
Features and Supervised Machine Learning-Based
Method for Singleton Design Pattern Variants
Detection
Abir Nacef

Laboratoire d’Informatique pour les Systèmes Industriels, Tunis El Manar University
Sahbi Bahroun ( Sahbi.bahroun@isi.utm.tn)

Institut Supérieur d’Informatique (ISI), Laboratoire Limtic, Tunis El Manar University
Adel Khalfallah

Laboratoire d’Informatique pour les Systèmes Industriels, Tunis El Manar University
Samir Ben Ahmed

Laboratoire d’Informatique pour les Systèmes Industriels, Tunis El Manar University

Research Article

Keywords: Design patterns, Singleton variant, RNN-LSTM Classi�er, Machine Learning, SD Classi�er

Posted Date: December 19th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2374835/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2374835/v1
mailto:Sahbi.bahroun@isi.utm.tn
https://doi.org/10.21203/rs.3.rs-2374835/v1
https://creativecommons.org/licenses/by/4.0/

Graphical Abstract

Features and Supervised Machine Learning-Based Method for Singleton Design Pattern Variants Detection

Abir Nacef, Sahbi Bahroun, Adel Khalfallah, Samir Ben Ahmed,

Highlights

Features and Supervised Machine Learning-Based Method for Singleton Design Pattern Variants Detection

Abir Nacef, Sahbi Bahroun, Adel Khalfallah, Samir Ben Ahmed,

• Structural and semantic analysis can effectively capture the pattern intent.

• The use of features improves the accuracy of the recovered model

• Using ML based on specifically created datasets performs better results in DPs detection.

Features and Supervised Machine Learning-Based Method for Singleton Design

Pattern Variants Detection

Abir Nacef1,, Sahbi Bahroun2,, Adel Khalfallah1,, Samir Ben Ahmed1,,

1Faculty of Mathematical, Physical and Natural Sciences of Tunis (FST), Laboratoire d’Informatique pour les Systèmes Industriels, Tunis El

Manar University, TUNISIA
2Institut Supérieur d’Informatique (ISI), Laboratoire Limtic, Tunis El Manar University, TUNISIA

Email addresses: nacefabir91@gmail.com (Abir Nacef), Sahbi.bahroun@isi.utm.tn (Sahbi Bahroun), Adel.khalfallah@isi.utm.tn (Adel Khalfallah),

samir.benahmed@fst.utm.tn (Samir Ben Ahmed)

Abstract

Design patterns codify standard solutions to common problems in software design and architecture. Given their

importance in improving software quality and facilitating code reuse, many types of research are proposed on their

automatic detection. In this paper, we focus on singleton pattern recovery by proposing a method that can identify

orthodox implementations and non-standard variants. The recovery process is based on specific data created using

a set of relevant features. These features are specific information defining each variant which is extracted from the

java program by structural and semantic analysis. We are based on the singleton analysis and different proposed

features presented by Nacef et al. in [1] to create structured data. This data contains a combination of feature values

defining each singleton variant to train a supervised Machine Learning (ML) algorithm. The goal is not limited to

detecting the singleton pattern but also the specification of the implemented variant as so as the incorrect structure

that is incoherent with the pattern intent. We use different ML algorithms to create the Singleton Detector (SD) to

compare their performance. The empirical results demonstrate that our method for automatically training the (SD)

based on features and supervised ML, can identify any singleton implementation with the specific variant’s name

achieving 99% of precision, and recall. We have compared the proposed approach to similar studies namely DPDf

and GEML. The results show that the SD outperforms the state-of-the-art approaches by more than 20% on evaluated

data constructed from different repositories; PMART, DPB and DPDf corpus in terms of precision.

Keywords:

Design patterns, Singleton variant, RNN-LSTM Classifier, Machine Learning, SD Classifier

1. Introduction

Design patterns [2] have an important role in the software development process. The term has become

commonplace among software designers, requirements engineers, and software programmers alike. The language of

design patterns is now necessary to understand and work with software because it helps to understand the design

intent of pre-developed software. Hence, software reverses engineering and redesign [3], [4], [5]. His recovery can

make the maintenance of source code, more easily and enhance her existing analysis tools by bringing program

understanding to the design level. Regarding its important role in improving program comprehension and re-

engineering, design pattern detection became a more and more active research field and has observed in recent years,

a continual improvement in the field of automatic detection. However, there are many difficulties in detecting

practical design patterns that arise from the following:

• The non-formalization of the pattern, the variety in implementations of source codes, and the increasing

complexity of software projects

Email addresses: nacefabir91@gmail.com (Abir Nacef), Sahbi.bahroun@isi.utm.tn (Sahbi Bahroun),

Adel.khalfallah@isi.utm.tn (Adel Khalfallah), samir.benahmed@fst.utm.tn (Samir Ben Ahmed)
1Faculty of Mathematical, Physical and Natural Sciences of Tunis (FST), Laboratoire d’Informatique pour les Systèmes Industriels, Tunis El

Manar University, TUNISIA
2Institut Supérieur d’Informatique (ISI), Laboratoire Limtic, Tunis El Manar University, TUNISIA

Preprint submitted to Elsevier December 13, 2022

mailto:nacefabir91@gmail.com
mailto:Sahbi.bahroun@isi.utm.tn
mailto:Adel.khalfallah@isi.utm.tn
mailto:samir.benahmed@fst.utm.tn
mailto:nacefabir91@gmail.com
mailto:Sahbi.bahroun@isi.utm.tn
mailto:Adel.khalfallah@isi.utm.tn
mailto:samir.benahmed@fst.utm.tn

2

• The design structure does not match the intent: Even though the identified pattern instances correspond to their

structure, the design intent can be broken. Which can be considered the main reason behind the increase in the

false positive rate.

Most existing methods convert source code and design patterns into intermediate representations, such as rules,

models, graphs, products, and languages. Using these intermediate representations makes it easier to extract structural

elements such as classes, properties, methods, etc. from the source code. However, they show poor performance

compared to methods based on extracted features. At the same time, structural analysis cannot recover the pattern

intent of its different representations, so it is necessary to perform semantic analysis on the source code to improve

the accuracy of the recovered model. On the other hand, extracting semantic information from source code is still a

difficult task due to the complexity and diverse representation of the code. Therefore, to solve this problem, we are

based on the work proposed by Nacef et al. in [1] to define singleton variants rules and create specific data to recover

each variant from the source code. Nacef et al. [1] have proposed a set of features for identifying singleton patterns

based on a detailed analysis of the variant’s structure and behaviors. For analyzing the java program Nacef et al. apply

structural and semantic analysis by the use of the LSTM model to extract semantic information (features). The

LSTM model is trained by specifically structured data corresponding to each feature for a classification task. Since

the source code is a special structured natural language, written by programmers [6], the created data in [1] contains

snippets of code treated as plain text. Nacef et al. exploit the efficiency of LSTM models in Computer Vision and

Natural Language Processing (NLP) [7] evidenced by many recent works, to recover semantic information and

elements dependencies from java programs without using any intermediate representation.

