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Abstract

Background
It has been reported that metal exposure is associated with the risk of diabetes, but the results are inconsistent.The relationship
between diabetes and a single metal might be attenuated or strengthened due to the complex interactions of metals and the chronic
diseases comorbidity (especially in the elderly). However, the evidence of multiple metal exposure effect in participants with diabetes
only is limited, particularly in the elderly. The present case-control study of 188 diabetic and 376 healthy participants aimed to evaluate
the potential relationships between the concentrations of 9 metals in urine and the risk of diabetes and to access the interactive
effects of metals in Chinese community-dwelling elderly.

Methods
The urine levels of 9 metals (cobalt, zinc, copper, arsenic, molybdenum, cadmium, tellurium, thallium, lead) were detected by
inductively coupled plasma mass spectrometry (ICP-MS) in 564 adults recruited from Yinchuan Community Health Service Center
(Yinchuan, China).Logistic regression and restricted cubic spline (RCS) analysis were used to explore the associations and dose-
response relationships of urine metals with diabetes. To analysis of multi-metal exposures and diabetes risk, weighted quantile sum
regression Models (WQS) and the Bayesian Kernel Machine Regression (BKMR) model were applied.

Results
The concentrations of cobalt, zinc, copper, arsenic, molybdenum, cadmium, tellurium, thallium and lead were higher in the diabetes
group (p < 0.05). In logistic regression analysis, we found that the OR values of urinary cobalt, zinc, copper, arsenic, molybdenum,
cadmium, tellurium, thallium, and lead quartiles showed an increasing trend. In the single-metal model, the adjusted ORs(95%CI) in the
highest quartiles were 2.94(1.72,5.05) for cobalt,5.05 (2.85,8.93) for zinc, 2.28(1.32,3.91) for copper, 1.99(1.15,3.43) for arsenic,
2.61(1.54,4.43) for molybdenum, 2.89(1.68,4.96) for cadmium, 2.52(1.44,4.41) for tellurium, 3.53(2.03,6.12) for thallium and
2.18(1.27,3.75) for lead compared with the lowest quartile. And in the RCS model, the concentrations of cobalt, zinc, copper, arsenic,
molybdenum, cadmium, tellurium, thallium and lead showed a nonlinear dose-response relationship with diabetes risk (P-overall < 
0.05,P-nonlinear < 0.05). The results from multi-pollutant models all indicated that metal mixture was positively associated with the
risk of diabetes, and Zn and Tl were the major contributors to the combined effect.

Conclusion
Elevated levels of urine cobalt, zinc, copper, arsenic, molybdenum, cadmium, tellurium, thallium and lead were associated with
increased risk of diabetes. There is a positive interaction between Zn and Tl on diabetes.

1. Introduction
Diabetes mellitus is a group of metabolic diseases caused by carbohydrate, protein and fat metabolism disorder, insulin secretion or
its biological function impairment particularly(Ogurtsova et al., 2017; Stumvoll, Goldstein, & van Haeften, 2005). It is currently a
common chronic non-communicable disease, mainly characterized by hyperglycemia(Bruno, 2022; Vaiserman, 2015). The 2019 global
burden of disease study (GBD 2019) showed that diabetes rose from the 20th (in 1990) to the 8th (in 2019) leading cause of death(G.
D. a. I. Collaborators, 2020). And the disability burden caused by diabetes had the highest increase (increase by 147.9% from 1990 to
2019) of all(G. R. F. Collaborators, 2020). According to the data released by the World Diabetes Federation (IDF) in November 2021,
there were currently 537 million adults (20–79) with diabetes worldwide, accounting for 10.5% of the world 's population, while the
number of Chinese patients was 141 million, accounting for 13% of the Global diabetes patients(International Diabetes Federation,
2021).The number of Chinese adults suffering from diabetes ranked �rst in the world. In addition, the aging trend of diabetes is
increasing(Zheng, Ley, & Hu, 2018). In China, as the proportion of the elderly over 60-years old increased year by year, the survey from
2015 to 2017 found that the prevalence of diabetes in the elderly population over 60 years old was close to or exceeds 30%(Li et al.,
2020). Therefore, the health burden brought by diabetes poses major challenges to individuals, families and society, and has become a
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serious global public health problem(Zheng et al., 2018). It should be our concern to identify potential risk factors for health
intervention.

Previous studies have demonstrated that poor lifestyle behaviors, environmental hazardous agents and genetic susceptibility exert a
common in�uence in the development of diabetes. But in recent years, we have found that environmental factors are more important
than genetic factors in the pathogenesis of diabetes(Favé et al., 2018). Compared with other environmental pollutants, metals exist
widely in the atmosphere, soil and water(Chowdhury, Mazumder, Al-Attas, & Husain, 2016; Rai, Lee, Zhang, Tsang, & Kim, 2019; B.
Wang et al., 2018). However, metals are non biodegradable in the environment and can exist in the environment continuously, causing
serious health problems such as accumulation and toxicity in animals(Rajkowska & Protasowicki, 2013). Experimental studies have
con�rmed that exposure to the toxic metals could cause insulin resistance and abnormal glucose metabolism by inducing oxidation
stress, in�ammation, and interrupting the enzyme activation(González-Villalva et al., 2016). However, the optimal levels of metals are
uncertain and still need to be investigated, since increasing epidemiology studies have suggested that de�ciency or excess of metals is
associated with diabetes (Ge et al., 2021; Lv et al., 2021; X. Wang, Mukherjee, et al., 2020; Xu, Zhou, Liu, Tan, & Cai, 2013; A. Yang, Liu,
Cheng, Pu, Dai, et al., 2017).

However, most of the current studies have focused on the correlation between single metals and diabetes(He, Fang, Yu, Shen, & Li,
2020). In our daily life, we often contacted with multiple metals, and we should consider the synergistic effects of them(Ge et al.,
2021). Few epidemiology studies have explored the relationships between multiple metal exposures and the prevalence of diabetes,
while the results were controversial(J. Zhang et al., 2022). The inconsistent conclusion of the relationship between metal exposure and
diabetes might be due to the different metal exposure levels of different study populations(Feng et al., 2015; Ji et al., 2021; J. Zhang et
al., 2022). For example, a study of occupational population found that the copper and zinc levels in urinary of coke oven workers were
positively associated with the risk of diabetes and hyperglycemia(B. Liu et al., 2016). However, in a general population study in rural
China, non-linear inverted U-shaped associations were found between fasting blood glucose levels and zinc, lead and copper in urine(J.
Zhang et al., 2022). People are typically exposed to multiple metals in their daily lives, and the relationship between diabetes and a
single metal may be weakened or strengthened due to the complex interactions between metals and multiple chronic diseases in the
population (especially in the elderly) (Guo et al., 2022).

