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Abstract.  Interest in multiplicative vs. additive returns on bets has been revived by Peters1, who 
proposes ergodicity and added noise are useful in understanding utility preferences.  Peters 
requires a Monte Carlo simulation to demonstrate empirically a supposed paradox that arithmetic 
expectation is inappropriate for multiplicative gain distribution forecasting.  Here I formalize the 
r operator notation, which significantly simplifies multiplicative problems, as an extension of the 
arithmetic group's ∆/d discrete and continuous operators into the multiplicative semigroup.  I 

show how the annihilating (absorbing) element of the multiplicative semigroup at 0, not ±∞, may

be used to conveniently represent nonlinear sequence occurrences, such as running out of money, 
without the need for special computer rules outside the mathematics.  I use this to solve Peters' 
expected-value paradox elegantly, without ergodicities nor noise.  But Peters misses the real 
paradox, called “Just One More”:  the outcome of an advantageous additive gamble is identical 
to the outcome of a similar disadvantageous multiplicative gamble, after one trial; hence, by 
induction, an agent will keep playing.  I propose games “Hero or Heroin” and “American 
Roulette” to highlight this paradox.  This may help in explaining addiction.  The Supplement 
contains further visualizations and arguments against the need and applicability of ergodics for 
utility.  The results contribute to the understanding of repeated multiplicative gambles with 
annihilating states, and their utility.

Summary.  The results of betting a wealth bankroll, say $100, on something as simple as a fair coin-
flip, and then receiving, say, either additive +$50 for heads / -$40 for tails, or multiplicative +50% for 
heads / -40% for tails, can have subtle implications.  In particular, repeated additive payoffs of this 
same bet result in larger and more probable wins, whereas repeated multiplicative payoffs, using the 
current bankroll, surprisingly result in larger and more probable losses; but much higher lottery payoffs
for speculators.   A major decision is whether to take a bet or not, based on the usefulness or utility of 
possible outcomes.  Peters argues that ergodicity—roughly, path independence, so that any one random 
path through the system is representative of the whole—is needed to determine choices, and that 
psychology-based utility theory can't work.  Without proper operators, computations on multiplicative 
versus additive gains may be difficult to understand.  Here I show how to work with multiplicative 
gains without using any ergodics nor noise.  First I formalize a useful notation for multiplicative gains 
on series by using groups.  I explore annihilating states (representing insolvency, or death), which 
destroy ergodic assumptions.  And I present a new paradox, highlighting the difference between 
incremental additive gains and multiplicative series, along with two new games illustrating preference 
results different from those assumed by the community.  The results should help clarify multiplicative 
gains, such as are found in financial markets and military contests, and may be useful in understanding 
addictive behavior.  In particular, it's anticipated that nuclear safety and economic cooperation 
calculations may benefit from these explorations.      



The r operator

Everyone's familiar with the prefix operator ∆x for discrete x, and dx for continuous x.  This provides a
handy and intuitive notation for additive increments.  But what if you wish to talk about multiplicative 
increments?  Does there exist a similar handy notation?  And why would this be useful?

Many authors have used stand-alone variables, such as αs
2, oi

3, xi
4, or (1+b)5, to derive Kelly's formula 

or the information/entropy of multiplicative outcomes.  Here I contribute by formalizing multiplicative 
increment as an operator, and showing how it derives from a group extension.  Interesting applications 
follow in succeeding paragraphs, so feel free to skip the derivation.

We dip briefly into groups.  Real numbers or integer numbers, taken together with our familiar 
addition, I'll call the additive group.  Real numbers or integer numbers, taken together with our 
familiar multiplication, I'll call the multiplicative semigroup.  (It's not a “group”, because including 
the 0 element causes unusual effects, as we'll soon see.) 

So instead of ∆ or d , let's use roman r for the multiplicative increment operator for discrete series, and
italic r for continuous.

Thus, r/r in the multiplicative semigroup is extended from ∆/d in the additive group.  

We recall that additive returns on bets are best expressed with the familiar delta notation.  Given a 
series {x[0], x[1], x[2]...x[T]} as a function of discrete time T, then the delta prefix operator comes 
from the inverse of the addition operator over the series,

  ∆x  ≝  ( x[T+1]  -  x[T] ) (1)

and its continuous form, from continuous time t,

   dx  ≝  ( x(t+ϵ)  -  x(t) )   . (2)

Then the r operator (for ratio) is similarly defined from the inverse of the multiplication operator,

   rx  ≝  ( x[T+1]  /  x[T] ) (3)

or its continuous form, using italics r, from continuous time t,

   rx ≝ ( x(t+ϵ)  /  x(t) )   . (4)

Although it would be nice to be able to write prefix  rx as rx, similar to dx or ∆x, this would get 

confusing when we postmultiply by x.  And writing r(x), to emphasize that it's a unary operator, is 
usually too much, especially for concatenation.  So the x glyph has to be lowered, subscripted, or made 
implicit.  