The main goal of our work is the detection of the singleton design pattern. The SD role has not been limited

only to the recovery of singleton variants (including non-standard variants and their combinations), but also incorrect

implementations inhibit the singleton intent. We would like to be able to verify that the singleton pattern has been

implemented correctly. While designers understand patterns well, developers may not have as much experience. This

can lead to incorrect implementation of the pattern or the possibility of later introducing coding errors that break the

pattern stage. The recovery of incorrect implementation makes possible the refactoring task. If a singleton pattern is

detected, the SD can specify the type of the implemented variant.

In this paper, we propose a Feature-Based Singleton Design Pattern Detection approach that uses a set of features

extracted from both structural and semantic analyses [1]. We create specific structured data based on the feature’s
combination values corresponding to each singleton variant to train a supervised ML model named SD. Trying to

construct data containing various implementations, we ameliorate the learning process of the SD to recover any

implementation of the singleton pattern. The proposed approach is based on the detailed analysis of the pattern

realized in [1], [8], and [9] and the features proposed in [1] to extract rules for pattern identification with the goal to

create the data. This dataset serves as training data to make learning the SD model. Then we evaluate the proposed

approach with a labeled dataset collected from PMART [10], [11], DPB [12], DPDf-corp,us [13], and 94 Java files

extracted from a publicly available GitHub Java Corpus. The detector makes a very good result, with higher accuracy

compared to the state-of-the-art approaches.

The Contribution of the paper can be summarized as follows:

• We introduce a novel approach called “Singleton Design Pattern Variant Detection using features and

Supervised Machine Learning” (SD) that uses 33 features to recover Singleton pattern variants.

• We create structured data named DTSD for training the SD classifier. the DTSD contains 7000 samples (a

combination of feature values).

• We build two labeled data for evaluating the SD; the first is extracted from DPDf Corpus [14] (we take only

files with singleton implementation) named DPDf 2 and we insert the missing variants. The second is building

from the singleton pattern file existing in P-MART, DPB, and DPDf Corpus.

• We proved that our approach outperforms similar existing approaches by a substantial margin in terms of

standard measures.

The rest of the paper is organized as follows; we present the related work and the contribution made to them in

Section 2. We indicate the reported singleton variants and the highlighted features in Section 3. In section 4, we

3

discuss the relevant background of the related technologies and we present the proposed approach. Section 5 presents

obtained results. An evaluation of different ML algorithms and a comparison between our study and the state-of-the-

art are realized and discussed. Finally, in Section 6 a conclusion and future work is presented.

2. Related Work

In recent years, design pattern detection became a more and more active research domain. The problem of

recovering design patterns from the source code has been faced and discussed in several works. Many strategies and

many techniques are used.

The majority of design pattern mining approaches transform the source code and design patterns into some

intermediate representations such as an abstract semantic graph, abstract syntax tree, rules, grammar, etc. The

searching methods diversify also from one to another, and can be classified as metrics, constraint resolvers, database

queries, eXtended Positional Grammar (XPG), etc. . . .

Several approaches [15],[16],[17], [18] use database queries as a technique for extracting patterns. They use

Structured Query Language (SQL) queries to extract pattern-related information and produce an intermediate

representation of the source code. In this case, the performances depend enormously on the underlying database and

can be scaled very well. However, queries are limited to the available information existing in the intermediate

representations. Techniques proposed by [19], [20] use program-related metrics (e.g., aggregations, generalizations,

associations, and interface hierarchies) from different source code representations. The detection of DP is based

on comparing DP and code source metrics values. This method is computationally efficient because it reduces

the search space through filtration [21]. FUJABA [22] tool introduces an explicit DSL to express pattern

specification declaratively.

The provided support is used to detect many variants of design patterns. An advanced step proposed by Uchiyama et

al., in [23] combine software metrics and machine learning to identify candidates for the roles that compose.

Other techniques are based on graph representation. The detection approach proposed by [24] combines graph and

software metrics to perform the recognition process. First, a set of candidate classes for each DP role are identified

based on software metrics. These metrics were chosen based on the theoretical description of the DP, and they were

used to establish clear logical rules that could lead to many false positives. In the second stage, all candidate class

combinations are analyzed in detail to find DP matches. To improve the accuracy of results, machine learning

methods (decision trees and artificial neural networks) are used to filter as many as possible false and distinguish

similar patterns [25]. Mario di Luca et al. use a DSL-driven graph matching where DPs are modeled based on their

high-level structural properties. Another work proposed by Zanoni et al.in [26] develop a MARPLE tool [27] that

exploited a combination of graph matching and machine learning techniques.

Many works [28] [4] apply reverse engineering techniques on UML class and sequence diagrams through ontology

to extract design patterns. Lucia et al., develop a DPRE tool [29] based also on reverse engineering through visual

parsing of diagrams. Another work proposed by [30] explore the detection of design pattern on UML class diagrams

by the use of first-order logic representation.

Influenced by the work given by Tsantalis et al. [31], Thaller et al., [32] propose a feature map for pattern

insinstances-based neural networks. Chihada et al., in [33] propose a design pattern detector that learns based on the

information extracted from each pattern instance. They treat the design pattern recognition problem as a learning

problem. However, recent work proposed by [34] treats the problem as text categorization, in which they leverage

deep learning algorithms for organizing and selecting DPs. Recently, Najam Nazar et al. in [13] selected 15 feature

codes and use machine learning classifiers to automatically train a design pattern detector. Another recent work

proposed in [35] presents a novel machine learning-based approach for DPD named GEML. Like other work, the

used method explores the ML capacity, but Barbudo et al. [35] addressed their limitations by using G3P as a basis

of the proposed approach.

Alhusain proposes in [36] a DPD approach based only on machine learning methods. The proposed method starts

by reducing the search space with the identification of a set of candidate classes for each DP role. Then, candidates

with possible role combinations are checked. An ANN is used to validate DP instances. The ML algorithm is trained

by different input feature vectors using a feature selection method.

Though we base on machine learning to extract information from source code and to detect Singleton Variant, our

approach differs from the other mentioned approaches in many ways. The difference that can exist is summarized as

4

under.

• Stencel et al. in [8] and other work, detect many variants of the single pattern. However, we are the first to

detect non-only the different variants, but the possible combination and incoherent implementations that

inhibit the pattern intent, with their corresponding names.

• Our approach use ML like many other approaches, but it is the first to create singleton specific dataset for

training the model (whether at the level of code analysis or pattern extraction), which performs the model to

better training, i.e. better results, and make easy to filter false positive.

• As [34], we use deep learning algorithms for text categorization, but extracting a pattern from direct source code

is a very hard task and needs an enormous number of data because there are many non-standard

implementations. In our work, we consider text categorization as the first step in which we extract needed

information from the source code. This information represents features that describe the pattern structure and

behavior. The use of features reduces the search space, and the size of training data increases the prediction rate

and decreases the false positive number.

• DPDf [13] uses 15 source code features to identify 12 Design Patterns, [27] utilizes code metrics, and [32]

uses feature maps. However, we employ 33 features, especially for the singleton pattern. The use of specific

features gives a detailed definition of the pattern and allows the identification of non-standard

implementations.

• The data dedicated to the SD has a size of 7000. However, the P-MART corpus includes 1039 files, and DPDf

uses a corpus with 1300 files for training the classifier to recover many design patterns with imbalanced nature.