However, evidence on the relationship between multiple metal exposures and the prevalence of diabetes is limited, especially in the
elderly. Therefore, based on the elderly cohort in Yinchuan, we performed a case-control analysis to explore the relationships between 9
metals levels in urine and the prevalence of diabetes only in community-dwelling elderly of Yinchuan in China and access the
interactive effects of metals in the diabetic population.

2. Methods And Materials

2.1 Study population
This cross-sectional study randomly selected two community health centers in two districts and two counties of Yinchuan City from
June 2020 to October 2020, and recruited 500 subjects aged 60 years or older in each community health center through routine
physical examination, a total of 4144 people.Based on the chronic disease cohort of the urban elderly in Yinchuan, the study
population included 188 diabetic patients and 376 healthy individuals. At the same time, we included age (± 5 years) and gender to
match diabetic patients with healthy individuals who were examined at the same time with a frequency of 1:2. In the inclusion criteria,
we excluded participants with incomplete data, cerebrovascular disease, neurological disease and coronary heart disease, malignant
tumor, hypertension, hyperlipidemia and related occupational metal exposure history.

This study was also approved by the Ethics Committee of Ningxia Medical University, No.2020-099.All study subjects have signed the
informed consent form.

2.2 Information collection
After obtaining informed consent, all the participants underwent questionnaire survey, physical examination and biological sample
collection. Questionnaires were conducted by the trained interviewers. The general questionnaire included demographics and lifestyle
(Diet, smoking, alcohol, physical activity).We recorded the participants’ history of hypertension, hyperlipidemia, coronary heart disease
and other disease from the Electronic Healthcare Record system. All participants underwent a physical examination which included
anthropometry, heart rate and blood pressure measurements, and examination of tonsil, lung, heart, liver, spleen and kidney. Standing
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height, body weight, waist circumference, and hip circumference were measured when the participants standing with light indoor
clothing and without shoes. 10 mL early morning urine for each participant was collected, aliquoted and stored at − 20°C. A total of 10
mL fasting blood sample for each participant [1×5 mL ethylene diamine tetra acetic acid (EDTA) anticoagulation tubes and 1×5 mL
coagulation tube for serum] was collected. Biochemical analysis of blood included fasting blood glucose, blood lipids, alanine
aminotransferase (ALT), Aspartate aminotransferase (AST), total bilirubin (TBIL) and serum creatinine (Scre) were immediately
determined in the clinical laboratory. The remaining blood was separated into plasma (3 tubes, 500 µL per tube), serum (3 tubes, 500
µL per tube), and whole blood cells (1 tubes, 500 µL per tube), then stored at − 80°C for further analyses.

2.3 De�nition of diabetes
Diabetes: According to the Chinese Guidelines for the Prevention and Treatment of Type 2 Diabetes (2020 Edition), participants with
one of the following items were de�ned as diabetes:

Random blood glucose ≥ 11.1 mmol/L;

Fasting blood glucose ≥ 7.0 mmol/L or diagnosed with diabetes and taking medication;

Oral glucose tolerance test 2h blood glucose (OGTT) ≥ 11.1 mmol/L;

Glycated hemoglobin (HbA1c) ≥ 6.5%.

2.4 Determination of Metal Levels in Urine
Urinary levels of 9 metals including cobalt (Co), zinc (Zn), copper (Cu), arsenic (As), molybdenum (Mo), cadmium (Cd), tellurium (Te),
thallium (Tl ) and lead (Pb) were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent 7800x).Before
determination, frozen urine sample were thawed at room temperature for dissolution and centrifuged at 3000r / min and 4 ℃ for 3
minutes. Absorb 0.5mL of supernatant into the polytetra�uoron microwave digestion tank and add 2.5mL 67% (v/v) HNO3 (Kermel,
Tianjin China). Tighten the tank cover, putting the tank into the microwave digestion instrument (CEM, MARS 6 CLASSIC) evenly and
symmetrically for 40min. After cooling completion, open the tank and place into the electric acid driving instrument (LabTech) to drive
the acid to 0.5ml (130 ℃, 150min). Then transfer to the polypropylene centrifugal tube diluting with ultrapure water (18.2MΩ) to
2.5ml. Finally mix and determine. Undetected samples were �lled with data at 1/2 of the detection limit.

2.5 Quality control/quality assurance
To ensure the accuracy of the present method, one urine quality control sample (ClinChekR-Control urine, level ) and three random
blank samples were processed every 28 samples. Besides, the recovery values for 9 metals ranged from 85.20–110.00%
(Supplemental Table S1), with the intra-assay standard deviations (RSDs) ranging from 1.04–5.20% and the Inter-assay standard
deviations (RSDs) ranging from 2.06–13.21% (Supplemental Table S2).The limits of detection (LODs) for all metals were in the range
of 0.00113µg/L(Co) to 0.8589µg/L(Zn) (Supplemental Table S3). The detection rates were in the range of 87.93% (Te) to 99.50% (Mo).
The undetected samples were assigned a value of one-half the LOD. The concentrations of urinary creatinine (mQi-crograms per liter,
g/L) were measured to adjust for urine dilution by automated clinical chemistry analyzer (Beckman Coulter, Au480).

2.6 Covariates
In this study, we selected the covariates we are interested in on the basis of reference to previous literature(Guo et al., 2022; Huang et
al., 2022).The covariates of interest included age(continuous variable), sex(male/female), smoking status, alcohol drinking status,
dietary habit, exercise frequency, BMI (body mass index,continuous variable), TC(total cholesterol,continuous
variable),TG(triglyceride,continuous variable), HDL-c (high-density lipoprotein cholesterol,continuous variable), LDL-c (low-density
lipoprotein cholesterol,continuous variable),SBP(systolic blood pressure,continuous variable) and DBP (diastolic blood
pressure,continuous variable).Based on baseline information in questionnaires,smoking status was further categorized into
never,former and active; alcohol drinking status was further categorized into never,

2.7 Statistical analysis
General demographic information and metal concentrations were described as mean ± standard deviation, frequencies and
percentages and medians. Differences between diseased and non-diseased groups were analyzed by t-test, chi-square test(When the
theoretical frequency < 5, Fisher's exact test was used), and Wilcoxon rank-sum test based on data distribution. All metal
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concentrations were natural log transformed to approximate a normal distribution. And Spearman rank correlation analysis was used
to evaluate the correlation between various metals in urine. To control for concentration dilution in urine, we also normalized by
adjusting for creatinine.

