
Page 1/20

Blockchain Mining: Understanding its Di�culty in
Terms of Hashing Algorithm E�ciency
CARLOS ROBERTO MARTINEZ MARTINEZ (carlos.martinez@catolica.edu.sv)

Catholic University of El Salvador

Research Article

Keywords: MD5, SHA, proof of work, nonce value, performance.

Posted Date: December 20th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2383470/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2383470/v1
mailto:carlos.martinez@catolica.edu.sv
https://doi.org/10.21203/rs.3.rs-2383470/v1
https://creativecommons.org/licenses/by/4.0/

Page 2/20

Abstract
Blockchain is an emerging technology that offers great advantages such as global distribution of
information and data immutability over time, but its mining process is known to be time consuming and
highly resource demanding. There are different algorithms to mine blocks, being able to operate at
different levels of complexity and also incurring different compute costs. This study used a custom and
simple implementation of the MessageDigest Java class to evaluate the performance of MD5 version 2,
SHA2, and SHA3 (the last two in modalities of 256 and 512-bits) when automatically creating a chain of a
thousand blocks, measuring its average time for generation and proof of work veri�cation, alongside to the
count of incurred iterations. The SHA3 methods produced stronger hash values but performed slower than
MD5 and SHA2, and the complexity level of 4 characters offered the best security level in terms of iteration
count versus calculation time. Complexity levels of 5 and 6 characters offered greater security but with a
drastic performance reduction, which is proper for critical security systems that do not process high
volumes of information. These results are useful for those small to medium organizations that are
planning to implement blockchain technologies and need a parameter for understanding exactly what
‘mining cost’ really means in terms of compute costs.

Introduction
Blockchain is a technology that can be used to quickly distribute high volumes of information over the
Internet, implementing some combined security mechanisms like block immutability, data encryption,
mining, and proof work veri�cation (Nakamoto, 2008). These advancements allow trustable data storage
in a worldwide distributed environment (Herlihy, 2019), where it is very di�cult for an individual to alter its
content due to the strict chronological dependence among data blocks and the consensus mechanism
among blockchain distributed copies, in which the majority of registered compute nodes automatically
coordinate to discard manipulated versions of blocks that do not match the mining veri�cation process.

To ensure data integrity, the best practice might be to increase the level of complexity of the mining
process. However, this also increases the number of encryption calculations involving a lot of compute
power to process time consuming tasks (Misra et al., 2020). For example, actual crypto-currency
blockchains cannot be mined by personal computers anymore, but require data centers with many
powerful and expensive servers. The practical dilemma is about how much security capabilities are to be
sacri�ced in exchange for performance, especially in the case of small to middle size organizations that
could make this technological advancement a great asset, but with the disadvantage of covering the
direct and indirect economic costs, or for the lack of understanding for designing a balanced solution
about how strong the mining process must be them (Pika et al., 2021; Hassib et al., 2019; Chand et al.,
2018; Blake & Mangiameli, 2008).

Justi�cation

Due to its inherent characteristics, blockchain is suited for many kind of business in the real world, for
example, clinic records for hospital networks, �nancial systems, stock investments, smart contracts,

Page 3/20

property deeds, logistics chains, product traceability, criminal records, customer care history, etc. Despite of
the fact that it is an emerging technology, its implementation in certain applications could result in a
revolutionary advancement and a strategic gain for improving data distribution processes, increasing
availability, signing digital information, and storing data in an auto-recovery environment in case of
disaster.

This article explains how blockchain systems can be overloaded by heavy mining processes and how
different methodologies for hash calculations could help to mitigate part of the effort.

Theoretical framework

A block is a programmed software object that contains information attributes according to any speci�c
business logic, altogether with a timestamp and a unique digital signature which is calculated from its
internal to form a hash summatory (Klinkmüller et al., 2019). When blocks are added to a controller chain,
they are stored according to their chronological precedence which is constituted by their timestamp and
the respective hash value, without the possibility to be subsequently changed. In general terms, a hash is a
set of characters that represents the identity and authenticity of any kind of information. For example,
when using the traditional md5 algorithm (Guzmán et al., 2018; Wang et al., 2010), the hash value for the
phrase “transaction of $10.00 USD” is the following hex string: “ec52cfa09c888c7e62cd23cf17ff9c7d”.
However, a slight change on the decimal point can completely alter the meaning of the information as in
the example: “transaction of $ 100.00 USD”, for which the respective new digital signature is also different:
“80623aa32e567d516e643794935b96c1”. Hashes are usually 32 characters long, and that is wide enough
to represent any kind of text, block or �le, with acceptable accuracy. Every time a new block is created, a
hash of its content is calculated and stored within, and when it is transmitted to a different server, the
same hash is again calculated and compared with the value of the previously stored block, assuming that
if the actual block content has not been maliciously changed, then the two hashes must be identical.
Otherwise, the block is automatically discarded and the entire chain is reported as broken. If the
calculation of a block is valid and coherent with the information of its predecessor, it has reached the state
of “proof of work” (Kiayias & Zindros, 2019; Gervais, et al., 2016; Vukolić, 2015).