The Corpus Used in both is used for training and evaluating the model. The number of singleton patterns

existing in P-MART and DPDf corpus is respectively 12, and 100 which is not entirely satisfactory to recover

all implementations.

• Our SD based on extracted features from structural and semantic analysis of source code and ML techniques

achieved approximately 98% of precision and recall and prove its capability to recover any non-standard variant

and filter false positives. However, DPDf and GEML did not exceed 80% in terms of precision, recall, and F1

Score.

3. Reported variants and proposed features for Singleton design pattern detection

The singleton design pattern is used to ensure that a class has only one instance. That means restricting class

instantiation to a single object (or even to a few objects only) in a system and providing a global access point to it.

The recognition of instances of singleton patterns in source code is difficult, caused of the different implementations,

which are also not formally defined. So that we depart from the singleton pattern analysis and their variants presented

in [1].

3.1. Reported Variants

Based on the proposed singleton variants defined in [2], [8], our approach can effectively recognize the different

variants represented in table 1 and their combinations form.

 Table 1: Reported Singleton variants

Singleton Variants Description

Eager Instantiation Lazy Instantiation

Placeholder Replaceable Instance

Subclassed Singleton Delegated Construction

Different Access Point Limiton

Social Singleton Generic Singleton using Reflection

5

3.2. Features used for the singleton pattern detection

For singleton pattern detection, we have to use the 33 features proposed by [1] resulting from the singleton variants

analysis. This specific analysis allowed the extraction of the essential information for each variant identification.

These features are presented in table 2.

If we just look at its canonical implementation (which is quite simple), the intent of the singleton pattern seems

simple. However, careful analysis of the structure may lead to further constraints being defined. These characteristics

reflect information that has forty effects on keeping the singleton intent.

Table2: Used Features
No. Abbreviation Feature

1 IRE Inheritance relationship (extends)

2 IRI Inheritance relationship (implements)

3 CA Class accessibility (public, abstract, final)

4 GOD Global class attribute declaration

5 AA Class attribute accessibility

6 SR Static class attribute

7 ON Have only one class attribute

8 COA Constructor accessibility

9 HC Hidden Constructor

10 ILC Instantiate when loading class

11 GAM Global accessor method

12 PSI Public Static accessor method

13 GSM Global setter method

14 PST Public static setter method

15 INC Use of Inner class

16 EC Use External Class

17 RINIC Returning instance created by the inner class

18 RINEC Returning instance created by the External class

19 CS Control instantiation

20 HGM Have one method to generate the instance

21 DC Double-check locking

22 RR Return reference of the Singleton instance

23 CNI Use a variable to count the number of instances

24 CII Create an internal static read-only instance

25 DM Use delegated method

26 GMS Global accessor synchronized method

27 IGO Initializing global class attribute

28 LNI

Limit the number of instances (Verify if there is a con-

dition to instantiate limited by the number of instances
(< value))

29 SCI Use string to create an instance

30 SB Static Block

31 AFL Allowed Friend List

32

CAFB

Control access to friend behavior (Checking the reg-

istered allowed friend list to respond/access when one

friend tries to access the behavior of another friend’s
social object)

33 UR
Type for generic instantiation (Using Singleton class as

a type for generic instantiation)

The only way to keep a singleton instance for future reuse is to store it as a global static variable. With this, we

should check the correctness of the different variants and count the number of class attributes and method-generating

6

instances. If the number exceeds one then the structure is incorrect and the intention is inhibited (case of listing 1 and

2 .

The common conditions that must be verified in most singleton variants are:

• The global access point to get the instance.

• The Constructor modifier to restrict its accessibility.

• The Control of instantiation; verifying the existence of conditions that limit the number of created instances.

• The verification of the number of declared class attributes and the number of method-creating instances to only

one.

Second, specific information for each variant should be verified. In table 3, we categorize features with corre-

sponding variants. Relevant information needed for the identification of each variant is regrouped. This grouping

strongly helps SD data creation.

Table3: Features corresponding to each variant

Singleton Variants Features

Eager Implementation ILC, SB

Lazy Instantiation GAM, PSI, CS, HC, DC, GMS

Different Placeholder INC, RINIC

Replaceable Instance PST, GSM

Subclassed Singleton CA, IRE

Different Access Point EC, RINEC

Delegated Construction DM

Limiton LNI

Social Singleton IRI, AFL, CAFB

Generic Singleton using Reflection TUR

4. Proposed approach for singleton detection with supervised machine learning

In this section, we will represent the used techniques and discuss the singleton detection process. Finally, we are

gone give details about the created data used for the training phase.

4.1. ML used Techniques

Machine learning is a subset of artificial intelligence (AI) that focuses on creating systems that can learn from

data, identify patterns and make decisions with minimal human intervention. The power of machine learning is its

capability to automatically improve performance through experience [37]. ML has penetrated every aspect of our

lives, and made the hard task easier to resolve, with higher accuracy [38], [39].

Algorithms are the engines of machine learning. In general, two main types of machine learning algorithms are

used today: supervised learning and unsupervised learning. The difference between the two is defined by the method

used to process the data to make results, the type of input and output data, and the task that they intend to solve.

In our work, we use the supervised learning type, which is supplied with information about several entities whose

class membership is known and which produces from this a characterization of each class. In supervised learning,

there are two major types named regression and classification. In our work, tasks realized have a classification type.

The first step realized by Nacef et al. in [1] analyze the java program by the use of (RNN-LSTM) [40], [41] to

extract the value of features with binary or multi-class classification. In the second phase, we use the previous

analysis of the singleton pattern and feature’s value to create labeled structured data for training the SD classifier. The

SD carries out a multi-class classification task; each class represents a singleton variant (if a singleton pattern is

implemented) or none otherwise. For the SD, we built various ML classifiers such as Random Forest [42],

Gradient Boosted Tree [43] , SVM [44], KNN [45], and Neural Network [46] intending to compare their results

random forest provides a unique combination of prediction accuracy and model interpretability among the usage of

bagging on samples that overcome

7

Figure 1: Flowchart of the proposed approach

overfitting issues. The Gradient Boosted Tree is generally more accurate compared to other models and trains faster

especially on larger datasets. The SVM has high predictive accuracy and works well on smaller datasets. The KNN is

a simple algorithm that is easy to implement and doesn’t need to create a model, adjust multiple parameters or make

additional assumptions. Finally, the Neural Network is good to model nonlinear data with a large number of inputs

and has computational power enabling to process of more information. These sets of algorithms are the most used in

design pattern detection.

Figure 1 illustrates the proposed approach process. In the following subsections, we will discuss these phases one

by one.

4.2. First Phase

The detailed analyses of singleton implementation variants make easier the defining of efficient information and

the construction of the training dataset according to them. In [1] a detailed analysis of the singleton pattern is realized,

a set of variants is identified, and based on their behavior and structure 33 relevant features for their definition are

highlighted. For extracting feature values from the java program a syntactical and semantic analysis is applied by

the use of LSTM. The LSTM is a sequential model which can extract information and dependencies existing in the

source code [47]. Based on the analysis and the feature’s value extracted from the java program we define rules for

every singleton variant and then we construct the dataset for training the SD.