We divided the urinary metal concentrations into quartiles of the control group, and the single-metal logistic regression model was
conducted to estimate odds ratios (ORs) with 95% con�dence intervals (CIs) for the relationships between urinary metals and the
prevalence of diabetes.Model 1 has not been adjusted.The adjusting factors of model 2 included age, gender, smoking status, drinking
status, dietary habits, exercise frequency, BMI (kg/m2), total cholesterol(TC), triglycerides(TG), low density lipoprotein(LDL), high
density lipoprotein(HDL), systolic blood pressure, diastolic blood pressure Wait. The trend test was performed using Logistic regression
analysis. Moreover, relationships of urine metal levels with diabetes were further validated by the linear model in which metal levels
were evaluated as continuous variables. The ln-transformed urine metal levels were divided by ln-transformed IQRs(Interquartile
Ranges) before analysis. The multicollinearity of the model was calculated using the variance in�ation factor (VIF). The dose response
relationship between each metal concentration and diabetes was analyzed using the restricted cubic spline (RCS) regression
model.The 10th percentiles were assigned as the reference values (OR = 1.00), with knots at the 10th, 50th and 90th percentiles of the
concentrations,respectively.

We also applied weighted quantile sum regression Models (WQS) to assess the effect of urinary metal mixture, and the weight of each
metal on incident diabetes risk.WQS index comprised a weighted sum of individual metal concentrations, which were ln-transformed. A
weighted index further evaluated the importance of each variable after considering the collinearity or multi-dimensionality of urinary
metal. After bootstrapping 500 times, the associations between WQS indices and risk of incident diabetes were evaluated with
adjustment for the same covariates as in Model 2. Furthermore, because WQS regression cannot accommodate the positive and
negative modes simultaneously, we run the models twice in both positive and negative modes, and the variable weights of the
assumed mode were deemed valid only when the association between the WQS index and incident diabetes risk was statistically
signi�cant. In this study,we randomly partitioned the full dataset into 40% of the data were applied as the test set and the remaining
60% as the validation set, and repeated WQS regression 100 times to simulate a distribution of validated results from the resampling
populati.

Because of the potential for interaction effects and nonlinear relationships between elements, we used a Bayesian Kernel Machine
Regression (BKMR) model to assess the overall impact of multiple metals in complex environments. We used the Markov Chain Monte
Carlo algorithm for 10,000 iterations through the BKMR model, treating the diabetes parameter as a dichotomous outcome. In this
model, statistics quantifying the corresponding exposure measures are available to provide insight into the cumulative effects of
mixtures. The following estimates were reported: a) the overall association between metal mixtures and each outcome when �xing the
metal mixtures at a particular percentile compared with the median; b) the association between an interquartile range (IQR, from 25th
to 75th percentile) increase in each individual metal exposure and each outcome when �xing all other metal exposures at 25th, 50th or
75th percentiles; c) the univariate exposure–response relationship between each metal exposure and each outcome when �xing all
other metal exposures at their medians; d) when all other metals are �xed at the median value, the bivariate exposure dose response
relationship between one metal and the outcome with the concentration level of the other metal at the 25th, 50th and 75th percentiles
respectively.

In this study, Stata MP17.0 and R4.1.3 were used for analysis, and two-sided P < 0.05 was considered statistically signi�cant.

3. Results

3.1 Characteristics of study population
Table 1 summarized the general characteristics of the 564 participants (188 diabetics and 376 healthy subjects). The mean age of the
diabetic group was 70.93 ± 4.87 years, and the mean age of the healthy group was 70.21 ± 5.13 years. The male to female ratio was
the same in both groups. Table 1 shows that there were no differences at baseline in age, sex, alcohol drinking status,exercise
frequency, TC, LDL-c ,HDL-c and blood pressure between cases and controls. However, there were signi�cant differences between the
cases and controls groups in smoking status, dietary habit, BMI and TG(All P < 0.05).
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Table 1
General characteristics among the study population (n = 564)

Variable Total Non-diabetes Diabetes P

N(%) 564(100%) 376(66.67%) 188(33.33%)    

Age, years(X ± S) 70.45 ± 5.05 70.21 ± 5.13 70.93 ± 4.87 -1.59 0.112

Gender(%)       0.356 0.551

Male 298(52.84) 202(53.72) 96(51.06)    

Female 266(47.16) 174(46.28) 92(48.94)    

Smoking status(%)       6.274 0.043*

Never 425(75.35) 287(76.33) 138(73.40)    

Former 65(11.52) 35(9.31) 30(15.96)    

Active 74(13.12) 34(14.36) 20(10.64)    

Alcohol Drinking status(%)       0.421 0.399

Never 450(79.79) 303(80.59) 147(78.19)    

94(16.67) 61(16.22) 33(17.55)    

≥once a week 9(1.60) 7(1.86) 2(1.06)    

Everyday 11(1.95) 5(1.33) 6(3.19)    

Dietary habit(%)       0.039 0.041*

Meat-vegetables balanced diet 510(90.43) 332(88.30) 178(94.68)    

Plant-based diet 51(9.04) 41(10.90) 10(5.32)    

Meat-based diet 3(0.53) 3(0.80) 0(0.00)    

Exercise frequency(%)       2.347 0.504

Every day 419(74.29) 274(72.87) 145(77.13)    

≥once a week 32(5.67) 20(5.32) 12(6.38)    

28(4.96) 20(5.32) 8(4.26)    

Never 85(15.07) 62(16.49) 23(12.23)    