These definitions can be rewritten, using subscripted stand-alone variables, as generative formulae
   x[T+1]  =    ∆x[T]  + x[T]   =    ∆T + x[T]  (5a)

   x(t+ϵ)  =   dx + x(t) (5b)

or

   x[T+1]  =    rx[T] ∙ x[T]  =    rT ∙ x[T]   =   rT xT (6a)

   x(t+ϵ)  =   rx ∙ x( t )  =   rt ∙ x( t )   =   rt x (6b)

which, with left-hand sides equal, are showing that

    rT   = ( 1  +  ∆T /x[T]  )    (7)



or, in the continuous form, 

   rt   = ( 1   +   dx/x(t)  ) . (8)

Thus, any ∆x may be converted into its equivalent  rx, assuming a non-zero starting point x; and any 
finite rx can be converted into its equivalent ∆x.  Note that a negative ∆x that's less than x will still 
result in a positive rx; if you lose half your money, you've just multiplied times a positive +0.5.

(But what about a zero starting point x?  Multiplicative growth assumes once you reach x as true 0, you
always stay at 0.  You've been kicked out of the game.  So successive growth rates after x = 0  don't 
matter; they may be classed as undefined, indeterminate, or don't care.)

We recall that rate of arithmetic growth, in discrete or continuous measures, is the familiar

   x'  ≝  ∆x /∆t        or     x'  ≝  dx /dt   . (9)

Then the rate of geometric growth, in discrete or continuous measures, will be the corresponding

   x´  ≝   rx 1/∆t   =  r 1/∆t        or     x´ ≝  rx 1/dt  =   r 
1/dt   . (10)

being glossed as a superscript close-single-quote.  The additive straight division by dt turns into an 
exponential division by dt. 

This has the potential for forming a new calculus based on the multiplicative semigroup instead of the 
additive group.

Thus, in business calculations, the familiar expression for compounded-interest future value as a 
function of present value, interest rate i, and period n

   FV = PV ( 1 + i )n (11)

can be more clearly written

  FV = PV ( r ) n     . (12)

with r = (1 + i ).
 Note that, since stand-alone r and r are simply factors, they both commute and associate.  They also 
concatenate.  So,

   x[n]   =     r0 r1 … rn-1 x[0]    =    rn-1 … r1 r0 x[0],      and (13)

   x´0→n       =   ( r0 r1 … rn-1 ) 
1/n       =    ( rn-1 … r1 r0 ) 

1/n (14)

Note of course that x[0]→x[n] requires n increments, but has (n+1)  x terms, because of fenceposts.

Annihilating state r = 0 can model permanently losing 

In the examples in the Supplements, I have to use a special-exception computer rule to handle cases 
when the player has run out of money in additive cases and can't play the game any more.  But what if 
there were a way to represent this automatically with r in the multiplicative case? 

Defunct people can't play the game.  Since any delta can be converted into an r, some may use this as
an excuse to say that multiplicative gains can therefore be bound by the rules of additive gains.  But 
here's the exception:  The theory introduces an absorbing state at a bankroll of 0, representing 
insolvency or death; this is the multiplicative semigroup's annihilating element (absorbing element).  



Since the additive group's annihilating element occurs at  ± infinity, its effects have been masked, and 

have not yet been included in decision theory.  The multiplicative annihilating element at 0 introduces a
realistic nonlinearity into the progressions, vaguely similar to the way a RelU function6 introduces 
realistic nonlinearities into neural nets; see catastrophe theory7 for better nonlinearities. 

Peters' expected-value paradox solved by inspection using r, 
without ergodicities 

Peters proposes a paradox with a fair coin toss either winning 50% of one's wealth on heads (H), or 
losing 40% of one's wealth on tails (T).  He represents this as (his eq.(2)):

   ∆x  =     ∆xH = +0.5x,  pH = ½ (15)

        ∆xT =  -0.4x,   pT = ½

states that the expected value is 〈 ∆x 〉 = +0.05x, and therefore people will want to take this bet.  

Although Peters notices the difference between additive and multiplicative payoffs, he has to use a 
Monte Carlo simulation to show why this is actually a poor bet; nonlinear transformations of wealth, 
differing in additive vs. multiplicative cases to show why some people might not take this; ergodic 
observables to come up with a new explanation; and then introduction of noise to justify the ergodics.

  But the definition is ill-structured.  Although it looks like an arithmetic payoff, it is actually a 
geometric payoff, and should be written as such.  The correct formulation should be

   rx  =    rxH  (= +0.5x )   = 1.5,  pH = ½ (16)

   rxT
   (=  -0.4x )  =  0.6,  pT = ½

for the multiplicative case, or replacing current x with x0 in the original formula for the additive case.