4.3. Second Phase

The analysis already done was very useful in terms of defining the rules for each implementation variant, which

will be the key behind the construction of the training data DTSD. The strength of our approach is that we use specific

features, as well as the use of our own created data.

• Dataset creation process; As we know, the data is the essence of ML, then the more large and more diverse the

dataset is, the better results will be obtained. If the classifier is trained by completed and diversified examples, it

will be more able to predict correct instances, and achieve a higher accuracy result. Based on the important role

of the data in building performed model, we gave importance to the creation of the training dataset. Contrarily

to other approaches, we don’t limit ourselves to the existing implementation extracted from the considerate
benchmark corpus, because many implementations can be missed, or we can have an imbalance in their numbers

(dominance of some implementations over others) which causes an unfair training process and can lead to the

incapability of the model to recover all existing implementations. So for training the model, we create a dataset

8

DTSD based on rules extracted from singleton variants analyses, and for evaluating the model, we use other

created data based on the DPDf Singleton corpus.

Table4: SD Classifier results
Singleton Variants Classes NO.

Eager Implementation

Simple Implementation 1

2

3

4

Implementation With static Block

Simple Implementation-Invalid Implementation

Implementation With static Block-Invalid Implementation

Lazy Instantiation

Singleton naif 5

6

7

8

9

10

11

12

Non-thread safe

Thread safe with the synchronized method

Lazy instantiation double lock mechanism

Singleton naif-Invalid Implementation

Non thread safe-Invalid Implementation

Thread safe with synchronized method-Invalid Implementation

Lazy instantiation double lock mechanism-Invalid Implementation

Different Placeholder
Different Placeholder 13

14 Different Placeholder-Invalid Implementation

Replaceable Instance
Replaceable Instance 15

16 Replaceable Instance-Invalid Implementation

Subclassed Singleton
Subclassed Singleton 17

18 Subclassed Singleton-Invalid Implementation

Different Access Point
Different Access Point 19

20 Different Access Point -Invalid Implementation

Delegated Construction
Delegated Construction 21

22 Delegated Construction -Invalid Implementation

Limiton
Limiton 23

24 Limiton-Invalid Implementation

Social Singleton Social Singleton 25

Generic Singleton using Reflec-

tion
Generic Singleton using Reflection 26

No Singleton Implementation No Singleton Implementation 27

• Defining rules; we have identified 27 instances according to different singleton variants. The class candidates

are represented in table 4. Based on specific information about each one, we illustrate rules to define them.

The rules represent a combination of values of features. The SD will be made by learning from information

extracted from the DTSD data. Table 5 shows an example of important feature values that made each candidate

instance true. Noting that, based on these most important features, we can create several implementations by

playing on the other features’ values (we must respect the identity of each variant).

To achieve high recall (which will be explained in the next section), we need to reduce the number of false-

negative predictions. For a singleton design pattern detection, this leads to creating a dataset that comports

numerous implementation variants that preserve the meaning of the pattern, and those that can destroy the

intent. As an example, the only way to keep a singleton instance for future reuse is to store it as a global static

variable, so we should verify that there is only one declared class attribute in different variants (ON). In the

case of different placeholder and different access point variants, the instance is held as a static attribute of an

inner class or external class, so we should verify the existence of a static class attribute inside of both. Another

example, as the intent of a singleton pattern is to limit the number of objects to only one (exception Limiton

variant), we must verify that there is only one block for creating an Instance (HGM). If the two features

(ON/HGM) are false, the implementation will be considered an incorrect singleton structure (as shown in

table 11). This error inhibits the singleton intent and can provoke false-negative predictions. This type of error

can be caused by a developer’s unconsciousness during the implementation, so we decided to consider

9

it, and detect similar implementations if they exist. Listings 1 and 2 represent an example of incorrect lazy and

eager implementation, which inhibits the singleton pattern intent. Table 5,6,7,8,9,10 presents an example of

rules defining some singleton variants and table 11 represents an example of a combination of feature values

making the implementation error.

Table 5: Data extract: Example of features combination for Eager Singleton variant

Class Combination Values

CA GOD AA SR COA ILC GAM PSI RR SB ON HGM

Eager Simple Im-

plementation

public /

final

True

Private

/ pri-

vate

final

True

private

True

True

True

True

False

True

True

Eager Implemen-

tation With static

Block

Public

/ final

True

Private

/private

final

True

private

True

True

True

True

True

True

True

Table 6: Data extract: Example of features combination for Lazy Instantiation Singleton variant

Class
Combination Values CA GOD AA SR COA RR CS DC GMS ON HGM

 ILC GAM PSI

Lazy instan-

tiation non

thread safe

Public

/ fi-

nal

True

Private

/ pri-

vate

final

True

private

False

True

True

True

True

False

False

True

True

Lazy in-

stantiation

thread safe

with syn-

chronized

method

Public

/fi-

nal

True

Private

/private

final

True

Private

False

True

True

True

True

False

True

True

True

Table 7: Data extract: Example of features combination for Different Placeholder Singleton variant

Class
Combination Values CA COA ILC INC RINIC ON HGM

 GAM PSI RR

Different Placeholder
public /

final
Private False True True True True True True True

Table 8: Data extract: Example of features combination for Replaceable Instance Singleton variant

Class
 Combination Values

 COA GAM PSI

Replaceable

Instance

public /

final

True

Private

/private

final

True

Private

True

True

True

True

True

True

True

Table 9: Data extract: Example of features combination for Delegated Construction Singleton variant

Class
Combination Values CA GOD AA COA PSI RR DM ON HGM

 CS GAM

Delegated Con-

struction

public /

final

True

Private

/private

final

Private

True

True

True

True

True

True

True

Table 10: Data extract: Example of features combination for Social Singleton Singleton variant

Class
Combination Values CA

 COA IRI AFL CAFB

Social Singleton Public Private True True True

10

{

{

{ }

Table 11: Data extract: Example of features combination for Eager Invalid Implementation Singleton variant

Class
 Combination Values

 COA ILC GAM

Simple

Implementation-

Invalid Imple-

mentation

public /

final

True

Private

/ pri-

vate

final

True

private

True

True

True

True

False

False

False

Implementation

With static

Block-Invalid

Implementation

Public

/ final

True

Private

/private

final

True

private

True

True

True

True

True

False

False

P u b l i c c l a s s C1 {

Listing 1: Example 1: Singleton Error Implementations

P r i v a t e s t a t i c C1 i n s t a n c e = new C1 () ;

C1 () { }

p u b l i c s t a t i c C1 g e t I n s t a n c e () {

R e t u r n (new C1 ()) ; }

}

Listing 2: Example 2: Singleton Error Implementations

P u b l i c c l a s s C2

P r i v a t e s t a t i c C2 i n s t a n c e ;

P r i v a t e C2 ()

P u b l i c s t a t i c C2 g e t I n s t a n c e 1 ()

i f (i n s t a n c e = = n u l l) i n s t a n c e = new C2 ;

}

P u b l i c s t a t i c C2 g e t I n s t a n c e 2 () { return new C2 ; }

}

• Building Singleton Variants Classifier; The use of an ML algorithm depends on the type of data to treat and

generate, and the type of realized task. A singleton design pattern detection is a classification problem, with

structured labeled data. To deal with this typical problem we can use different algorithms. In this case, the better

model to use is the one that gives a better result. We choose to use five different algorithms the most already

used in classification tasks; Random Forest, Gradient Boosted Tree, SVM, KNN, and Neural Network.