BMI(X ± S) 24.56 ± 3.38 24.24 ± 3.46 25.20 ± 3.12 -3.205 0.001*

TC, mmol/L(X ± S) 4.61 ± 0.78 4.63 ± 0.77 4.58 ± 0.81 0.662 0.508

TG, mmol/L(X ± S) 1.37 ± 0.45 1.33 ± 0.45 1.45 ± 0.44 -2.838 0.005*

LDL-c, mmol/L(X ± S) 2.68 ± 0.68 2.65 ± 0.71 2.72 ± 0.62 -1.070 0.285

HDL-c, mmol/L(X ± S) 1.36 ± 0.29 1.35 ± 0.30 1.36 ± 0.27 -0.460 0.646

Blood pressure,(mm/Hg)(X ± S)          

SBP 125.37 ± 9.36 125.11 ± 9.93 125.88 ± 8.08 -0.918 0.359

DBP 76.20 ± 6.83 76.04 ± 6.97 76.51 ± 6.54 -0.778 0.437

3.2 Distributions of the urinary metals
The concentrations of 9 urinary metals standardized by creatinine (µg/g Cr) among the two groups are displayed in Table 2. After
adjustment for urinary creatinine levels, we found higher urinary zinc,molybdenum,tellurium,arsenic and copper exposures and lower

x
2/t
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cobalt, cadmium, thallium and lead exposures. Compared with the control group, the urine samples of the diabetes group had
signi�cantly higher concentrations of cobalt, zinc, copper, arsenic, molybdenum, cadmium, tellurium, thallium and lead (All P < 0.05).

Table 2
Distributions of metal concentrations standardized by creatinine (µg/g Cr) in urine

Metals Total Non-Diabetes Diabetes Z P-value

Co 0.225(0.126,0.414) 0.205(0.118,0.362) 0.278(0.178,0.550) -4.800 0.000*

Zn 452.606(218.421,844.530) 356Non-.019(179.899,603.181) 690.021(396.721,1202.767) -7.200 0.000*

Cu 10.898(6.741,17.354) 10.162(6.182,15.547) 13.117(8.118,21.438) -3.566 0.000*

As 55.656(30.667,96.546) 51.113(28.474,91.766) 64.181(40.299,112.691) -3.073 0.002*

Mo 73.158(47.074,124.118) 64.915(43.011,114.296) 94.152(54.164,150.624) -4.349 0.000*

Cd 0.407(0.217,0.706) 0.370(0.203,0.608) 0.486(0.254,1.076) -4.197 0.000*

Te 56.186(19.892,126.303) 46.888(16.248,103.815) 74.721(37.878,159.617) -4.783 0.000*

Tl 0.206(0.136,0.316) 0.185(0.118,0.292) 0.254(0.170,0.391) -5.227 0.000*

Pb 0.863(0.431,1.657) 0.820(0.368, 1.548) 0.973(0.617,2.040) -3.420 0.001*

Note: The above variables are represented by 50th (25th, 75th),When *P < 0.05 indicated that the difference had statistically
signi�cant compared with the healthy control group.

Correlation analysis was performed after ln-transformation of creatinine-corrected metal concentrations. Supplemental Fig.S1 depicts
the pairwise metal correlation coe�cients calculated by Spearman’s rank correlation analysis. Almost all metals show positive
correlations ranging from 0.22 to 0.57. The correlation between molybdenum and arsenic was strongest (r = 0.57, P < 0.05).

3.3 Association of metals with diabetes prevalence
The relationship between urinary metal concentration levels and the prevalence of diabetes was shown in Table 3. In model 2 with
additional adjustment, the adjusted ORs (95% CI) in the second quartile were 1.93(1.10,3.38)for Tl and 1.83(1.06,3.17)for Pb in the
second quartile respectively, compared with the lowest quartile.In model 2, the adjusted ORs (95% CI) were 2.44(1.38,4.29)for Zn,
1.90(1.11,3.23)for Mo, 2.68(1.53,4.70)for Te, 2.13(1.21,3.72)for Tl and 1.91(1.10,3.32)for Pb in the third quartile respectively, compared
with the lowest quartile. In model 2, the adjusted ORs (95% CI) in the fourth quartile were 2.94(1.72,5.05)for Co, 5.05(2.85,8.93)for Zn,
2.28(1.32,3.91)for Cu, 1.99(1.15,3.43)for As, 2.61(1.54,4.43)for Mo, 2.89(1.68,4.96)for Cd, 2.52(1.44,4.41)for Te, 3.53(2.03,6.12)for Tl
and 2.18(1.27,3.75)for Pb respectively, compared with the lowest quartile.
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Table 3
Odds ratios (95% con�dence intervals) for diabetes associated with urinary metal quartiles

  Metals Quartiles of urinary metals P-
trenda

Linear modelb VIF

Q1 Q2 Q3 Q4

Level(µg/g Cr) Co ≤ 0.13 0.13–0.23 0.23–0.41 >0.41      

n(Cases/controls)   33/108 42/99 45/96 68/73      

Model 1   1.00 1.39(0.82,2.36) 1.53(0.91,2.60) 3.05(1.83,5.08) 0.00 1.42(1.21,1.67)  

Model 2   1.00 1.31(0.75,2.28) 1.40(0.81,2.42) 2.94(1.72,5.05) 0.00 1.40(1.18,1.66) 1.36

Level(µg/g Cr) Zn ≤ 
218.42

218.42-452.61 452.61-844.53 >844.53      

n(Cases/controls)   27/114 30/111 53/88 78/63      

Model 1   1.00 1.14(0.64,2.04) 2.54(1.48,4.37) 5.23(3.06,8.93) 0.00 1.82(1.53,2.16)  

Model 2   1.00 1.07(0.58,1.96) 2.44(1.38,4.29) 5.05(2.85,8.93) 0.00 1.81(1.51,2.18) 1.36

Level(µg/g Cr) Cu ≤ 6.74 6.74–10.90 10.90-17.35 >17.35      

n(Cases/controls)   31/110 46/95 50/91 61/80      

Model 1   1.00 1.72(1.01,2.92) 1.95(1.15,3.30) 2.71(1.61,4.55) 0.00 1.36(1.16,1.59)  

Model 2   1.00 1.49(0.86,2.58) 1.71(0.99,2.95) 2.28(1.32,3.91) 0.00 1.29(1.09,1.53) 1.36

Level(µg/g Cr) As ≤ 
30.67

30.67–55.66 55.66–96.55 >96.55      

n(Cases/controls)   35/106 46/95 52/89 55/86      

Model 1   1.00 1.47(0.87,2.47) 1.77(1.06,2.96) 1.94(1.16,3.23) 0.01 1.24(1.06,1.45)  

