate of the
pool. Hence, little is still known in the literature regarding the factors that drive their diversity and
distribution in these habitats.

Our study is one of the few existing to focus on rockpool molluscs community patterns, particularly at a
large scale between shores of differing exposure to wave action. This last factor has been shown to be
signi�cantly important for other pool taxa such as crustaceans (e.g. Carvalho et al. 2021). Our study also
provides the �rst focused assessment of rockpool molluscs in Portugal, with previous studies being
limited to �sh (e.g. Compaire et al. 2022) and amphipods (Carvalho et al. 2021), hence allowing to set a
database baseline for comparison with future research. We tested the hypothesis that molluscan diversity
and abundance vary between shores of differing wave action (sheltered and exposed). We also assessed
the relationship between the overall rockpool community composition and the presence of molluscs and
evaluated whether physical rockpool structure (size, depth, and width) in�uences the abundance and
diversity patterns of molluscs.

Material And Methods

Sampling locations framework
Rockpool community data was collected in 2015 summer tides as this season typically corresponds to a
peak in biodiversity and species abundance found in intertidal rock pools (Underwood and Jernakoff
1984; Moore and Seed 1986). Two sheltered and two exposed shores were chosen on the Portuguese
west coast and where eight intertidal rock pools were sampled per shore: Sheltered shores (Paimogo − 
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39°17'11.4"N 9°20'23.7"W and Peralta 39°14'28.9"N 9°20'36.8"W) and Exposed shores (Cabo Raso − 
38°42'38.2"N 9°29'09"W and Raio Verde − 39°17'11.4"N 9°20'23"W).

Pool size was standardized as much as possible to enable full biological sampling within the low-tide
time frame. Overall, 32 pools were sampled, and their physical features were assessed, whereby the
average length was 2.73 ± 0.20, average width 1.54 ± 0.18 and average depth 1.28 ± 0.97.

Biological Sampling
Most pool biota was identi�ed in situ, with ocasional laboratory validation for smaller taxon where
specimens were preserved in 70% alcohol and later identi�ed in the laboratory with a stereomicroscope.
Given the complexity of rockpool communities, a combined visual, collection and laboratory sampling
approach was used to secure a more complete assessment: in situ visual percentage cover and counts of
colony-like organisms easily identi�ed in the �eld (e.g. algae, anemones, barnacles); hand-net collection,
in situ identi�cation and counting of all mobile animals such as �sh, crabs, snails, and amphipods, and;
three replicated 5 cm2 quadrate scrapings for laboratory identi�cation and quanti�cation of remaining
biota such as small snails and algae dwellers.

Data Analysis
All data was analysed with the PRIMER statistical software given its multivariate nature. The
PERMANOVA (9999 permutations) was used to test the hypothesis of wave exposure as a signi�cant
factor in mollusc rockpool presence and abundance (based on the sum of animals in the scrapped
quadrates and hand collections). Dissimilarities found with PERMANOVA were visually organised via a
multidimensional ordination plot (MDS). The taxa most contributing to shore exposure differences were
identi�ed using the SIMPER analysis. Further data exploration between exposures was made using a PCO
ordination analysis to assess potential correlations between the pool's entire community and the mollusc
presence. Also, any potential relation between the pool physical features (depth, length, and width) and
the abundance of molluscs was examined using the BEST analysis.

Results
There were signi�cant differences between the mollusc abundance between pools of exposed and
sheltered shores (P-value = 0.01) and also between different locations within the same wave action
exposure (P-value = 0.01). These were visually evident from the MDS ordination clustering patterns
(Fig. 1). Also, rock pools from both locations within exposed wave action were more similar regarding
molluscan assemblages than rock pools from both locations within sheltered wave action (Fig. 1).

The principal component ordination (PCO) identi�ed the molluscan taxa most crucial in differentiating
the rock pools from shores of different wave exposure and locations (Fig. 2). The horizontal vectors
represent the molluscs Crisilla ugesae (snail), Tricolia pullus (snail), Steromphala umbilicalis (snail),
Mytilus galloprovincialis (bivalve) (Fig. 2) and the algae Bifurcaria sp. and Ulva sp. (Fig. 3), those
explaining most of the variability between exposed and sheltered shores. Cabo Raso (exposed location)
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had the highest average coverage of Ulva sp. (algae) whereas Peralta (sheltered location) had the highest
average coverage of Bifurcaria sp. (algae). The BEST analysis showed a negligible relationship (R = 0.3)
between pool physical features (length, width, and depth) and the abundance of molluscs.

Among the 37 different taxa identi�ed, there was a greater abundance of grazing gastropods (62.2%),
followed by bivalves (27.0%) and chitons (10.8%). Raio Verde (exposed location) showed the highest
diversity of taxa with 28 different molluscan taxa, followed by Peralta and Cabo Raso, which showed a
total of 25 and 24 different taxa, respectively. Paimogo (sheltered location) showed the lowest taxa
diversity with only 21 in a total of 37 taxa.