Then, in the case of two tosses of a fair coin, it's easy to see that, for additive gains,

   x[i +2]  ⇐   ∆xH + ∆xT + x[ i ]    =   +0.5 x0 + -0.4 x0  +  x[ i ]     =    (+0.1 x0)  +  x[ i ]  , (17)

on average, for any i, by the law of large numbers;  however, for two tosses with multiplicative gains,

   x[i +2]   ⇐    rxH
  rxT

 x[ i ]     =    (1.5)  (0.6)  x[ i ]    =   (0.9) x[ i ]          (18)

again on average, for any i, by the law of large numbers, with a fair coin.  This comes from the 
classical definition of probability that equal outcomes come up equal times, in the long run.  These will 
give the median results; full distributions are explored in the Supplement.

Thus, by inspection, we can see that repeated coin flips of the arithmetic payoff on average result in a 
win of (+0.1 x0)  every two flips.  A professional gambler will find this advantageous and will want to 
take this bet, repeating as often as possible for more and more winnings.  Whereas, by inspection, we 
can see that repeated coin flips of the geometric payoff on average (median case) result in a lose, being 
a reduction to (0.9) x[ i ] every two flips.  A professional gambler will find this disadvantageous, and 
will not want to take this bet.  Unless their personality is a speculator looking for a lottery payoff. 

  No Monte Carlo simulation is needed to determine this.  Also, no ergodics nor noise are required to 
determine whether it is wise to take the gamble or not.  The r operator helps this to fall out by 
inspection.



The Real Paradox:  “Just One More”

We've seen how the +50/-40 additive bet represents a net win more than half of the time in the long 
run, and in general many people will play it as often as possible, in order to bank on that win.  
Whereas, the +50%/-40% multiplicative bet represents a net loss more than half of the time in the long 
run, and in general most people who understand mathematics, and who are not speculators wishing for 
a lottery ticket, will avoid it.

However, the first move of the game, in both cases, is identical.  

One might think then that the recommendation would be to play the game only once, and then stop at 
the end of the first turn.

But then how is this resulting situation different, in the multiplicative case, from the additive case?  At 
the start of the second turn you're still given a choice between winning 50% of your current bankroll, or
losing 40%.  You might just as well have come into the game fresh, at the start of the second term, with 
a bankroll of $60 or $150.

So the additive winning player will say, “Just one more turn”, in the case of the multiplicative game.

But, by induction, if you are always coming into the game with fresh eyes, the sequence of turns will 
never stop.  The multiplicative game will end up looking like a sequence of additive games.  And there 
is no reason for a person used to winning the additive game to ever pause in the multiplicative version. 
By induction, they should be identical.  But they aren't.

 I call this the “Just One More” paradox.  Here I present two example games to illustrate this:

Hero or Heroin

In this game, a person has a choice between taking a heroin stimulus injection, which will make them 
feel like a million dollars for an hour, or being a hero and going “cold turkey”, refusing to play.  The 
heroin has a 1 in 13 chance of killing them each time.  What should they do?

American Roulette

Although European roulette wheels have 18 red slots, 18 black slots, and one green 0,  American 
roulette wheels have an extra, special “00” slot.  It seems this should have some extraordinary meaning.

Doctor et al8 ask rhetorically, “Would a person ever prefer a process that, after three rounds, diminishes
wealth from US$10,000 to 0.5 cents, over one that yields a 99.9% chance of US$10,000,000 and 
otherwise US$0?”  Although this is fine for a game show, in which, if the player loses all money on the 
table, they can still go home, it turns a blind eye to the nature of losing all wealth.  They still have 
family, friends, a home, a bank account, and possible jobs to turn to.  So they have not wagered all their
wealth; arguably just the top fraction.  They still have wherewithal to fall back on.

So, to make it more interesting, let's say that a gambling house has set up an extreme wager.  There's a 
special roulette wheel that has 1,000 slots.  999 of these will return $10,000,000 on your $10,000 bet.  
With the last 00 slot, the house has hired a special military agent, “Double-O Nothing”a.  You 
contractually agree that, if 00 comes up, he may kill all of your family and friends, bulldoze your home,
wipe out your bank account, and kill anyone who might try to hire you.  But remember, you will 
personally make ten million dollars if 00 doesn't come up.  

Unfortunately, when given millions, you habitually pay for large parties each night, which take your 

a Hat tip to Johnny Hart, creator of The Wizard of Id.



bankroll back to the $10,000 you started with.  You can play every day.  Do you take the gamble?  How
many days do you play?

Many folks would in fact take this gamble, especially with the moral risk of although having their 
family and friends wiped out, they would survive.  However, the details of repeated trials are 
unfortunate.  Extinction is modeled well as a Poisson process; basically, you have an average of a 
thousand days of riotous living before life as you know it will end.