Model 2   1.00 1.46(0.85,2.52) 1.65(0.96,2.81) 1.99(1.15,3.43) 0.01 1.24(1.05,1.47) 1.36

Level(µg/g Cr) Mo ≤ 
47.07

47.07–73.16 73.16-124.12 >124.12      

n(Cases/controls)   34/107 36/105 53/88 65/76      

Model 1   1.00 1.08(0.63,1.85) 1.90(1.13,3.17) 2.69(1.62,4.48) 0.00 1.43(1.22,1.68)  

Model 2   1.00 1.10(0.63,1.91) 1.90(1.11,3.23) 2.61(1.54,4.43) 0.00 1.41(1.20,1.67) 1.35

Level(µg/g Cr) Cd ≤ 0.22 0.22–0.41 0.41–0.71 >0.71      

n(Cases/controls)   35/106 41/100 46/95 66/75      

Model 1   1.00 1.24(0.73,2.10) 1.47(0.87,2.47) 2.67(1.61,4.42) 0.00 1.38(1.17,1.62)  

Model 2   1.00 1.32(0.76,2.31) 1.42(0.82,2.45) 2.89(1.68,4.96) 0.00 1.39(1.18,1.65) 1.36

Level(µg/g Cr) Te ≤ 
19.89

19.89–56.19 56.19–126.30 >126.30      

Note:Model 1 includes metals separately into the conditional logistic regression model without correction.

Model 2 included metals alone in the conditional logistic regression model, and adjusted for age, sex, smoking status, alcohol
drinking status, dietary habit, exercise frequency, BMI, TC,TG, HDL-c, LDL-c,SBP and DBP.

P-trenda was the ln-transformation of the median of each quantile as a continuous variable into the Logistic regression modeles.P-
value < 0.05*.

Linear modelb: The metal concentration transformed by the interquartile range was incorporated into the regression model,
representing the OR (95% CI) of increased.

VIF:variance in�ation factor.
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  Metals Quartiles of urinary metals P-
trenda

Linear modelb VIF

Q1 Q2 Q3 Q4

n(Cases/controls)   29/112 39/102 60/81 60/81      

Model 1   1.00 1.48(0.85,2.56) 2.86(1.69,4.85) 2.86(1.69,4.85) 0.00 1.45(1.23,1.71)  

Model 2   1.00 1.28(0.72,2.26) 2.68(1.53,4.70) 2.52(1.44,4.41) 0.00 1.41(1.19,1.68) 1.36

Level(µg/g Cr) Tl ≤ 0.14 0.14–0.21 0.21–0.32 >0.32      

n(Cases/controls)   29/112 45/96 48/93 66/75      

Model 1   1.00 1.81(1.05,3.11) 1.99(1.17,3.41) 3.40(2.01,5.75) 0.00 1.45(1.23,1.71)  

Model 2   1.00 1.93(1.10,3.38) 2.13(1.21,3.72) 3.53(2.03,6.12) 0.00 1.47(1.24,1.74) 1.36

Level(µg/g Cr) Pb ≤ 0.43 0.43–0.86 0.86–1.66 >1.66      

n(Cases/controls)   31/110 50/91 50/91 57/84      

Model 1   1.00 1.95(1.15,3.30) 1.95(1.15,3.30) 2.41(1.43,4.06) 0.00 1.29(1.10,1.51)  

Model 2   1.00 1.83(1.06,3.17) 1.91(1.10,3.32) 2.18(1.27,3.75) 0.00 1.25(1.06,1.48) 1.36

Note:Model 1 includes metals separately into the conditional logistic regression model without correction.

Model 2 included metals alone in the conditional logistic regression model, and adjusted for age, sex, smoking status, alcohol
drinking status, dietary habit, exercise frequency, BMI, TC,TG, HDL-c, LDL-c,SBP and DBP.

P-trenda was the ln-transformation of the median of each quantile as a continuous variable into the Logistic regression modeles.P-
value < 0.05*.

Linear modelb: The metal concentration transformed by the interquartile range was incorporated into the regression model,
representing the OR (95% CI) of increased.

VIF:variance in�ation factor.

The adjusted P values for trend test were signi�cant for Co, Zn, Cu, As, Mo, Cd, Te, Tl and Pb.The adjusted linear model also indicated
positive correlation of Co, Zn, Cu, As, Mo, Cd, Te, Tl and Pb with diabetes risk (Table 3).The VIF values of urinary Co, Zn, Cu, As, Mo, Cd,
Te, Tl and Pb were 1.36, 1.36, 1.36, 1.36, 1.35, 1.36, 1.36, 1.36 and 1.36, respectively.

3.4 Dose-response relationship between urinary metals and diabetes risk
We used restricted cubic splines to assess the dose-response relationship of each metal with diabetes risk. Non-linear associations
and increasing trends with diabetes risk were demonstrated for, as shown by the estimated curves in Fig. 1 (Co:P-overall < 0.001, P-
nonlinear = 0.015 ;Zn: P-overall < 0.001,P-nonlinear < 0.001;Cu:P-overall = 0.002,P-nonlinear < 0.001;As:P-overall = 0.007, P-nonlinear = 
0.018;Mo:P-overall < 0.001,P-nonlinear < 0.001;Cd:P-overall < 0.001,P-nonlinear < 0.001;Te:P-overall < 0.001,P-nonlinear < 0.001;Tl:P-
overall < 0.001,P-nonlinear = 0.001). Regarding the reverse U-shaped relation between predicted Pb and diabetes risk,the plot showed a
substantial increased of the risk within the lower range of predicted Pb,which reached the highest risk around 2.15 (µg/g Cr) and then
reduction thereafter(P-overall < 0.001,P-nonlinear < 0.001).