5. Evaluation setup

This section presents the criteria used to evaluate our SD and the different results made by it. We compared results

generated from each model, and interpret and compared them with state-of-the-art approaches.

5.1. Evaluation protocol

The standard measures to statistically evaluate the efficacy of classifiers are Precision, Recall, and the F1-Score.

Prediction: The prediction rate indicates the fraction of positive prediction which was correct. It is defined in
1:

Precision =
 TP

(1)
TP + FP

Recall: The recall indicates the fraction of actual positives which was identified correctly. It is defined in 2 :

Recall =
 TP

TP + FN

(2)

11

Figure 2: KNN precision results

(TP) : true positive and (TN) true negative represent the number of positive and negative classes which are correctly

predicted by the classifier. However, (FP) false-positive and (FN) false-negative represent the number of positive

and negative classes which are incorrectly predicted. The higher the precision and recall scores are, the performer

Classifier is. However, there is a trade-off between the two values: when tuning a classifier, improves the precision

score, typically reduces recall score, and vice versa, there is no free lunch. That’s where F1-score are needed measure

to use.

The F1 score is a way to combine both precisions and recall into a single number. It represents a harmonic mean

of both scores, which is given by this simple formula 3:

5.2. Performed results

F1S core =
2 ∗ (precision ∗ recall)

(precision + recall)

(3)

12

We have created a classifier based on different ML models. The use of specific training data DTSD makes the

classifier more able to recognize easily every candidate instance with high performance. After training the model we

have tested it with the 200 GitHub java classes referred by DPDf Corpus proposed by [13] 100 files contain Singleton

Implementation and 100 files do not contain any type of design patterns i.e. none.

Table 12: SD Classifier results

SD Classifiers
 Measures Precision (%)

Precision Recall (%) F1-score (%)

Random Forest 96.24 96.47 95.81

Gradient Boosted Tree 98.85 98.65 98.64

KNN 92.3 87.05 86.55

SVM 99.49 99.42 99.41

Neural Network 98.3 98.7 98.49

Unfortunately, the corpora used do not contain all singleton variants, which evaluates the SD not completed. To

ensure the performance of the detector in recognizing each variant; we collect other GitHub java classes with

missing variants. Next, we took these collected classes and injected blocks that inhibit the intention of the singleton,

in order to vitality of the SD classifier to recognize also the incorrect implementations.

After collecting the evaluation set, we labeled them with the corresponding singleton variant name. In the first step,

we analyze the existing java class with the LSTM classifier to determine every feature’s values. In the second step,
we evaluate the SD classifier by the use of the resulting dataset containing the feature’s values. The corresponding
results of the SD classifier are illustrated in table 12.

All used ML algorithms make very good results thanks to the use of specific training datasets. Comparing the

results of each ML algorithm used in the SD classifier, we can see that all used algorithms are performed and make

closed results. The SVM model has performed excellent results in terms of precision, recall, and F1-score, and can

Figure 3: SVM precision results

correctly identify any Singleton candidate with 100% of precision as shown in figure 3 (except one candidate 87%).

However, the KNN algorithm is the classifier that makes fewer results. Contrary to SVM, KNN fails to detect correctly

some Variants like Lazy instantiation with double lock mechanism and Replaceable Instance with less than 70% of

precision like showing in figure 2.

5.3. Comparison with similar existing approaches

In this work, we propose a machine learning-based method to recover the singleton pattern. To position our work

against state-of-the-art studies, we select two recent relevant approaches working also with Machine Learning. The

first is proposed by Rafael Barbudo et al. [35] named GEML and the second is proposed by Najam Nazar et al. [13]

named DPDf.

5.3.1. The Benchmark DP detection approaches

13

• GEML Approach

GEML is a novel DPD approach based on machine learning and grammar-guided genetic programming (G3P).

By the use of software properties, GEML extracts DP characteristics formulated in terms of human-readable

rules. Then a machine learning classifier is built based on the established rules to recover 5 DP roles.

In [35] a comparison between GEML and other DPD methods, including both ML and non-ML is realized.

GEML outperform MARPLE techniques [26] with high values in term of accuracy and f1 score. It’s also more

competitive than two other reference DPD tools which are frequently used for comparative purposes (SSA and

Ptidej).

The experimentation in GEML covers 15 roles of DP and uses implementations from two repositories to com-

pare obtained results against other works. The singleton repository details are:

–DPB : created by the authors of [12] and used to compare the results with MARPLE.

–JHotDraw from PMART [10] was used to compare with non ML-based methods like DePATOS [48], MLDA

[49] and SparT [50].

Table 13 illustrate the comparison results of GEML against other DPD studies. The comparison is conducted

based on common ground truth. Four methods are under study. The use of the ”-” symbol, is to indicate that the

particular DP is not supported by the corresponding approach. The first comparison is based on the DPB corpus.

Both GEML and MARPLE perform good results in singleton detection, but GEML outperforms MARPLE by

more than 7% and 3% of improves in terms of accuracy and F1 score. The second comparison is based on the

JHotDraw project. GEML, MLDA, and SparT can recover all singleton instances. Their great performance is

related to the reduced number of true Singleton instances in the test data.

Table 13: Comparing GEML with the state-of-the-art results

ML techniques

Singleton Corpus

DPB-Corpus JHotDraw

Accuracy (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

MARPLE 88 91 - - -

GEML 95.61 94.11 100 100 100

DePATOS - - - - -

MLDA - - 100 100 100

SparT - - 100 100 100

• DPDf Approach

The different research results prove that design pattern approaches based on a specific feature are more per-

formed compared to other approaches. The approach proposed in [13] is the first to employ lexical-based code

features and machine learning to recover a wide range of design patterns with higher accuracy compared to the

state-of-the-art. Our approach also combines semantic analysis, features, and Machine Learning algorithms as

techniques, but we have focused only on Singleton Variants recovery. Based on the relevancy measure, we

chose to compare our study with the study proposed in [13].

DPDf Developed in [13] generates a Software Syntactic and Lexical Representation (SSLR) by building a call

graph and extracting 15 source code features. The SSLR is used as an input to build a word-space geometrical

model by applying the Word2Vec algorithm. Then, a DPDf Machine Learning classifier is created and trained

by a labeled dataset and geometrical model.

DPDf reported results. Nazar has compared his study with two approaches based on code features and machine

learning, which are developed by [32] and [27]. For comparing the results, Nazar uses two benchmark Corpus:

–P-MAR T Corpus; containing only 12 Singleton implemented classes.

–DPDf Corpus; contains 100 singleton implemented class.

The compared results reported by [13] in the detection of the singleton design pattern, are illustrated in the table

14. DPDf has improved performance in recovering singleton candidates from the DPDf-Corpus but has fairly

recovered it from the P-MART Corpus. These unbalanced results are caused by the number of instances of

singleton existing in each corpus, which have a great impact on the learning of the classifier.