But perhaps just one more day might not hurt?

Addiction and Just One More

The Just One More paradox may be useful in understanding addictive behavior.  Although the long-
term effects of repeated plays may be deadly, the short-term effects appear beneficial.  This can apply 
to both people and government bodies.  

Applications

Modeling multiplicative games, along with prescriptive and descriptive utility preference 
determinations for different personalities, has many real-world uses.  Among these are finance; 
medicine and cancer treatments; international trade; the exponential benefit of cooperation over 
competition; and nuclear safety.   

Conclusions

Ergodicity is not needed to solve utility preference determination.  It's not even applicable in real-world
cases involving annihilating states, such as insolvency or death.  Instead, using proper operators gives 
straightforward solutions.  The r notation is formalized from groups; it yields an annihilating state at 
zero, instead of at infinity, which provides useful non-linear representation power.  The difference 
between advantageous additive gains and disadvantageous multiplicative gains is subtle; it gives rise to 
the Just One More paradox, illustrated by the Hero Or Heroin and American Roulette games, which 
may help in understanding addictions.  The results may be useful in fiscal policy, cooperative mutually-
beneficial trade, and nuclear safety.   
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Supplementary Information on:

Multiplicative Gains, Non-ergodic Utility,
and the Just One More Paradox

John K. Myers  john (at) scrier.org  

Abstract.  Peters9 proposes ergodicity and added noise are useful in understanding preferences to 
additive and multiplicative bets.  He poses two apparent paradoxes—that expected utility theory 
requires that people can interact with copies of themselves in parallel universes, to determine 
utility; and that additive expected values don't model multiplicative gain sequences well.  I review 
probability interpretations and use visualizations of outcome distributions to show possible worlds 
need exist only in the mind of the single decider at the present moment; utility is a function of a 
distribution, not of an average; and utility depends on the temperament of the decider, not 
ergodicity.  When realistic annihilating states are introduced, such as the assumption that 
insolvency ends betting, I demonstrate the resulting distributions can easily be skewed and non-
ergodic anyway.  The results show classical subjective probability does not seem to need ergodics, 
but that games and utility functions over repeated multiplicative gambles are subtle and can 
benefit from visualizations. 

Summary.  The results of betting a wealth bankroll, say $100, on something as simple as a fair 
coinflip, and then receiving, say, either additive +$50 for heads / -$40 for tails, or multiplicative +50% 
for heads / -40% for tails, can have subtle implications.  A major decision is whether to take a bet or 
not, based on the usefulness or utility of possible outcomes.  Peters argues ergodicity is needed to 
determine choices, and that psychology-based utility theory can't work because “expected utility theory
implicitly assumes that individuals can interact with copies of themselves, effectively in parallel 
universes”.  So it seems the usage of possible worlds in probabilistic decision-making, and in particular
computations on multiplicative versus additive gains, can benefit from exploration.  Here I show how 
to work with multiplicative gains without using any ergodics nor noise, and how probability 
interpretations demonstrate subjective probability usage over present possible worlds inside the mind of
one deciding agent, without any copies of people in parallel universes in the future.  I explore 
annihilating states (representing insolvency, or death), which destroy ergodic assumptions.  I suggest 
life time as a grounding measure for utility comparisons.   The results should help clarify multiplicative
gains, such as are found in financial markets and military contests, and may be useful in understanding 
addictive behavior.  In particular, it's anticipated that nuclear safety and economic cooperation 
calculations may benefit from these explorations.      

Background

Multiplicative gains appear to be the same as additive gains, but the subtle difference produces 
profound differences in outcomes.  Peters1 proposes applying physical ergodic concepts to the problem 
of gambling-outcome utility preference determination. But the subtle differences are not made obvious.
So Peters requires a random 1,000-toss Monte Carlo simulation to demonstrate empirically that the 
multiplicative bet is disadvantageous and does not follow the arithmetic expected value.  He suggests 
adding Wiener noise to the process to get Brownian motion on the growth, in order to obtain 
supposedly ergodic observables, and suggests this is important in understanding utility preferences.  He
criticizes psychological utility determination arguments as “hard to constrain, and often circular”.  He 
wishes to construct “ergodic observables for non-ergodic (growth) processes”.   Ergodicity can also be 
understood as path independence—that a final result does not depend on its path through time, but only 



upon its final position.   But when a process is path-dependent, this breaks down, as we'll demonstrate.  
Finally, Peters proposes a probability paradox:  How can different copies of myself, in multiple 
possible worlds in the future, coordinate to pool their value?
  Let's clarify these points, and then explore them with visualizations using only 10 tosses.