3.5 Analysis of multi-metal exposures and diabetes risk using WQS Model
We �rst used Wilcoxon rank-sum test to identify important diabetes-related elements in metals mixture. A total of 9 metals (cobalt,
zinc, copper, arsenic, molybdenum,tellurium, thallium and lead) have all been veri�ed to be signi�cantly with diabetes. Subsequently,we
included metals in the multivariate adjusted logistic regression analysis by quartile. Statistical test for linear trends was conducted by
modeling median values of metals quartiles as a continuous variable with adjustment for the same covariates.The result indicated
that there was a signi�cant linear trend between metals and diabetes risk (p for trend < 0.05).Moreover, we employed WQS regression
models to examine relationship between metal mixtures and diabetes risk. When analyzing positive relationship between metal
mixture and diabetes, a quartile increase in WQS index was signi�cantly associated with diabetes risk (OR: 2.77, 95% CIs: 1.92, 4.01).
As shown in Fig. 2A and Supplemental Table S4, the WQS index was predominated by Zn (0.265), followed by Tl(0.222), Te(0.212) and
Mo(0.134).When analyzing negative relationship between metal mixture and diabetes risk, a quartile increase in WQS index was
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signi�cantly associated with diabetes risk (OR: 2.01; 95% CI: 1.47, 2.76), and Cu made the largest single contribution (0.304) followed
by Co(0.297), As(0.253) and Pb(0.146)(Fig. 2B).

3.6 Analysis of multi-metal exposures and diabetes risk using BKMR Model
First, the PIP values of each metal exposure obtained from the BKMR model are summarized in Supplemental Table S5. Results
showed that Zn had the highest PIP in the total population (PIP = 1.000), followed by Tl(0.642) and Pb(0.574) above the threshold
value of 0.5. Furthermore, we constructed BKMR models to evaluate the joint effects of urinary metal levels on incident diabetes
risk.The effects of mixed metals, a single metal and metal-to-metal interaction on diabetes risk under the multi-metal exposure
scenario are shown in Fig. 3.The BKMR model was used for the global correlation analysis of the mixture. Figure 3A shows the
estimated difference in the probit of incident diabetes hazard when all the predictors are �xed to different percentiles, as compared
with when they are all �xed to the 50th percentile, supporting a strong and linear positive association of the whole mixture with
diabetes risk. Figure 3B shows the estimated change in diabetes risk as a particular metal increased from the 25th percentile to the
75th percentile when other metals were �xed at different percentiles (25th, 50th, or 75th percentile).We found that Zn and Tl displaying
a positive and signi�cant effect in this study.The association between Zn and Tl and diabetes risk appears stronger at lower
percentiles of other pollutants. In addition, we found that the effects of Zn and Tl on diabetes risk decreased as other metalsboth
increased from their 25th to their 75th percentiles. To further investigate the potential nonlinear exposure-response relationship
between speci�c metals and diabetes risk when other metals remained at the median concentration, we estimated both univariate and
bivariate exposure-response functions. Figure 3C demonstrated the univariate exposure-response functions and 95% credible intervals
(shaded area) for each pollutant with the other metals �xed at the median values. Results showed that the single metal exposure–
response relationship was basically consistent with the restricted cubic splines model. Zn, Tl and Te might have a potential positive
non-linear relationship with diabetes risk and Pb might have a reverse U-shaped non-linear relationship with diabetes risk. Finally, we
assessed the bivariate exposure–response functions for the metals to investigate the possible interactions(Fig. 3D).The slopes for
each pollutant are similar at varying levels of the other pollutants, suggesting a lack of statistically signi�cant interaction between
individual pollutants. When the concentrations of other metals were �xed at the median level, we found the interactions between
urinary Tl with Zn on diabetes risk with the slope changed for Tl when Zn increased from 25th to 75th percentile. The Tl exposure-
response curve gradually became steeper with the increase in Zn concentration ,indicating that a potential positive interactive effect
possibly occurred between Tl and Zn.

4. Discussion
During the past decades, extensive studies have evaluated the diabetes risk effect of long-term exposure to metals. However, few
studies excluding other chronic disease comorbidity factors and investigated the joint effects of pollutant mixture in diabetes risk.

In this study, multiple statistical strategies were implemented to comprehensively assess the effects of individual and mixed heavy
metal exposures on diabetes risk and to identify the metal elements in mixture that contribute signi�cantly to the positive association.
We found that urine Co, Zn, Cu, As, Mo, Cd, Te, Tl and Pb were positively related to diabetes risk, individually and as a mixture.The
dose-response relationships for the above metals were also validated in the RCS model, and the results were also stable for mixed
exposure and dose-response relationships.The major contributors to the diabetes associations of the mixture, however in WQS and
BKMR models, were Zn and Tl. A potential interaction effect between Zn and Tl was also observed in participants.

4.1 Zinc
Zinc is known to be an essential trace element for human growth and development, with important catalytic and regulatory
functions(Mammadova-Bach & Braun, 2019). Zinc cannot be stored in the body, so it requires daily intake to maintain basal levels and
support all its functions(Bonaventura, Benedetti, Albarède, & Miossec, 2015). The highest zinc content is in the islets, and zinc
accumulation in the cellular granules is regulated by Zn T8, the most highly expressed zinc transporter in pancreatic tissue and the
product of the SLC30A8 gene, which is responsible for transporting zinc from the cytoplasm to the insulin secretory granules(Cruz et
al., 2018). It was found that Zn T8-de�cient mice had impaired pancreatic β-cell function, reduced insulin secretion, low circulating
insulin levels, and impaired glucose tolerance(Wijesekara et al., 2010). Therefore, diabetes, insulin and zinc have a complex
relationship. Zn de�ciency leads to decreased insulin stability, thereby affecting the body’s plasma glucose level(Cruz et al., 2018).
Therefore, diabetic patients may take zinc-containing drugs in order to improve insulin levels and control blood glucose, resulting in
high urinary zinc levels in the body(Nazem, Asadi, Jabbari, & Allameh, 2019).
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The results of a cohort study of middle-aged women also showed that women with excessive urinary zinc may have an increased risk
of diabetes(X. Wang, Karvonen-Gutierrez, et al., 2020). In the present study, a nonlinear positive correlation was observed between
urinary Zn and diabetes risk, which was consistent with the results of previous studies(Kazi et al., 2008; A. Yang, Liu, Cheng, Pu, Cheng,
et al., 2017). This mechanism might be related to the loss of zinc in pancreatic beta cells, resulting in decreased insulin
secretion(Soleimanpour et al., 2010). Second, studies have con�rmed that zinc excretion is signi�cantly increased in diabetic patients,
and oral zinc supplementation was expected to provide adequate bene�t and protection in diabetic patients in this condition, and zinc
supplementation in type 2 diabetic patients increases serum zinc levels, improved blood glucose control and antioxidant capacity had
bene�cial effects, reduced the concentration of glycated hemoglobin, increased superoxide dismutase (superoxide dismutase, SOD)
expression level(Nazem et al., 2019).

