[1] K.D. Miller, L. Nogueira, A.B. Mariotto, J.H. Rowland, K.R. Yabroff, C.M. Alfano, A. Jemal, J.L. Kramer, R.L. Siegel, Cancer treatment and survivorship statistics, 2019, CA: a cancer journal for clinicians, 69 (2019) 363-385.
[2] C.G. Lenneman, D.B. Sawyer, Cardio-Oncology: An Update on Cardiotoxicity of Cancer-Related Treatment, Circulation research, 118 (2016) 1008-1020.
[3] E.T. Yeh, H.M. Chang, Oncocardiology-Past, Present, and Future: A Review, JAMA cardiology, 1 (2016) 1066-1072.
[4] S. Antoniak, K. Tatsumi, C.M. Schmedes, S.P. Grover, R. Pawlinski, N. Mackman, Protease-activated receptor 1 activation enhances doxorubicin-induced cardiotoxicity, Journal of molecular and cellular cardiology, 122 (2018) 80-87.
[5] W. Zhu, S. Reuter, L.J. Field, Targeted expression of cyclin D2 ameliorates late stage anthracycline cardiotoxicity, Cardiovascular research, 115 (2019) 960-965.
[6] G. Milano, V. Biemmi, E. Lazzarini, C. Balbi, A. Ciullo, S. Bolis, P. Ameri, D. Di Silvestre, P. Mauri, L. Barile, G. Vassalli, Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity, Cardiovascular research, 116 (2020) 383-392.
[7] R. Dhingra, M. Guberman, I. Rabinovich-Nikitin, J. Gerstein, V. Margulets, H. Gang, N. Madden, J. Thliveris, L.A. Kirshenbaum, Impaired NF-kappaB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy, Cardiovascular research, (2019).
[8] S. Din, M.H. Konstandin, B. Johnson, J. Emathinger, M. Volkers, H. Toko, B. Collins, L. Ormachea, K. Samse, D.A. Kubli, A. De La Torre, A.S. Kraft, A.B. Gustafsson, D.P. Kelly, M.A. Sussman, Metabolic dysfunction consistent with premature aging results from deletion of Pim kinases, Circulation research, 115 (2014) 376-387.
[9] V. Karantalis, J.M. Hare, Use of mesenchymal stem cells for therapy of cardiac disease, Circulation research, 116 (2015) 1413-1430.
[10] J.M. Hare, D.L. DiFede, A.C. Rieger, V. Florea, A.M. Landin, J. El-Khorazaty, A. Khan, M. Mushtaq, M.H. Lowery, J.J. Byrnes, R.C. Hendel, M.G. Cohen, C.E. Alfonso, K. Valasaki, M.V. Pujol, S. Golpanian, E. Ghersin, J.E. Fishman, P. Pattany, S.A. Gomes, C. Delgado, R. Miki, F. Abuzeid, M. Vidro-Casiano, C. Premer, A. Medina, V. Porras, K.E. Hatzistergos, E. Anderson, A. Mendizabal, R. Mitrani, A.W. Heldman, Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy: POSEIDON-DCM Trial, Journal of the American College of Cardiology, 69 (2017) 526-537.
[11] W. Liu, Y. Rong, J. Wang, Z. Zhou, X. Ge, C. Ji, D. Jiang, F. Gong, L. Li, J. Chen, S. Zhao, F. Kong, C. Gu, J. Fan, W. Cai, Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization, Journal of neuroinflammation, 17 (2020) 47.
[12] H. Shen, G. Cui, Y. Li, W. Ye, Y. Sun, Z. Zhang, J. Li, G. Xu, X. Zeng, Y. Zhang, W. Zhang, Z. Huang, W. Chen, Z. Shen, Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model, Stem cell research & therapy, 10 (2019) 17.
[13] X. Wang, Y. Chen, Z. Zhao, Q. Meng, Y. Yu, J. Sun, Z. Yang, Y. Chen, J. Li, T. Ma, H. Liu, Z. Li, J. Yang, Z. Shen, Engineered Exosomes With Ischemic Myocardium-Targeting Peptide for Targeted Therapy in Myocardial Infarction, Journal of the American Heart Association, 7 (2018) e008737.
[14] P. Huang, L. Wang, Q. Li, X. Tian, J. Xu, J. Xu, Y. Xiong, G. Chen, H. Qian, C. Jin, Y. Yu, K. Cheng, L. Qian, Y. Yang, Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19, Cardiovascular research, 116 (2020) 353-367.