14

Table 14: Comparing DPDf results with MARPLE and FeatureMap

ML techniques

Singleton Corpus

DPDF Corpus Labeled P-MART

Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

FeatureMap 65 67 65.98 63 59 60.93

MARPLE-DPD 74.24 69.23 71 74.23 70.18 72.15

DPDf 81.6 68.22 74.31 43.33 40 41.6

5.3.2. Comparison Against GEML and DPDf methods

• Comparison Strategy

Results made by [13] and [35] do not refer exactly to the performance of both approaches to recover singleton

pattern instances because other patterns are included. Therefore, we have tested the DPDf and GEML with

Singleton specific data. The P-MART Corpus contains a few instances of Singleton Pattern contrarily to the DPDf and

DPB corpus. Otherwise, they represent a none complete data; some variants are absent. Consequently, we construct

new data for the evaluation; we bring together all singleton instances existing in PMART, DPB and DPDf

repositories, and complete the data with missing variants. We also construct an incoherent structure by injecting

correct instances, a structure that inhibits the singleton intent. We try to evaluate with complete data containing a

variety of implementations. Details of constructed data are presented in table 15, wit according to the number of

correct, incorrect, and incoherent samples in each repository.

 Table 15: Evaluating Data Composition

• Comparison Results

We reproduce the public works of [13] and [35] with the only singleton pattern. Then, we evaluate them by the

newly created data. The experiment results are conducted by the use of a Random Forest classifier in the evaluation

process. Table 16 illustrate obtained results from the experiments.

Table 16: Comparing SD results with DPDf and GEML results

DP Approaches Measures

Precision (%) Recall (%) F1-score (%)

DPDf 78.5 70.23 74.13

GEML 81.6 73.4 77.28

Singleton Detector (SD) 98.96 97.63 98.29

• Discussion

The comparative results illustrated in table 16 show the performance of the SD to recover any variant of the

singleton pattern whatever the implementation is. The SD reaches the best result (98% of F1 Score), and outperforms

GEML and DPDf by respectively 21% and 24% improvements in terms of F1 Score. Both GEML and DPDf use

approximately 200 samples (including correct and incorrect implementations) for training the model, which is not

enough for the best training. The classifier in this case is not able to recover all singleton implementations. His

capacity enormously depends on the variants existing in the training data, new variants which not fully trained cannot

be detected. However, by the use of complete data that is well created as in the case of SD (7000 samples), the

classifier will be better trained, and always gives a great performance in the detection process. Our SD has the ability

not only to recognize the existence of singleton patterns but also the type of implementation. It has also the capacity

of recovering implementations incoherent with the singleton intent.

The imbalanced results obtained from the different DPD methods are explained by the number and the variety of

 Singleton Corpus

PMART DPB DPDf Public project

Correct 12 58 100 53

Incorrect - 96 100 -

Incoherent - - - 41

Total size 460

15

implementations existing in the training data. There is another factor that strongly affects the results, which is the

characteristics of the source code which are highlighted. DPDf approach uses only 15 features to define 12 design

patterns, GEML propose 23 Grammar operators to describe a variety of design pattern implementations. However,

in our work, we use 33 features for defining only the singleton pattern. These enormous numbers of features make a

detailed description of the pattern and provide all information needed to identify any variant.

6. Conclusion and future work

We propose in this paper a new singleton design pattern approach based on features and Machine Learning tech-

niques. We are based on the analysis presented in [1], and the different proposed features to create DTSD dataset.

DTSD is used to train the SD classifier, in which we try to make rules defining a various number of singleton imple-

mentations. In the dataset, we give a combination of feature values to categorize each variant. We have tried to be

sure that the data contain the most number of implementations to perfectly train the model. Next, we build a Singleton

Detector based on different Machine Learning classifiers. We trained the supervised classifier by the labeled dataset

DTSD, and we evaluate its performance with other data collected from the GitHub java corpus, and singleton variants

existing in DPDf, DPB and P-MART corpus.

We apply three standard statistical measures namely precision, recall, and F1-Score to evaluate the performance

of the created classifiers. A comparison between different used Machine Learning algorithms to create the SD is

realized. The different results show that the use of the created dataset makes any classifier easily able to recover any

variants of the singleton pattern although there is a slight difference in performance. The Empirical result shows that

our proposed approach can recover any non-standard singleton variant, even incorrect implementation destroyed the

singleton intent with approximately 99% on both precision and recall. Our approach outperforms recent relevance

approaches by more than 20% improvements in terms of standard measures.

While our classifier’s performance is promising, as furfur work we gonna applies it to recover a wide range of
Software Design Patterns. The choice of source code as refactoring support is very important and interesting, but we

should not limit ourselves only to this support, we try to switch to the model as refactoring support.

Declarations

Conflict of interest Abir Nacef declares that she has no conflict of interest.

References

[1]A. Nacef, A. Khalfallah, S. Bahroun, S. Ben Ahmed, Defining and extracting singleton design pattern information from object-oriented

software program, in: C. Bădică, J. Treur, D. Benslimane, B. Hnatkowska, M. Krótkiewicz (Eds.), Advances in Computational Collective

Intelligence, Springer International Publishing, Cham, 2022, pp. 713–726.

[2]E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, 1st Edition, Addison-

Wesley Professional, 1994.
URL http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=nttate pd pi1 [3]G. Antoniol, R.

Fiutem, L. Cristoforetti, Design pattern recovery in object-oriented software, in: 6th International Workshop on Program

Comprehension (IWPC ’98), June 24-26, 1998, Ischia, Italy, IEEE Computer Society, 1998, pp. 153–160. doi:10.1109/WPC.1998.693342.

URL https://doi.org/10.1109/WPC.1998.693342

[4]N. Shi, R. A. Olsson, Reverse engineering of design patterns from java source code, in: 21st IEEE /ACM International Conference

on Automated Software Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan, IEEE Computer Society, 2006, pp. 123–134.

doi:10.1109/ASE.2006.57.

URL https://doi.org/10.1109/ASE.2006.57

[5]D. Heuzeroth, T. Holl, G. H ögström, W. Löwe, Automatic design pattern detection, in: 11th International Workshop on Program Comprehen-

sion (IWPC 2003), May 10-11, 2003, Portland, Oregon, USA, IEEE Computer Society, 2003, pp. 94–104. doi:10.1109/WPC.2003.1199193.

URL https://doi.org/10.1109/WPC.2003.1199193

[6]A. Hindle, E. T. Barr, M. Gabel, Z. Su, P. T. Devanbu, On the naturalness of software, Commun. ACM 59 (5) (2016) 122–131.

doi:10.1145/2902362.

URL https://doi.org/10.1145/2902362
[7]I. J. Goodfellow, Y. Bengio, A. C. Courville, Deep Learning, Adaptive computation and machine learning, MIT Press, 2016.

URL http://www.deeplearningbook.org/

[8]K. Stencel, P. Wegrzynowicz, Implementation variants of the singleton design pattern, in: R. Meersman, Z. Tari, P. Herrero (Eds.), On the

Move to Meaningful Internet Systems: OTM 2008 Workshops, OTM Confederated International Workshops and Posters, ADI, AWeSoMe,

COMBEK, EI2N, IWSSA, MONET, OnToContent + QSI, ORM, PerSys, RDDS, SEMELS, and SWWS 2008, Monterrey, Mexico, November

9-14, 2008. Proceedings, Vol. 5333 of Lecture Notes in Computer Science, Springer, 2008, pp. 396–406. doi:10.1007/978-3-540-88875-8 61.