Kinds of Probability

A review of probability interpretations10 seems useful.  “Probability” continues to be confusing, 
because the word is conflated to mean at least five different things.  Propensity probability, in a 
Newtonian universe,a is an attribute of a physical thing-in-itself right now having a propensity to yield 
different possible outcomes.  It is unknowable directly; and can only be modeled, in the mind of a 
decision-maker, by logical assumptions, or by measurements/tests.b  Classical probability was a first 
attempt at logical assumptions to model and assign probability measures based on the principle of 
indifference, that cards or dice should get equal probabilities because one card logically comes up as 
often as another.  More recently, this approach is backed by Jaynes's maximum entropy, which states if 
you don't have any information as to why one outcome should be preferred over another, then assign 
equal measures.  Frequentist probability (statistics) attempts to model propensity descriptively by 
counting occurrences in the past; this assigns a measure over a set of past outcome observations in the 
exterior world.  Of course, it runs into trouble when the set is small, empty, or non-representative of 
rare outcomes.  Subjective probability believes that probability is all in the mind:  it assigns a measure 
over a set of interior possible worlds.  This is not necessarily consistent, non-fuzzy, nor even known.  
Credence is used to name the subjective probability assigned to a mentally-modeled event.  This is 
often conflated with confidence,c a second-order probability term modeling the width and intensity of 
the credence distribution, often approximated by interval probabilities, that measures how sure the 
decider is that the credence is accurate.  You can believe that a coin is 50/50 fair, and still not have 
confidence that the casino has not introduced a weighted coin, until you've seen the coin in action many
times.  This leads to pignistic probability, or “betting”, which combines credence with confidence to 
come up with a probability scalar when the decision-maker is forced to decide on a bet and actually act 
or fold.  Note this is often different from credence, due to real-world caution, concerning the slippage 
between believed subjective models and actual propensity.  Bayesian probability is a prescriptive 
mathematics describing how a subjective modeling decider should act to assemble and update believed 
probabilities in a consistent manner.  However, it requires priors, which usually ground out in either 
maximum-entropy or expert credence approaches.  Finally, Kolmogorov's probability calculus rests in 
the realm of pure mathematics, which can be used by Bayesians and others to help solve concrete 
problems consistently.  Notice that the domains of these—the present thing-in-itself, past observations 
in the world, models of potential future possible worlds in the mind, pure mathematics—are quite 
different, and so these are describing different things by trying to use the same word.

Utility Needs Parallel Worlds, But They're Not Where You Might Suppose

With this as background, where and when are the possible worlds assigned to wealth outcomes from 
betting 10 coin flips in the future?  These are believed models of future projections that are in the 
mind of the decision-maker, right now, concerning the best possible models that the expert 
statistician, maximum-entropy mathematician, Bayesian, or subject-matter engineer advisor 

a This ignores possibilities in which we live in a “Gone With The Wind” universe--a dramatic creative work, a movie, in 
which spacetime is fixed--Feynman diagrams seem to support this; or a “Grand Theft Auto” universe run by a computer 
simulation; or a “Dungeons & Dragons” universe where observations are only placed when an observer looks for them. 

b Which are subject to Heisenberg uncertainty.
c Different from the statistical usage of “confidence”.



components can come up with.  Even then, they could be incomplete or wrong.  They are used by the 
decision-maker in a pignistic way, along with confidence, to determine at each step how much to bet, or
whether to take the money, go home, and choose not to play any more.  Then the real world plays out 
along one particular path.  In a Newtonian interpretation, there are no parallel universes in the real 
world.  There is only what actually happens.  Thus, there is no need to talk of individuals interacting 
with parallel copies of themselves.

Where, then, do these possible worlds come in?  It's a two-step process.  First the individual generates 
the distribution of predicted possible worlds in his or her mind, based on best information, as will be 
shown in the example figures.  Only then does the deciding individual use utility preferences, over the 
distribution, not over the mean, to determine whether to go with the bet or not.  In particular, worst-
case analysis plays heavily, as shown in maximin theory.  And these preferences are subjective.

  There is much more that can be said about the epistemology of possible-world reasoning inside a 
single agent's mind, and indeed a 5-valued logic of {Believed Actual, Believed Possible, Believed 
Hypothetical, Believed Inconsistent, Unknown} can be determined over this.  See ref11 for further 
details.

Utility depends on the temperament of the decider 

Options trading classically divides between the hedgers and speculators. Hedgers, such as farmers, 
want to make a known good profit on their crops and are willing to give up the uncertain chance of 
making a great profit in order to lock in good prices, fold, and go home.  Speculators enjoy risk, like to 
buy lottery tickets, and are willing to pay for the chance to make a great profit, at the risk of losing cash
in hand.  Note that these deciders are both placing differing preferences on the identical probabilistic 
outcome distribution.  The same distribution will attract or repel different types of personalities.  So 
simple ergodic transforms on a single distribution are inadequate to predict subjective utility 
preferences—psychology is required.