[15] J. Zhu, K. Lu, N. Zhang, Y. Zhao, Q. Ma, J. Shen, Y. Lin, P. Xiang, Y. Tang, X. Hu, J. Chen, W. Zhu, K.A. Webster, J. Wang, H. Yu, Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way, Artificial cells, nanomedicine, and biotechnology, 46 (2018) 1659-1670.
[16] X. Xu, J. Pang, Y. Chen, R. Bucala, Y. Zhang, J. Ren, Macrophage Migration Inhibitory Factor (MIF) Deficiency Exacerbates Aging-Induced Cardiac Remodeling and Dysfunction Despite Improved Inflammation: Role of Autophagy Regulation, Scientific reports, 6 (2016) 22488.
[17] Y. Zhang, W. Zhu, H. He, B. Fan, R. Deng, Y. Hong, X. Liang, H. Zhao, X. Li, F. Zhang, Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair, Aging, 11 (2019) 12641-12660.
[18] J. Wang, C. Tong, X. Yan, E. Yeung, S. Gandavadi, A.A. Hare, X. Du, Y. Chen, H. Xiong, C. Ma, L. Leng, L.H. Young, W.L. Jorgensen, J. Li, R. Bucala, Limiting cardiac ischemic injury by pharmacological augmentation of macrophage migration inhibitory factor-AMP-activated protein kinase signal transduction, Circulation, 128 (2013) 225-236.
[19] H. Chen, W. Xia, M. Hou, LncRNA-NEAT1 from the competing endogenous RNA network promotes cardioprotective efficacy of mesenchymal stem cell-derived exosomes induced by macrophage migration inhibitory factor via the miR-142-3p/FOXO1 signaling pathway, Stem cell research & therapy, 11 (2020) 31.
[20] U. Gezer, E. Ozgur, M. Cetinkaya, M. Isin, N. Dalay, Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes, Cell biology international, 38 (2014) 1076-1079.
[21] Y. Liu, C. Duan, W. Liu, X. Chen, Y. Wang, X. Liu, J. Yue, J. Yang, X. Zhou, Upregulation of let-7f-2-3p by long noncoding RNA NEAT1 inhibits XPO1-mediated HAX-1 nuclear export in both in vitro and in vivo rodent models of doxorubicin-induced cardiotoxicity, Archives of toxicology, 93 (2019) 3261-3276.
[22] D.S. Li, J.L. Ainiwaer, I. Sheyhiding, Z. Zhang, L.W. Zhang, Identification of key long non-coding RNAs as competing endogenous RNAs for miRNA-mRNA in lung adenocarcinoma, European review for medical and pharmacological sciences, 20 (2016) 2285-2295.
[23] L. Penolazzi, E. Lambertini, L.S. Bergamin, T. Roncada, P. De Bonis, M. Cavallo, R. Piva, MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells, Aging, 10 (2018) 2001-2015.
[24] D.K. Singla, T.A. Johnson, Z. Tavakoli Dargani, Exosome Treatment Enhances Anti-Inflammatory M2 Macrophages and Reduces Inflammation-Induced Pyroptosis in Doxorubicin-Induced Cardiomyopathy, Cells, 8 (2019).
[25] L. Zhuang, W. Xia, M. Hou, Coculturing with hypoxia preconditioned mesenchymal stem cells as a new strategy for the prevention of irradiationinduced fibroblasttomyofibroblast transition, Oncology reports, 42 (2019) 1781-1792.
[26] Y. Hu, W. Xia, M. Hou, Macrophage migration inhibitory factor serves a pivotal role in the regulation of radiation-induced cardiac senescencethrough rebalancing the microRNA-34a/sirtuin 1 signaling pathway, International journal of molecular medicine, 42 (2018) 2849-2858.
[27] A. Raso, E. Dirkx, L.E. Philippen, A. Fernandez-Celis, F. De Majo, V. Sampaio-Pinto, M. Sansonetti, R. Juni, H. El Azzouzi, M. Calore, N. Bitsch, S. Olieslagers, M. Oerlemans, M.M. Huibers, R.A. de Weger, Y.J. Reckman, Y.M. Pinto, L. Zentilin, S. Zacchigna, M. Giacca, P.A. da Costa Martins, N. Lopez-Andres, L.J. De Windt, Therapeutic Delivery of miR-148a Suppresses Ventricular Dilation in Heart Failure, Molecular therapy : the journal of the American Society of Gene Therapy, 27 (2019) 584-599.