The SIMPER analysis identi�ed the average dissimilarity between locations, which ranged between 28.0%
and 39.9% indicating a reasonable similarity of approximately 60% between locations.

The SIMPER analysis also provided the mean abundance of the molluscan taxa most contributing to
differences between shores of differing exposure. The most abundant taxa found were Musculus
costulatus (bivalve), Mytilus galloprovincialis (bivalve), and Omalogyra atomus (snail). Raio Verde
showed the higher mean molluscan abundance of all four locations. M. costulatus, M. galloprovincialis,
Lepidochitona cinerea (chiton), Aplysia punctata (slug), and Steromphala umbilicalis (snail) showed
higher mean abundances on exposed shores (Fig. 4). On the other hand, Tritia reticulata (snail), Barleeia
sp. (snail), Crisilla ugesae (snail), Tricolia pullus (snail), Patella ulyssiponensis (snail) and
Acanthochitona crinita (chiton) showed higher mean abundances in sheltered shores (Fig. 4). O. atomus
showed similar average abundance on both shores exposures.

The SIMPER analysis also identi�ed the molluscan taxa (based on abundance) most contributing to
differences between shores of differing exposure. The species that most contributed to the separation
between exposed and sheltered locations were: M. costulatus, M. galloprovincialis, Barleeia sp., and C.
ugesae. M. costulatus was responsible for the separation between the shores Raio Verde and Paimogo,
Raio Verde and Peralta, and Raio Verde and Cabo Raso with percentages of contribution of 12.9%, 12.6%,
and 11.2%, respectively (Fig. 5), and showed higher mean abundance in Raio Verde. C. ugesae was
responsible for the separation between the shores Cabo Raso and Peralta, and between Cabo Raso and
Paimogo with contribution percentages of 9.5% and 9.9%, respectively, and showed higher mean
abundance in both sheltered locations. Barleeia sp. had the major contribution in separating the location
Peralta from Paimogo, with a contribution percentage of 10.4% (Fig. 5) and showing a higher mean
abundance in Peralta.

Discussion

Molluscan abundance and species richness on shores of
different wave exposure
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The richness and diversity of particular taxa varied widely between replicate pools, as did their
abundance. This feature may be characteristic of patchy marine habitats (Underwood and Skilleter
1996). Moreover, locations within sheltered shores were much more similar between themselves than
locations within exposed shores, as found also by Carvalho et al. (2021) on amphipod communities. This
result denotes higher variation in exposed conditions gradients, making it essential for future studies to
clarify the underlying causes of this variation.

Differences in taxa richness were identi�ed between locations of different wave-action exposure. Raio
Verde (exposed location) rockpools showed the highest mollusc taxa richness. This matches Underwood
and Skilleter (1996) �ndings, which showed that molluscan species richness may be higher in wave-
exposed locations. However, other studies showed that reduced wave action may increase molluscan
species diversity (Rahman and Barkati 2012; D’Souza et al. 2022). We suggest that exposed location type
seems to be favorable for molluscs, possibly due to higher hydrodynamism allowing different molluscan
larvae to reach these pools, as shown by Spotorno-Oliveira et al. (2015).

The functional group bivalve was more characteristic of exposed locations whereas the functional group
snail showed higher mean abundance in sheltered habitats. The snails Tricolia pullus and Crisilla ugesae
had higher average abundance on sheltered wave action shores. However, little is known regarding the
latter species distribution due to previous studies being limited to Olivier et al. (2019). This is a
microgastropod typically habiting shallow coastal waters (Olivier et al. 2019) possibly taking advantage
of sheltered rock pools for refuge or as a feeding ground. The gastropod T. pullus is also a small sea
snail often found feeding around red seaweeds (Duffus 1969), such as Corallina sp..

The species Mytilus galloprovincialis (bivalve) and Steromphala umbilicalis (snail) displayed higher
mean abundance in exposed locations. The latter has usually higher dimensions than the snail species
most abundant in sheltered habitats so, we suggest that size may play an important factor in exposed
conditions as larger animals are expected to have stronger attachment capacity, hence minimized
vulnerability to dislodgement. For instance, limpets showed a proportionally larger foot on wave-exposed
shores, suggesting that stronger attachment is an important mechanism to deal with wave action
dislodgement (Vieira and Bueno 2019). Snail shell design can also be important, albeit beyond the scope
of our study, as previous studies have stated that shorter and broader shells would be more
advantageous in wave-exposed locations, allowing less turbulence of water �ow over the snail shell and
hence reducing the risk of wave dislodgement (Frid and Fordham 2012). Moreover, exposed locations
seem to be favorable for �lter-feeding bivalves such as Musculus costulatus and M. galloprovincialis
probably by allowing increased food supply associated with increased water movement (Branch et al.
2008) and relatively increased availability of �xation spots when compared to the large algae cover
typically found in sheltered conditions.