Utility: Life Time and Opportunity Cost

People only have so much time left in their lives.  This is a limited resource that can be used to ground 
derivations.  Independently wealthy people have their money working for them, and earning income at 
a particular rate; whereas salaried people have to invest life time into earning money, but also know 
how fast they earn.  Putting a bankroll at risk is then equivalent to betting the number of hours left in 
one's life  needed to replace that amount of money if it's lost.  Obviously this will be quite different for 
different people.  However, this provides a quantitative approach towards defining utility, in terms of 
life-hours. 

Utility depends on the distribution

 Assume a wise hedging farmer, who wants to feed his family.  Assume a binary choice between 
planting rice, which has a certain chance of doubling his investment; vs. planting bicontinuous Menger 
sponges, which have a 0.001 lottery chance of earning millions or billions as next-generation batteries 
for EV electric vehicles, but have a 0.999 chance of losing 90% of the farm.  It does not matter how 
arbitrarily large the lottery payoff is; the wise farmer is not going to bet the farm on a risky endeavor.  
So averaging expected utilities, even with severe logarithmic distortions, are not the whole answer to 
pignistic utility determination for hedgers.  One needs to look at the entire overall distribution, 
including the mode, variance, upper and lower limits, etc., as inputs to psychological utility preference 
determination.      



Ergodicity, Free Will, and Insolvency

Ergodicity only applies if the player is constrained to always finish all runs, and does not have the 
option of re-evaluating their position and choosing in the middle to fold and go home.  This is highly 
unrealistic for most real-life games.  In such a case, the bankroll amount of the player is frozen and is 
constant for the rest of the time series.  This is a problem with ergodic-inspired approaches.

Ergodicity also only applies if there are no annihilating (absorbing) states, such as insolvency.  In most 
games, you must have money to play, and if you run out of money, you are removed from the game.  
Even if a bank is willing to loan you money, at some point in most reasonable games there comes a 
time at which the bank draws the line and is unwilling to advance you more money.  This then freezes 
the results at that point.

Note also that subtracting out annihilated states skews the distribution:  you come up with a survivor 
bias, which shifts the mean.  Also final outcomes are path-dependent (and therefore non-ergodic).  If 
you go very high, then low, you can achieve successful results, different from if you go low, get 
annihilated, then would have gone very high.  We'll see this in the examples. 

Experiments

In order to compare additive vs. multiplicative games, instead of talking about esoteric growth 
functions, it is most useful to visualize the exhaustive results of all possible outcomes from 10 trials.  
This brings out features and realizations that may have been hidden.

All experiments are simulated inside the computer.  In each experiment, a (virtual) player starts with a 
bankroll of $100.  A fair coin is tossed 10 times.  Depending on whether the coin comes up heads or 
tails, the player receives a 50 amount or loses a 40 amount.  The game is played for 10 tosses.  All 
possible combinations are graphed, giving 210 or 1024 different possible worlds.  However, because 
outcomes are symmetric and discrete, in the unabsorbed cases there are only (n+1) = 11 different 
distinct results, both in the arithmetic and multiplicative cases.  1024 outcomes was chosen because it's 
close to 1000, giving an intuitive feel for percentages from outcome tallies (presented in the Tables).  
10 trials is large enough to see tail effects, yet small enough to understand easily.

Peters requires 1,000 trials, not 10, for his Monte Carlo empirical demonstration.  However, because he
only simulates with 150 runs, which is not exhaustive like ours, he misses the hugely positive long tail 
effects important to speculators on the multiplicative case.

Experimental cases explore:  a baseline additive game with unlimited loans and no annihilating states; 
the same game, with naive truncation at the end thus resetting all negative final outcomes to zero; the 
same game, but this time with a dynamic annihilating state in the middle that sticks any intermediate 
negative outcome at zero; and a standard multiplicative game, with the same percentage payoffs, but 
computed as a percentage of the current not initial bankroll.     

Experiment 1.  In Fig. 1, a fair coin is tossed 10 times, with arithmetic payoffs of +$50 or -$40 per 
toss, depending on heads or tails.  As always, the player starts with a bankroll of $100.  Importantly, the
result percentage is fixed on the initial bankroll of $100, and the payoffs do not vary from +$50/-$40 
even when the bankroll grows.

For the experiment to be realized, it's necessary to assume unlimited bank loans.  If the player's 
bankroll goes negative, the player is still allowed to keep playing.  This results in 17% of the final cases
ending negative.  Note that, with bank loans allowed, a player's random-walk path may wander 
negative in the middle of the 10 trials run, then correct back into positive territory.