[28] W. Xia, L. Zhuang, X. Deng, M. Hou, Long noncoding RNAp21 modulates cellular senescence via the Wnt/betacatenin signaling pathway in mesenchymal stem cells, Molecular medicine reports, 16 (2017) 7039-7047.
[29] W. Xia, F. Zhang, C. Xie, M. Jiang, M. Hou, Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells, Stem cell research & therapy, 6 (2015) 82.
[30] T. Crepin, C. Carron, C. Roubiou, B. Gaugler, E. Gaiffe, D. Simula-Faivre, C. Ferrand, P. Tiberghien, J.M. Chalopin, B. Moulin, L. Frimat, P. Rieu, P. Saas, D. Ducloux, J. Bamoulid, ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 15 (2015) 1028-1038.
[31] Z. Xie, W. Xia, M. Hou, Long intergenic noncoding RNAp21 mediates cardiac senescence via the Wnt/betacatenin signaling pathway in doxorubicin-induced cardiotoxicity, Molecular medicine reports, 17 (2018) 2695-2704.
[32] K. Wang, B. Long, L.Y. Zhou, F. Liu, Q.Y. Zhou, C.Y. Liu, Y.Y. Fan, P.F. Li, CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation, Nature communications, 5 (2014) 3596.
[33] H. Yang, P. Liu, J. Zhang, X. Peng, Z. Lu, S. Yu, Y. Meng, W.M. Tong, J. Chen, Long noncoding RNA MIR31HG exhibits oncogenic property in pancreatic ductal adenocarcinoma and is negatively regulated by miR-193b, Oncogene, 35 (2016) 3647-3657.
[34] G.S. Markopoulos, E. Roupakia, M. Tokamani, G. Vartholomatos, T. Tzavaras, M. Hatziapostolou, F.O. Fackelmayer, R. Sandaltzopoulos, C. Polytarchou, E. Kolettas, Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts, Experimental gerontology, 96 (2017) 110-122.
[35] O. C, Z. S, X. C, Y. X, X. H, W. Z, L. Y, W. ZS, Precision-Guided Missile-Like DNA Nanostructure Containing Warhead and Guidance Control for Aptamer-Based Targeted Drug Delivery into Cancer Cells in Vitro and in Vivo, 142 (2020) 1265-1277.
[36] H. D, W. Y, Z. J, D. X, Z. T, C. J, T. B, W. Y, C. F, The Tumor-Suppressive Human Circular RNA CircITCH Sponges miR-330-5p to Ameliorate Doxorubicin-Induced Cardiotoxicity Through Upregulating SIRT6, Survivin, and SERCA2a, (2020).
[37] S. Gao, Q. Song, J. Liu, X. Zhang, X. Ji, P. Wang, E2F1 mediates the downregulation of POLD1 in replicative senescence, Cellular and molecular life sciences : CMLS, 76 (2019) 2833-2850.
[38] R. Anderson, A. Lagnado, D. Maggiorani, A. Walaszczyk, E. Dookun, J. Chapman, J. Birch, H. Salmonowicz, M. Ogrodnik, D. Jurk, C. Proctor, C. Correia-Melo, S. Victorelli, E. Fielder, R. Berlinguer-Palmini, A. Owens, L.C. Greaves, K.L. Kolsky, A. Parini, V. Douin-Echinard, N.K. LeBrasseur, H.M. Arthur, S. Tual-Chalot, M.J. Schafer, C.M. Roos, J.D. Miller, N. Robertson, J. Mann, P.D. Adams, T. Tchkonia, J.L. Kirkland, J. Mialet-Perez, G.D. Richardson, J.F. Passos, Length-independent telomere damage drives post-mitotic cardiomyocyte senescence, The EMBO journal, 38 (2019).
[39] L. Lin, L. Du, The role of secreted factors in stem cells-mediated immune regulation, Cellular immunology, 326 (2018) 24-32.
[40] J.S. Schorey, C.V. Harding, Extracellular vesicles and infectious diseases: new complexity to an old story, The Journal of clinical investigation, 126 (2016) 1181-1189.