URL https://doi.org/10.1007/978-3-540-88875-8 61

[9]K. Stencel, P. Wegrzynowicz, Detection of diverse design pattern variants, in: 15th Asia-Pacific Software Engineering Conference (APSEC

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref%3Dnttate
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref%3Dnttate
http://www.deeplearningbook.org/

16

2008), 3-5 December 2008, Beijing, China, IEEE Computer Society, 2008, pp. 25–32. doi:10.1109/APSEC.2008.67.

URL https://doi.org/10.1109/APSEC.2008.67

[10]Y.-G. Gu éhéneuc, P-mart : Pattern-like micro architecture repository, 2007.

[11]Y. g. Gu eh eneu, “pmart: Pattern-like micro architecture repositorydoi:Available: http: //www-etud.iro.umontreal.ca/ptidej/Publications/

Documents/EuroPLoP07PRa.doc.pdf.

[12]F. A. Fontana, A. Caracciolo, M. Zanoni, DPB: A benchmark for design pattern detection tools, in: T. Mens, A. Cleve, R. Ferenc (Eds.), 16th

European Conference on Software Maintenance and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012, IEEE Computer

Society, 2012, pp. 235–244. doi:10.1109/CSMR.2012.32.

URL https://doi.org/10.1109/CSMR.2012.32

[13]N.Nazar, A. Aleti, Y. Zheng, Feature-based software design pattern detection, J. Syst. Softw. 185 (2022) 111179.

doi:10.1016/j.jss.2021.111179.

URL https://doi.org/10.1016/j.jss.2021.111179

[14]M. Allamanis, C. Sutton, Mining source code repositories at massive scale using language modeling, in: T. Zimmermann, M. D. Penta,

S. Kim (Eds.), Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13, San Francisco, CA, USA, May

18-19, 2013, IEEE Computer Society, 2013, pp. 207–216. doi:10.1109/MSR.2013.6624029.

URL https://doi.org/10.1109/MSR.2013.6624029

[15]G. Rasool, I. Philippow, P. M äder, Design pattern recovery based on annotations, Adv. Eng. Softw. 41 (4) (2010) 519–526.

doi:10.1016/j.advengsoft.2009.10.014.

URL https://doi.org/10.1016/j.advengsoft.2009.10.014

17

[16]P. Wegrzynowicz, K. Stencel, Relaxing queries to detect variants of design patterns, in: M. Ganzha, L. A. Maciaszek, M. Paprzycki (Eds.),

Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, Kraków, Poland, September 8-11, 2013,

2013, pp. 1559–1566.

URL https://ieeexplore.ieee.org/document/6644226/

[17]B. Combemale, J. Kienzle, G. Mussbacher, H. Ali, D. Amyot, M. Bagherzadeh, E. Batot, N. Bencomo, B. Benni, J. Bruel, J. Cabot, B. H. C.

Cheng, P. Collet, G. Engels, R. Heinrich, J. Jézéquel, A. Koziolek, S. Mosser, R. H. Reussner, H. A. Sahraoui, R. Saini, J. Sallou, S. Stinck-

wich, E. Syriani, M. Wimmer, A hitchhiker’s guide to model-driven engineering for data-centric systems, IEEE Softw. 38 (4) (2021) 71–84.

doi:10.1109/MS.2020.2995125.

URL https://doi.org/10.1109/MS.2020.2995125

[18]T. Z. Ahram (Ed.), Advances in Artificial Intelligence, Software and Systems Engineering - Proceedings of the AHFE 2020 Virtual Con-

ferences on Software and Systems Engineering, and Artificial Intelligence and Social Computing, July 16-20, 2020, USA, Vol. 1213 of

Advances in Intelligent Systems and Computing, Springer, 2021. doi:10.1007/978-3-030-51328-3.

URL https://doi.org/10.1007/978-3-030-51328-3

[19]M. von Detten, S. Becker, Combining clustering and pattern detection for the reengineering of component-based software systems, in:

I. Crnkovic, J. A. Stafford, D. C. Petriu, J. Happe, P. Inverardi (Eds.), 7th International Conference on the Quality of Software Architectures,

QoSA 2011 and 2nd International Symposium on Architecting Critical Systems, ISARCS 2011. Boulder, CO, USA, June 20-24, 2011,

Proceedings, ACM, 2011, pp. 23–32. doi:10.1145/2000259.2000265.

URL https://doi.org/10.1145/2000259.2000265

[20]H. Kim, C. Boldyre ff, A method to recover design patterns using software product metrics, in: W. B. Frakes (Ed.), Software Reuse: Advances

in Software Reusability, 6th International Conerence, ICSR-6, Vienna, Austria, June 27-29, 2000, Proceedings, Vol. 1844 of Lecture Notes

in Computer Science, Springer, 2000, pp. 318–335. doi:10.1007/978-3-540-44995-9 19.

URL https://doi.org/10.1007/978-3-540-44995-9 19

[21]Y. Gu éhéneuc, J. Guyomarc’h, H. A. Sahraoui, Improving design-pattern identification: a new approach and an exploratory study, Softw.

Qual. J. 18 (1) (2010) 145–174. doi:10.1007/s11219-009-9082-y.

URL https://doi.org/10.1007/s11219-009-9082-y

[22]J. Niere, W. Sch äfer, J. P. Wadsack, L. Wendehals, J. Welsh, Towards pattern-based design recovery, in: W. Tracz, M. Young, J. Magee (Eds.),

Proceedings of the 24th International Conference on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, ACM,

2002, pp. 338–348. doi:10.1145/581339.581382.

URL https://doi.org/10.1145/581339.581382

[23]H. W. Y. F. Satoru Uchiyama, Atsuto Kubo, Detecting design patterns in object-oriented program source code by using metrics and machine

learning, Proceedings of the 5th International Workshop on Software Quality and Maintainability.

[24]Z. Balanyi, R. Ferenc, Mining design patterns from C ++ source code, in: 19th International Conference on Software Maintenance (ICSM

2003), The Architecture of Existing Systems, 22-26 September 2003, Amsterdam, The Netherlands, IEEE Computer Society, 2003, pp. 305–

314. doi:10.1109/ICSM.2003.1235436.
URL https://doi.org/10.1109/ICSM.2003.1235436

[25]R. Ferenc, Á . Beszédes, L. J. Fülöp, J. Lele, Design pattern mining enhanced by machine learning, in: 21st IEEE International Confer-

ence on Software Maintenance (ICSM 2005), 25-30 September 2005, Budapest, Hungary, IEEE Computer Society, 2005, pp. 295–304.

doi:10.1109/ICSM.2005.40.

URL https://doi.org/10.1109/ICSM.2005.40

[26]M. Zanoni, F. A. Fontana, F. Stella, On applying machine learning techniques for design pattern detection, J. Syst. Softw. 103 (2015) 102–

117. doi:10.1016/j.jss.2015.01.037.