4.2 Thallium
Thallium is a well-known highly toxic heavy metal. Because of its odourless, tasteless and water-soluble properties, the general
population is under the low-dose exposure through the consumption of contaminated water and food, as well as skin or respiratory
inhalation of polluted air chronically in their daily life(Kemnic & Coleman, 2022). As one of the most harmful heavy metals to
mammals and the priority pollutant determined by the United States Environmental Protection Agency, Tl is considered to be more
toxic than arsenic, nickel, mercury, lead or cadmium(Rodríguez-Mercado & Altamirano-Lozano, 2013).

However, there is some research evidence that thallium toxicity could induce reaction oxygen species (ROS) formation, and the
increased oxidative stress could cause tissue damage and organ dysfunction(Wu et al., 2019). Oxidative stress has been widely
proposed to be one of the underlying pathogenic mechanisms for insulin resistance and dysfunction of β-cell(Jiang et al., 2018). The
results of animal experiments indicate that the pancreas may be the target organ of thallium toxicity, because the pancreas is one of
the organs with the highest thallium content(Jiang et al., 2018). In addition, hyperglycemia was also noted in the case reports of acute
thallium poisoning(Zhu et al., 2019).

There is some research epidemiological studies have shown that thallium exposure in pregnant women's urine may be a risk factor for
gestational diabetes(QQ Zhang et al., 2021; Zhu et al., 2019). Based on the evidences above, we think there might be an association
between thallium exposure and diabetes risk. This is in agreement with the research results of ours. But, current epidemiological data
concerning the health effects from human Tl exposure is still insu�cient.

In our study used the BKMR model to explore the interaction between urinary metals and diabetes risk. Our results showed that urinary
zinc and thallium levels played a positive interactive role in the development of diabetes. Some studies have shown that trace thallium
can be detected in zinc sul�de and other mixtures and can lead to bioaccumulation(Pavoni et al., 2017). However, the epidemiological
evidence on the impact of zinc and thallium interaction on human health is still insu�cient. Therefore, more in vivo and in vitro
experiments are needed to verify this result. In view of this limited and epidemiological evidence, as well as the high variability and
heterogeneity of zinc and thallium exposure levels in different studies, further studies are still needed to clarify the true individual and
interactive effects of zinc and thallium in urine on diabetes.

4.3 Lead
Lead is a common environmental toxic metal(B. Liu et al., 2016). As a ubiquitous heavy metal, lead is widely present in the
atmosphere, soil, water and food, and easily enters the human body through the digestive tract, respiratory tract, and skin, and has
health effects on the human body(Ravipati, Mahajan, Sharma, Hatware, & Patil, 2021). Some researchers have investigated the
relationship between lead exposure and the prevalence of diabetes, and believe that lead exposure may promote the occurrence and
development of diabetes(Leff, Stemmer, Tyrrell, & Jog, 2018).

A possible mechanism is that Pb can activate the expression of genes related to glucose metabolism, thereby increasing the activity of
hepatic gluconeogenesis enzymes, interfere with insulin secretion, eventually lead to elevated blood glucose(Tyrrell, Ha�da, Stemmer,
Adhami, & Leff, 2017). There is strong evidence that lead can also cause oxidative stress, thereby promoting insulin resistance and
blood glucose(Rehman, Fatima, Waheed, & Akash, 2018). This is consistent with our �ndings. However, in the present study, we found
through the univariate effect of the BKMR model that when Pb increased to a certain level, there would be a hypoglycemic effect,
which may be related to the co-exposure of Pb and other metals, which is similar to Jing Zhang's study(J. Zhang et al., 2022). However,
the speci�c reasons for this phenomenon remain unclear.

4.4 Other metals
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Copper is the active component of many enzymes in human body and participates in various physiological activities and metabolic
processes (B. Liu et al., 2016). However, excessive copper may catalyze the production of toxic reactive oxygen species, thereby
damaging cells(Scheiber, Dringen, & Mercer, 2013). The results of Feng et al. showed that the increase of urinary copper level was
signi�cantly associated with the increased risk of diabetes (OR = 1.770, 95%CI: 1.107–2.831)(Feng et al., 2015). This was consistent
with the positive correlation results obtained by our univariate regression model. The restricted cubic splines of this study also re�ect
the linear relationship. A large number of studies on diabetes have found that copper concentration was related to the occurrence and
development of diabetes(Qiu, Zhang, Zhu, Wu, & Liang, 2017). Previous studies have also found that copper was positively correlated
with insulin resistance, which may be the cause of copper-induced abnormal blood glucose(Kim & Song, 2014).In addition, some
studies have suggested that copper excess could produce oxidative stress and become a risk factor for the onset and progression of
type 2 diabetes(Bjørklund et al., 2020).

As a toxic element, cadmium exposure can cause a variety of metabolic disorders, accompanied by an imbalance of glycolipid
homeostasis(Sabir et al., 2019). In the study of Hong Huihui et al., it was found that drinking water cadmium exposure increased blood
glucose levels in C57/6J mice, thereby reducing serum insulin levels, causing glucose intolerance, and inhibiting insulin expression.
This study demonstrated the metabolic toxicity of cadmium exposure to pancreatic beta cells at the metabolomic level, and provided
new clues for the occurrence and development of cadmium exposure and diabetes(Hong et al., 2022). It also provides mechanistic
evidence for our analysis results.

In a study on the relationship between urinary arsenic and insulin resistance, it was found that total urinary arsenic exposure may be
related to insulin resistance(Zhou, Zhao, & Huang, 2022). Qiang Zhang et al found that e�cient arsenic metabolism was associated
with higher odds of diabetes in the results of a baseline survey of the Chinese Arsenic and Non-Infectious Diseases Cohort (AsNCD)(Q
Zhang et al., 2020). Urinary dimethylarsenic acid interacts with individual factors to synergistically affect the occurrence of diabetes in
Chinese population. In conclusion, this study also veri�ed that our analysis results were consistent with them.