[41] E. Aix, A. Gallinat, I. Flores, Telomeres and telomerase in heart regeneration, Differentiation; research in biological diversity, 100 (2018) 26-30.
[42] N. Lozano-Vidal, D.I. Bink, R.A. Boon, Long noncoding RNA in cardiac aging and disease, Journal of molecular cell biology, 11 (2019) 860-867.
[43] Y. Wang, S.B. Hu, M.R. Wang, R.W. Yao, D. Wu, L. Yang, L.L. Chen, Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria, Nature cell biology, 20 (2018) 1145-1158.
[44] T. Yamazaki, S. Souquere, T. Chujo, S. Kobelke, Y.S. Chong, A.H. Fox, C.S. Bond, S. Nakagawa, G. Pierron, T. Hirose, Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation, Molecular cell, 70 (2018) 1038-1053.e1037.
[45] L. Slade, D. Biswas, F. Ihionu, Y. El Hiani, P.C. Kienesberger, T. Pulinilkunnil, A lysosome independent role for TFEB in activating DNA repair and inhibiting apoptosis in breast cancer cells, The Biochemical journal, 477 (2020) 137-160.
[46] R. Guo, X. Ye, J. Yang, Z. Zhou, C. Tian, H. Wang, H. Wang, H. Fu, C. Liu, M. Zeng, J. Yang, L. Liu, Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells, Nature communications, 9 (2018) 2620.
[47] P. Lin, D.Y. Wen, Q. Li, Y. He, H. Yang, G. Chen, Genome-Wide Analysis of Prognostic lncRNAs, miRNAs, and mRNAs Forming a Competing Endogenous RNA Network in Hepatocellular Carcinoma, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 48 (2018) 1953-1967.
[48] J. Schulz, P. Takousis, I. Wohlers, I.O.G. Itua, V. Dobricic, G. Rucker, H. Binder, L. Middleton, J.P.A. Ioannidis, R. Perneczky, L. Bertram, C.M. Lill, Meta-analyses identify differentially expressed micrornas in Parkinson's disease, Annals of neurology, 85 (2019) 835-851.
[49] S. Binas, M. Knyrim, J. Hupfeld, U. Kloeckner, S. Rabe, S. Mildenberger, K. Quarch, N. Stratz, D. Misiak, M. Gekle, C. Grossmann, B. Schreier, miR-221 and -222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density, Cellular and molecular life sciences : CMLS, (2019).
[50] A. Shirakabe, Y. Ikeda, S. Sciarretta, D.K. Zablocki, J. Sadoshima, Aging and Autophagy in the Heart, Circulation research, 118 (2016) 1563-1576.
[51] M.S. Bonkowski, D.A. Sinclair, Slowing ageing by design: the rise of NAD(+) and sirtuin-activating compounds, Nature reviews. Molecular cell biology, 17 (2016) 679-690.
[52] K. Shimizu, N. Quillinan, J.E. Orfila, P.S. Herson, Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels, Experimental neurology, 275 Pt 1 (2016) 78-83.
[53] M. Sarikhani, S. Maity, S. Mishra, A. Jain, A.K. Tamta, V. Ravi, M.S. Kondapalli, P.A. Desingu, D. Khan, S. Kumar, S. Rao, M. Inbaraj, A.S. Pandit, N.R. Sundaresan, SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis, The Journal of biological chemistry, 293 (2018) 5281-5294.
[54] H.S. Kim, A. Vassilopoulos, R.H. Wang, T. Lahusen, Z. Xiao, X. Xu, C. Li, T.D. Veenstra, B. Li, H. Yu, J. Ji, X.W. Wang, S.H. Park, Y.I. Cha, D. Gius, C.X. Deng, SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity, Cancer cell, 20 (2011) 487-499.
[55] X. Tang, X.F. Chen, N.Y. Wang, X.M. Wang, S.T. Liang, W. Zheng, Y.B. Lu, X. Zhao, D.L. Hao, Z.Q. Zhang, M.H. Zou, D.P. Liu, H.Z. Chen, SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy, Circulation, 136 (2017) 2051-2067.
[56] D. Liu, Z. Ma, S. Di, Y. Yang, J. Yang, L. Xu, R.J. Reiter, S. Qiao, J. Yuan, AMPK/PGC1alpha activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis, Free radical biology & medicine, 129 (2018) 59-72.