To investigate the storage properties of H2 molecules on Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 fullerenes, DFT methods [24] were performed at B3LYP/6-311G(d,p) and M06-2X/6-311G(d,p) levels of theory for the non-metallic atoms (H, Si) and an effective pseudo potential basis set LANL2DZ for Na, Ca, Fe, and Ti atoms. Full geometric optimizations were carried out for free H2 molecules, Si20, NaSi20, Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 substrates as well as nH2-Ca@NaSi20 (n = 1–3), nH2-Fe@NaSi20 (n = 1–4), and nH2-Ti@NaSi20 (n = 1–6) complexes at B3LYP/6-311G(d,p) level. And the optimized structures were further used in the single-point energy calculations using M06-2X/6-311G(d,p) method. All calculations are finished using the Gaussian 09 suite of the program [25].
The ionization potential (IP), electron affinity (EA), and chemical hardness (η) can be expressed in terms of HOMO and LUMO,
$$\text{IP}\approx \text{-}{\text{E}}_{\text{HOMO}}$$
1
$$\text{EA}\approx -{E}_{\text{LUMO}}$$
2
$${\eta }\approx \frac{1}{2}\left(\text{IP-EA}\right)$$
3
The binding energies Eb of per atom for Si20, NaSi20, Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 are calculated from the Eq. (4),
$${E}_{b}=\frac{{E}_{\text{cluster}}-\sum {E}_{\text{atom}}}{\text{total EquationNumber of the cluster atoms}}$$
4
where Eatom is the sum of the atomic energies of the cluster free atoms and Ecluster is the energy of the optimized cluster. The most stable spin state is considered for the Si, Na, Ca, Fe, and Ti free atoms. The binding energies (Ebind) of Ca, Fe, and Ti atoms on NaSi20 substrate clusters are calculated from the Eq. (5). The adsorption energies (Eads) for nH2 molecule (n = 1–6) and the average adsorption energy per hydrogen molecule (\(\stackrel{-}{E}\)ads) on M@NaSi20 (Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20) fullerenes are calculated from equations (6) and (7), respectively.
$${E}_{\text{bind}}=\text{ }{\text{E}}_{M@\text{NaS}{\text{i}}_{20}}-\left({E}_{\text{NaS}{\text{i}}_{20}}+{E}_{M}\right)$$
5
$${E}_{\text{ads}}={E}_{\text{n}{\text{H}}_{2}/M@\text{NaS}{\text{i}}_{20}}-\left(\text{n}{\text{E}}_{{H}_{2}}+{E}_{M@\text{NaS}{\text{i}}_{20}}\right)$$
6
$${\stackrel{̄}{E}}_{\text{ads}}=\frac{1}{n}\left[{E}_{\text{n}{\text{H}}_{2}/M@\text{NaS}{\text{i}}_{20}}-\left(\text{n}{\text{E}}_{{H}_{2}}+{E}_{M@\text{NaS}{\text{i}}_{20}}\right)\right]$$
7
where \({{\text{E}}_{{\text{M}}@{\text{NaS}}{{\text{i}}_{{\text{2}}0}}}}\) is the energy of the optimized Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 complexes, \({{\text{E}}_{{\text{M}}@{\text{NaS}}{{\text{i}}_{{\text{2}}0}}}}\) is the energy of the corresponding optimized NaSi20 substrate clusters, and EM is the atomic energy of the free M (M = Ca, Fe, and Ti) atom, \({{\text{E}}_{{\text{n}}{{\text{H}}_{\text{2}}}/{\text{M}}@{\text{NaS}}{{\text{i}}_{{\text{2}}0}}}}\) is the total energy of the optimized nH2-M@NaSi20 (M = Ca, Fe, and Ti).
Enthalpy difference (ΔHƟ) and Gibbs free energy difference (ΔGƟ) for nH2-M@NaSi20 (M = Ca, Fe, Ti) complexes are calculated from equations (8) and (9) [26], respectively.
$${\Delta }{\text{H}}^{{\Theta }}=\left[{{\text{H}}^{{\Theta }}}_{\text{n}{\text{H}}_{2}-\text{M}@\text{NaS}{\text{i}}_{20}}-\left(\text{n}{{\text{H}}^{{\Theta }}}_{{\text{H}}_{2}}+{{\text{H}}^{{\Theta }}}_{\text{M}@\text{NaS}{\text{i}}_{20}}\right)\right]/\text{n}$$
8
where, HƟnH2−M@NaSi20, HƟM@NaSi20, and HƟH2 are the enthalpies for nH2-M@NaSi20, M@NaSi20 and H2 molecule, respectively.
$${\Delta }{\text{G}}^{{\Theta }}=\left[{{\text{G}}^{{\Theta }}}_{\text{n}{\text{H}}_{2}-\text{M}@\text{NaS}{\text{i}}_{20}}-\left(\text{n}{{\text{G}}^{{\Theta }}}_{{\text{H}}_{2}}+{{\text{G}}^{{\Theta }}}_{\text{M}@\text{NaS}{\text{i}}_{20}}\right)\right]/\text{n}$$
9
where, \({G^\theta }_{{{\text{n}}{{\text{H}}_{\text{2}}} - {\text{M}}@{\text{NaS}}{{\text{i}}_{{\text{2}}0}}}}\), \({G^\theta }_{{{\text{M}}@{\text{NaS}}{{\text{i}}_{{\text{2}}0}}}}\) and \({G^\theta }_{{{{\text{H}}_{\text{2}}}}}\) are the free energies for nH2-M@NaSi20, M@NaSi20 and H2 molecule, respectively.