Our study found that Co and Mo levels were strongly correlated with increased diabetes risk in participants. Jingli Yang et al. also
found that Signi�cant sex-speci�c and dose-response relationships were observed between urinary metals (Co and Mo) and diabetes-
related indicators (J. Yang, Lu, Bai, & Cheng, 2023). According to Lai et al. Co could lead to insulin resistance and diabetes at low
levels(Lai et al., 2018). Moreover, studies have also found that Co toxicity may lead to mitochondrial dysfunction, which also plays a
key role in the development of diabetes(Rovira-Llopis et al., 2017). On the other hand, some studies have found that cobalt has a
potential hypoglycemic effect and can prevent the development of diabetes(Nomura, Okamoto, Sakamoto, Feng, & Nakamura,
2005).Therefore, patients with diabetes may take cobalt containing drugs to increase the solid content in urine.

Molybdenum is a transition metal element, which is a necessary trace element for human body, animals and plants. Xiao et al. found
that high urinary molybdenum concentration will increase the risk of diabetes(Xiao et al., 2018).Rotter et al. found that molybdenum
concentration was positively correlated with insulin level(Rotter et al., 2015). Molybdenum is also one of the basic components of
xanthine oxidase and aldehyde oxidase in the liver and intestine of animals. But the enhancement of xanthine oxidase activity may
lead to uric acid accumulation and reactive-oxygen-species-related diseases, such as hyperuricemia and diabetes(Ichida, Amaya,
Okamoto, & Nishino, 2012; J. Yang et al., 2023).In this study, the risk of diabetes is also positively correlated with the concentration of
molybdenum in urine.

Our study found that high Te levels were strongly correlated with increased diabetes risk in participants. Qing Liu et al study showed
that cadmium telluride quantum dots(CdTe QDs) can increase reactive oxygen species (ROS) in hepatocytes after being taken up by
hepatocytes, which triggers a signi�cant mitochondrial-dependent apoptotic pathway, leading to hepatocyte apoptosis(Q. Liu et al.,
2022).In the previous review, we also found that the regulators of apoptosis signaling events in hepatocytes can modulate insulin
signaling pathways and that mediators of insulin resistance in turn in�uence liver cell apoptosis.The liver is a central regulator of
glucose homeostasis and stores or releases glucose according to metabolic demands(Gjorgjieva, Mithieux, & Rajas, 2019;
Schattenberg & Schuchmann, 2009). Therefore, liver injury may lead to glucose homeostasis imbalance and increase the risk of
diabetes. In conclusion, this proves that telluride may cause glucose homeostasis imbalance through hepatocyte apoptosis, thus
potentially leading to an increased risk of diabetes.However, more epidemiological evidence is still lacking.

In this study, �rst, to better controlling interference of confounding factors(especially chronic diseases comorbidity), we conducted a
1:2 matched case-control study after excluding the subjects of other chronic diseases except for diabetes. Second, we assessed the
impact of metal mixtures, single metals, and metal-to-metal interactions on diabetes risk levels when exposed to multiple metals, and
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used BKMR models to analyze the exposure-response relationship between each metal and risk of disease relation. Finally, this study
investigated the association of multiple metal exposure exposure with diabetes in urban areas of northwestern China. It could serve as
preliminary evidence for the effect of multiple metal exposure exposure on diabetes in the population in the region. However, our
current study also has many limitations. First, we were unable to establish a causal relationship between metal exposure and diabetes
outcomes due to the limitations of the cross-sectional study. Secondly, due to the inclusion and exclusion factors, the sample size of
this study was relatively small. The results would be more reliable if more samples could be obtained.

5. Conclusions
In summary, according to our �ndings, environmental exposures to cobalt (Co), zinc (Zn), copper (Cu), arsenic (As), molybdenum (Mo),
cadmium (Cd), tellurium (Te), thallium (Tl ), lead (Pb) may be associated with an increased risk of diabetes, with zinc and thallium in
particular being the most closely related. In addition, there is an interaction between Zn and Tl on the risk of diabetes. The underlying
mechanisms of this interaction may be related to similar biological transport modalities, signaling pathways, or other
competition/synergistic effects of metals. Future studies should be conducted to explore the effects and mechanisms of metal-metal
interactions on the etiology of diabetes.

Due to the increasing incidence of diabetes in China and the ubiquitous metal exposure in people's daily life and production, this study
has important public health implications and provides evidence for establishing elemental intake and environmental standards for the
elderly population in this region.
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Figure 1

The restricted cubic spline for the relationships between urine metal concentrations and the risk of diabetes. The ORs (red lines) and
95% con�dence intervals (red range) were calculated based on the restricted cubic spline models for the concentrations of urine
metals. The 10th percentiles were set as the reference values, with knots set at 10th, 50th and 90th percentiles of the urine
metals.Cobalt (Co), zinc (Zn), copper (Cu), arsenic (As), molybdenum (Mo), cadmium (Cd), tellurium (Te), thallium (Tl ) and lead (Pb).
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Figure 2

The weights of each metal in positive and negative WQS model regression index for cardiovascular disease. The model was adjusted
for age, sex, smoking status, alcohol drinking status, dietary habit, exercise frequency, BMI, TC,TG, HDL-c, LDL-c,SBP and DBP.

A Positive weight

B Negative weight
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Figure 3

Associations between urine metals and diabetes risk in the BKMR model. All of the models have been adjusted for age, sex, smoking
status, alcohol drinking status, dietary habit, exercise frequency, BMI, TC,TG, HDL-c, LDL-c,SBP and DBP. ‘Est’ stands for ‘estimate’,
which means that the estimates of the effects include the overall, individual and interactive effects of different metals on diabetes risk
when the metal levels change. ‘Expose’ stands for metal exposure levels. Here, we use the z-score for all the exposures to have the
same scale.

3A Overall effect of mixture estimates and 95% credible interval on diabetes risk. Estimate can be interpreted as the contribution of
predictors to the response.

3B Single-pollutant association with diabetes risk. Association (estimate and 95% credible intervals) of each metal increased from the
25th percentile to the 75th percentile with diabetes risk was observed when other metals in the mixture have been �xed at the 25th,
50th, and 75th percentiles. Estimate can be interpreted as the contribution of predictors to the response.

3C The univariate concentration-response functions with 95% con�dence bands (shaded areas) for each metal with the other
pollutants �xed at the median. Estimate can be interpreted as the contribution of predictors to the respons.
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3D Bivariate exposure–response functions for each of the metal presented on the upper coordinate axis when the other metal
presented on the right longitudinal axis holding at different quantiles (25th, 50th, and 75th percentiles) and the other metals were held
at the median. Estimate can be interpreted as the contribution of predictors to the response.
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