The outcome is the familiar bell curve.  There are 10+1 = 11 distinct outcome columns.  The extreme 
ends at +600 and -300  represent only 1 outcome out of 1024 cases apiece, and so are mostly too short 
to see.   Each graphical box in a vertical column represents 10 outcomes, for easy counting.  See Fig. 1.

This is the only experiment to go negative.

Means, medians, and modes are reported at the bottom of Tables 1 and 2.  The additive experiment has 
a winning mean, median, and mode of $150, all the same, $50 more than the $100 the player starts 
with.  With 10 trials, a player ends up winning more than the starting bankroll  62.3% of the time.  The 
expected final amount of the win, and the percentage of winning outcomes, only increases with the 
number of trials.  So, a professional gambler would take this bet, and would attempt to play it as rapidly
and as often as possible, in order to rack up both a large bankroll and large chances of winning.

Humans are intuitively used to additive gains.  This is the game that most people intuitively feel they 
are playing.

Experiment 2.   Fig. 2 shows the same additive experiment as Fig. 1, with the modification that 
negative results at the end are statically clipped to 0.  That is, if the player ended up losing at the 
casino, at the end of the day all debts are forgiven to 0.  

Although unrealistic, this is apparently the method used in the Copenhagen experiment12 discussed by 
Peters.  Also note that the Copenhagen experiment excluded accountants, engineers, computer 
scientists, and anyone who might be good at numbers (p.15).

This skews the distribution.  Naive static clipping of the results actually increases the mean to $161, 
because the left side is moved forward.  However, chances of winning remain the same at 62.3%.

Experiment 3.  Fig. 3 shows the same additive experiment as Fig. 1, with the modification that 
negative results in the middle are dynamically frozen at 0.  That is, without loans, if the player ran out 
of money, the play stopped and they were not allowed to play any more.  With the same 1024 
exhaustive possible outcomes, this has a substantially larger peak at 0 than Fig. 2, as it eats into 
columns that would have resulted in the middle and towards the right.  In fact, the mode shifts from 
$150 to $0.  The mean also shifts downwards, from $150 to $146.48.  But there's still a 56.8% chance 
of winning.

Note that the computer program requires a special exception rule for this arithmetic experiment.  
Whereas, if a multiplicative experiment needs to create an annihilating state, it can simply set the r 
payoff reward to 0 inside the mathematics itself, without have to go outside to set exception rules.

Experiment 4.  Fig. 4 shows a standard multiplicative gain experiment.  A fair coin is tossed 10 times, 
with arithmetic payoffs of +50% or -40% of the current bankroll per toss, depending on heads or tails, 
again starting at $100.  There are again 10 + 1 = 11 distinct results columns, with count tallies 
interestingly the same as in experiment 1.  See Table 2.  (Note that the single-outcome columns of 
$0.60 and $5,766.50 are too short to show up on the graph.)  However, the left half of the bell curve is 
substantially compressed close to zero; whereas the right half of the curve is substantially stretched.  It 
means that this series does not follow the central limit theorem.  

Although the mean final outcome is $162.89, this is skewed by the extremely long tail on the right; as 
both the median and mode outcomes are $59.05, less than the starting bankroll of $100.  Indeed, a 
player can expect to win and take home more than their starting bankroll in only 37.7% of the cases.  In
62.3% of the cases, a player repeating 10 times is going to lose.

Experiment 4 does not explore the multiplicative annihilating case when one of the outcome's r = 0, 
which would end up with more and more results on the 0 axis as repeated trials progress.  And, with a 
geometric growth rate of sqrt(0.9) ≈ 0.949, less than 1.0, the median of the trials will continue to 



diminish, with repetitions, but the player will never go negative.  If the growth rate were greater than 
1.0, on the other hand, representing the mutual profitability of a win-win transaction, the median of the 
trials would grow, with repetitions, without limit.    

Because the median bankroll continues to shrink over time, as the number of trials increases, most 
professional gamblers/investors will stay away from this bet.

Some high-risk speculators may be attracted to this, however, as it provides a good “lottery ticket”--
with a 1/1024 chance, betting $100 can end up with $5,766.50.

Discussion 

There are a few details that might appear surprising upon first glance.  First, the outcomes of Exp. 1 are
divided into 11 columns, instead of being a continuous bell curve.  This is a result of the play being 
only 10 discrete Bernoulli trials, and each trial having the same payoff conditions; so the trials 
commute, in the additive case, resulting in only 11 distinct final outcomes.  Second, the outcomes of 
Exp. 4 are also divided into 11 columns.  Of course, multiplicative cases commute also.  Third, the 
scores (tallies) for each column, read left-to-right, are the same between Exp. 1 and Exp. 4.  This is also
a result of running Bernoulli trials, without any annihilating states.  So the two curves are isomorphic. 