Algal rock pool coverage and physical features
The PCO analysis showed that it is possible that wave action accounted for the differences in algal
coverage between shores and that molluscan patterns are correlated with the rockpool algal coverage.
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One of the pool features most contributing to the differences between wave-exposed and sheltered pools
was the increased presence of the green algae Ulva sp. on wave-exposed shores, especially in Cabo Raso.
This suggests that green �eshy algae are probably more resistant to wave action than red or brown algae
for instance, as found by van Tamelen (1996). However, contrary to what we would have expected, this is
not the location with higher species richness, although rockpool molluscs are likely to bene�t from Ulva
sp. fronds as shelter from predation pressure by both in-house residents such as blenniiformids and
some crabs, and by high-tide occasional predators such as subtidal �sh and other larger crab species
(Wake�eld and Murray 1998; Kemppainen et al. 2005; Silva et al. 2010). Bivalves such as M. costulatus
and M. galloprovincialis are usually associated with �lamentous substrates (such as the macroalgae
Ulva sp.) or with small substrate depressions (Hunt and Scheibling 1996) in sites with relatively increased
availability of �xation spots, such as exposed habitats due to its lower algae cover compared to sheltered
conditions.

Tuya et al. (2008) stated that molluscs living on algae with wider fronds, such as Ulva sp., are possibly
more affected by wave action due to the higher surface area exposed to the water �ow compared to
smaller algae. However, the highest abundance of Ulva sp. was found in exposed locations, which
exhibited the greatest taxa richness. This fact suggests that both wave action and great Ulva sp. algal
coverage may have accounted for the high taxa richness observed in these locations.

Other algae taxa contributing to the separation of wave-exposed and sheltered pools was the increased
presence of Bifurcaria sp. and Corallina sp. on sheltered shores. Coralline algae are poor competitors for
space and very resistant to physical disturbances, including the mechanical impact of waves, dominating
rocky habitats exposed to higher abiotic stress (Bertocci et al. 2005). Nonetheless, we found higher
coverage of Corallina sp. in sheltered locations. It has been shown that grazing microgastropods (snails)
have a preference to live on Coralline algae (Olabarria et al. 2002; Spotorno-Oliveira et al. 2015)
enhancing their establishment and persistence (Johnson and Paine 2017) and, therefore, justifying the
higher abundance of snails found on sheltered habitats comparatively to exposed ones. Another possible
explanation, albeit less liable, could be that the considerably high diversity of herbivorous snails may
have led to the scarcity of erect �eshy algae like Ulva sp. and higher concentrations of Bifurcaria sp. and
Corallina sp. on sheltered locations.

We found that physical pool features (size, depth, and width) do not in�uence the abundance and
diversity patterns of molluscs, corroborating the work by Sousa and Matthews-Cascon, (2019) and
contrary to what some previous studies stated (Martins et al. 2007; Annusa et al. 2012). Mollusc taxa
may have preferences for particular rock pool habitats depending on the type of algae present rather than
the size, depth, or width of the pool. We hypothesize that larger and more diverse environments are not as
important for molluscs as the refuge given by the algae cover which acts as their substrate for refuge and
feeding.

Conclusion
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Our study showed that intertidal rockpool molluscs are signi�cantly affected by hydrodynamism, hence
�lling an important gap in the knowledge of the driving factors of molluscan distribution in intertidal rock
pools. We also pinpointed algal coverage as an important pool feature in�uencing molluscan abundance.
These data add baseline information to our understanding of rock pool systems and can be applied to
monitoring programmes that evaluate ecological changes brought on by anthropogenic and natural
disturbances. We suggest future work towards focusing on the role of speci�c algae pool coverage as a
refuge from predation and dislodgement for rockpool molluscs. We also suggest that species-speci�c
mollusc presence in rockpool can be related to their shell size, aperture and foot size due to
corresponding variation in musculature needed to hold the snail to the substrate in hydrodynamic
conditions.
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Figure 1

MDS ordination plot of Mollusca abundance per sampled location and wave action exposure. Grey
vertical line signals exposure clear separation. CR - Cabo Raso, RV - Raio Verde, PE – Peralta, PA –
Paimogo.
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Figure 2

Principal component ordination (PCO) representing the Mollusca taxa that are most associated with the
molluscan distribution across shores of different wave action exposure. CR - Cabo Raso, RV - Raio Verde,
PE – Peralta, PA – Paimogo.
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Figure 3

Principal component ordination (PCO) representing the algae taxa most associated with the differing
molluscan distribution across shores of different wave action exposure. (Most contributing taxa for
exposure differences are shown in bold). CR - Cabo Raso, RV - Raio Verde, PE – Peralta, PA – Paimogo.
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Figure 4

Average abundance (±SE) of each Mollusca taxa at each shore. CR (Cabo Raso) and RV (Raio Verde)
correspond to shores of high wave exposure; PE (Peralta) + PA (Paimogo) correspond to sheltered shores
of low wave exposure. Only the taxa with a cumulative contribution percentage of 50% are presented.