URL https://doi.org/10.1016/j.jss.2015.01.037

[27]F. A. Fontana, M. Zanoni, A tool for design pattern detection and software architecture reconstruction, Inf. Sci. 181 (7) (2011) 1306–1324.

doi:10.1016/j.ins.2010.12.002.

URL https://doi.org/10.1016/j.ins.2010.12.002

[28]A. Panich, W. Vatanawood, Detection of design patterns from class diagram and sequence diagrams using ontology, in: 15th IEEE /ACIS

International Conference on Computer and Information Science, ICIS 2016, Okayama, Japan, June 26-29, 2016, IEEE Computer Society,

2016, pp. 1–6. doi:10.1109/ICIS.2016.7550771.

URL https://doi.org/10.1109/ICIS.2016.7550771

[29]A. D. Lucia, V. Deufemia, C. Gravino, M. Risi, Design pattern recovery through visual language parsing and source code analysis, J. Syst.
Softw. 82 (7) (2009) 1177–1193. doi:10.1016/j.jss.2009.02.012.

URL https://doi.org/10.1016/j.jss.2009.02.012

[30]B. D. Martino, A. Esposito, A rule-based procedure for automatic recognition of design patterns in UML diagrams, Softw. Pract. Exp. 46 (7)

(2016) 983–1007. doi:10.1002/spe.2336.

URL https://doi.org/10.1002/spe.2336

[31]N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, Design pattern detection using similarity scoring, IEEE Trans. Software Eng.
32 (11) (2006) 896–909. doi:10.1109/TSE.2006.112.

URL https://doi.org/10.1109/TSE.2006.112

[32]H. Thaller, L. Linsbauer, A. Egyed, Feature maps: A comprehensible software representation for design pattern detection, in: X. Wang,

D. Lo, E. Shihab (Eds.), 26th IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou,

China, February 24-27, 2019, IEEE, 2019, pp. 207–217. doi:10.1109/SANER.2019.8667978.

URL https://doi.org/10.1109/SANER.2019.8667978

[33]A. Chihada, S. Jalili, S. M. H. Hasheminejad, M. H. Zangooei, Source code and design conformance, design pattern detection from source

code by classification approach, Appl. Soft Comput. 26 (2015) 357–367. doi:10.1016/j.asoc.2014.10.027.

URL https://doi.org/10.1016/j.asoc.2014.10.027

18

[34]S. Hussain, J. Keung, A. A. Khan, A. Ahmad, S. Cuomo, F. Piccialli, G. Jeon, A. Akhunzada, Implications of deep learning for the automation

of design patterns organization, J. Parallel Distributed Comput. 117 (2018) 256–266. doi:10.1016/j.jpdc.2017.06.022.

URL https://doi.org/10.1016/j.jpdc.2017.06.022

[35]R. Barbudo, A. Ram ´ırez, F. Servant, J. R. Romero, GEML: A grammar-based evolutionary machine learning approach for design-pattern

detection, J. Syst. Softw. 175 (2021) 110919. doi:10.1016/j.jss.2021.110919.

URL https://doi.org/10.1016/j.jss.2021.110919

[36]S. Alhusain, S. Coupland, R. I. John, M. Kavanagh, Towards machine learning based design pattern recognition, in: 13th UK Work-

shop on Computational Intelligence, UKCI 2013, Guildford, United Kingdom, September 9-11, 2013, IEEE, 2013, pp. 244–251.

doi:10.1109/UKCI.2013.6651312.

URL https://doi.org/10.1109/UKCI.2013.6651312
[37]T. M. Mitchell, Machine learning, International Edition, McGraw-Hill Series in Computer Science, McGraw-Hill, 1997.

URL https://www.worldcat.org/oclc/61321007

[38]O. Razeghi, J. A. Sol ´ıs-Lemus, A. W. C. Lee, R. Karim, C. Corrado, C. H. Roney, A. de Vecchi, S. A. Niederer, Cemrgapp: An interactive

medical imaging application with image processing, computer vision, and machine learning toolkits for cardiovascular research, SoftwareX

12 (2020) 100570. doi:10.1016/j.softx.2020.100570.

URL https://doi.org/10.1016/j.softx.2020.100570

[39]X. Tian, D. Shi, K. Zhang, H. Li, L. Zhou, T. Ma, C. Wang, Q. Wen, C. Tan, Machine-learning model for prediction of martensitic

transformation temperature in nimnsn-based ferromagnetic shape memory alloys, Computational Materials Science 215 (2022) 111811.

doi:https://doi.org/10.1016/j.commatsci.2022.111811.

URL https://www.sciencedirect.com/science/article/pii/S0927025622005225

[40]A. Sherstinsky, Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network, CoRR abs /1808.03314

(2018). arXiv:1808.03314.

URL http://arxiv.org/abs/1808.03314

[41]J. Chung, Ç . G ülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, CoRR

abs/1412.3555 (2014). arXiv:1412.3555.

URL http://arxiv.org/abs/1412.3555

[42]S. Elmahdy, T. Ali, M. Mohamed, Regional mapping of groundwater potential in ar rub al khali, arabian peninsula using the classification

and regression trees model, Remote. Sens. 13 (12) (2021) 2300. doi:10.3390/rs13122300.

URL https://doi.org/10.3390/rs13122300

[43]K. P. Murphy, Machine learning - a probabilistic perspective, Adaptive computation and machine learning series, MIT Press, 2012.

[44]D. A. M.Schnyer, Support vector machine, in: Machine Learning, ScienceDirect, 2020, pp. 101–121.

URL https://doi.org/10.1016/B978-0-12-815739-8.00006-7

[45]L. E. Peterson, K-nearest neighbor (2009). doi::10.4249 /scholarpedia.1883.

[46]K. Doya, D. Wang, Announcement of the neural networks best paper award, Neural Networks 145 (2022) xix. doi:10.1016 /S0893-

6080(21)00464-0.

URL https://doi.org/10.1016/S0893-6080(21)00464-0

[47]H. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, K. Dahal, Lstm-sdm: An integrated framework of lstm implementation for sequential data

modeling, Software Impacts 14 (08 2022). doi:10.1016/j.simpa.2022.100396.

[48]D. Yu, P. Zhang, J. Yang, Z. Chen, C. Liu, J. Chen, E fficiently detecting structural design pattern instances based on ordered sequences, J.

Syst. Softw. 142 (2018) 35–56. doi:10.1016/j.jss.2018.04.015.

URL https://doi.org/10.1016/j.jss.2018.04.015

[49]M. Al-Obeidallah, M. Petridis, S. Kapetanakis, A multiple phases approach for design patterns recovery based on structural and method

signature features, Int. J. Softw. Innov. 6 (3) (2018) 36–52. doi:10.4018/IJSI.2018070103.

URL https://doi.org/10.4018/IJSI.2018070103

[50]R. Xiong, B. Li, Accurate design pattern detection based on idiomatic implementation matching in java language context, in: X. Wang, D. Lo,

E. Shihab (Eds.), 26th IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou, China,

February 24-27, 2019, IEEE, 2019, pp. 163–174. doi:10.1109/SANER.2019.8668031.

URL https://doi.org/10.1109/SANER.2019.8668031

http://www.worldcat.org/oclc/61321007
http://www.sciencedirect.com/science/article/pii/S0927025622005225
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/1412.3555