 However, we recall that building the probability distribution is only the first step before applying the 
personal utility function over the distribution.  And money is money.  So, whether the person is a 
hedger, a professional gambler, or a speculator, that person will be providing their same personal utility
function over widely varying distribution results from the different experiments.  Utility preferences 
depend upon the person and their personality, not upon the ergodics of the distribution.

Conclusions

Ergodicity is not needed to solve utility preference determination.  It's not even applicable in real-world
cases involving annihilating states, such as insolvency or death.  And discussions between clones in 
future possible universes are not needed for probability distribution determination.  Instead, 
probabilities are subjective, depend on the expertise of the decider, and are formed in the present from 
multiple possible future worlds imagined inside the mind of a single decider.  Visualizing distributions 
comprehensively using even only 10 trials serves to make consequences of decisions transparent.  
Multiplicative gains should not be mistaken for arithmetic gains, and the Just One More paradox shows
this has important implications for addiction, cooperative commerce, and nuclear safety, among others. 

Supplement References

9 Peters,O.  The ergodicity problem in economics. Nature Physics, vol 15, Dec 2019, pp. 1216-1221
10 Wikipedia, Probability interpretations.  At https://en.m.wikipedia.org/wiki/Probability_interpretations
11 Myers, J.  B-SURE: A Believed Situation and Uncertain-Action Representation Environment, COLING-92, vol. III 

(1992).  pp. 961-965.
12 Meder, D., et al.  Ergodicity-breaking reveals time optimal decision making in humans.  Preprint at 

https://arxiv.org/abs/1906.04652.pdf .

https://arxiv.org/abs/1906.04652.pdf


Fig. 1: Arithmetic returns on +50/-40, starting from 100, with unlimited loans.  Ending dollars vs. total
number of possible-world outcomes after 10 equiprobable coin-flip trials, showing all 1024 possible 
combinations.  Each complete box cell represents 10 outcomes.  Note characteristic Gaussian 
distribution.  Majority of outcomes end up more than the start at 100.

Fig. 2: Arithmetic returns on +50/-40, starting from 100, with naive truncation afterwards at 0

Fig. 3: Arithmetic returns on +50/-40, starting from 100, with path sticking at 0 when it goes negative 
(no loans, and can't play further when run out of money).   Results are path-dependent and non-
ergodic.   Note differences in lower bands from Fig. 2.



Tables

Outcome Arithmetic,
with loans

Arithmetic,
naive trunc.

Arithmetic,
annihilating 0

-$300 1

-$210 10

-$120 45

-$30 120

$0 176 324

$60 210 210 118

$150 252 252 207

$240 210 210 200

$330 120 120 119

$420 45 45 45

$510 10 10 10

$600 1 1 1

Mean $150 $161 $146.48

Median $150 $150 $150

Mode $150 $150 $0

p( >100) 0.623 0.623 0.568

Table 1: Arithmetic payoff experiments, from Figs. 1,2,3.

Fig. 4: Multiplicative returns of +50%/-40%, starting from 100, again 10 trials with 1024 outcomes.  
Left side of graph is severely compressed, and is replicated with zoomed abscissa in the inset; right 
side is severely expanded, requiring elided gaps in the axis display.  Each box is 10 outcomes.  Eleven 
distinct column counts are same as in Fig. 1.  Majority of outcomes end up less than the start at 100.



Outcome Multiplicative

$0.60 1

$1.51 10

$3.78 45

$9.45 120

$23.62 210

$59.05 252

$147.62 210

$369.06 120

$922.64 45

$2,306.60 10

$5,766.50 1

Mean $162.89

Median $59.05

Mode $59.05

p(>100) 0.377

Table 2: Multiplicative payoff experiment, from Fig. 4



Figures

Figure 1

Arithmetic returns on +50/-40, starting from 100, with unlimited loans. Ending dollars vs. total number of
possible-world outcomes after 10 equiprobable coin-�ip trials, showing all 1024 possible combinations.
Each complete box cell represents 10 outcomes. Note characteristic Gaussian distribution. Majority of
outcomes end up more than the start at 100.

Figure 2

Arithmetic returns on +50/-40, starting from 100, with naive truncation afterwards at 0



Figure 3

Arithmetic returns on +50/-40, starting from 100, with path sticking at 0 when it goes negative (no loans,
and can't play further when run out of money). Results are path-dependent and non-ergodic. Note
differences in lower bands from Fig. 2.

Figure 4

Multiplicative returns of +50%/-40%, starting from 100, again 10 trials with 1024 outcomes. Left side of
graph is severely compressed, and is replicated with zoomed abscissa in the inset; right side is severely
expanded, requiring elided gaps in the axis display. Each box is 10 outcomes. Eleven distinct column
counts are same as in Fig. 1. Majority of outcomes end up less than the start at 100.