The mining process comes from the necessity of calculating a unique hash for each block that must also
be coherent with the chain rules. For actual hash calculation, each block must contain the hash of its
predecessor in the chain, to establish an unchangeable chronological link (Yaga et al., 2019). However,
security standards indicate that not every hash value can be accepted in a blockchain because it has to
accomplish a speci�c prede�ned format, which usually consists of a certain amount of zeros in the �rst
digits of its string. For example, a valid mined hash should have the following form:
“00004f2282f43794f303661243bf0dd7”. Note that the �rst 4 digits are set to zero, meaning that the
complexity of this chain can be considered as level 4. The lowest protection scenario is having one zero at
the beginning of the String, which is known as complexity level number 1. “The average work required is
exponential in the number of zero-bits required and can be veri�ed by executing a single hash” (Nakamoto,
2008).

Page 4/20

When an algorithm calculates a hash of a string, the result is always predictable. Therefore, a variable
“nonce” value is added to the string to produce different results. The simplest way to do this is to run an
iteration from the nonce value of zero, attach it to the internal content of the block, and then calculate its
hash. If the pattern is not reached, the nonce is increased in one and then the process is repeated until one
of the hash meets the expected format. This trial-and-error process is very heavy in terms of compute
power (Schinckus, 2021), but this limitation is the very same reason why hackers are discouraged to attack
blockchains. Also falsifying a single mined block is not enough to fool a blockchain because all the
hashes have to be correspondent in terms of chronological signatures and nonce values. This time
consuming task makes it very hard to complete a successful attack before the other security mechanisms
in the server can take preventive actions.

The Computer Security Resource Center (NIST) of the U.S.A. only recommends the use of SHA hashing
algorithms (Dang, 2015), specially sha-2 and sha-3. The �rst version of sha, or sha-1, is already considered
deprecated for critical mission applications due to its vulnerabilities and poor performance. Sha-2 is based
on the Merkle-Damgard function (Coron et al., 2005), similar to sha1 but implementing improvements in
security and performance. These algorithms can work with different-bit ratios: 224, 256, 384, and 512-bits
(Lee & Shin, 2018). The most recent sha-3 method is based on the Keccack Sponge function (Bertoni et al.,
2018), which is supposed to be slower but safer than sha-2. Also, sha-3 can operate with the same-bit
values. Depending on each implementation, it is possible that sha-3 of 256-bits could perform similarly
fast to sha-2 of 512-bits. To understand these performance differences is the mean of this present article.

Methodology
The testing virtual machine had these hardware characteristics: an i7-10510U CPU of 1.8 GHz, and 4 Gb of
RAM. The operating system was Ubuntu 22.04 with the Kernel Linux 5.15.0-50. The developing language
was Java with JDK version 18. Each block was an instance of a Java class that contained six minimal
attributes (Ismailisu� et al., 2020) as described:

 public class Block implements Serializable

 {

 private int id;

 private int nonce;

 private long timeStamp;

 private String hash;

 private String previousHash;

 private ArrayList<Transaction> aTransactions;

Page 5/20

 }

Each block could store a nonlimited list of transactions, which were de�ned as the following class:

 public class Transaction implements Serializable

 {

 private int id

 private long timeStamp;

 private String sender;

 private String receiver;

 private double amount;

 }

As standards indicate, the objects inherited serializable capabilities to be transmittable over P2P TCP-
Sockets (Sapkota et al., 2019). However, in this case, the mining process was tested without a cloud
environment to measure the pure mining algorithm e�ciency, without network inter-processes intervention.
For this reason, the entire blockchain was constituted as an ArrayList of Blocks loaded in RAM, allowing to
monitor of active memory consumption and also avoiding the appearance of hard drive bottlenecks when
paging data to the swap area.

After developing the blockchain classes, a routine was coded for generating and populating a set of 1
thousand blocks, each containing 10 transactions; this amount was enough to obtain reliable comparative
results (Birim et al., 2021). This process was using 5 different hashing methods: MD5, Sha-2 of 256-bits,
Sha-2 of 512-bits, Sha-3 of 256-bits, and Sha-3 of 512-bits (Bae et al., 2021). Every test was repeated 4
times, using complexity levels from 2 to 6. The elapsed time of every repetition was recorded for this study.
Then, for a clean performance check of each method, it was executed a routine for validating the hashes
of the entire blockchain, sequentially recalculating every block hash (Walker et al., 2017) and comparing
the resulting nonce values and the integrity of the chain of predecessor hashes (Ampel et al., 2019).
Alongside each test, the CPU load was obtained as a percentage metric by using the command mpstat,
and the use of RAM was determined in terms of available memory (in Gb) and active memory (also in Gb),
using the Kernel �le /proc/meminfo.

The data from repetitions were tabulated for comparison purposes, then statistically and graphically
analyzed to determine which hash method performed better across the levels of complexity (Sumagita et
al., 2018), to establish recommendations on hashing strategies according to possible blockchain uses.
The method used for mining consisted in using a plain text transcription of every attribute contained in
each block, concatenated with a nonce for calculating a hash value, repeating the cycle until �nding the

Page 6/20

desired proof of work. When the mining process was �nished, the recently mined block (named ‘candidate’)
is registered in the blockchain by the main controller Class, as shown in the next source code:

 public void mineBlock(Block bCandidate)

 {

 String cad= this.blockChain.get(bCandidate.toString());

 String sHash="";

 Sring sNonce="";

 int nonce=0;

 while(true)

 {

 sNonce=Integer.toString(nonce);

 sHash=this.generateHash(cad+sNonce);

 if(sHash.subSequence(0, complexity).equals(this.proofOfWork))

 {

 bCandidate.include(nonce, sHash);

 this.blockChain.register(bCandidate);

 break;

 }

 nonce++;

 }

 }

The function that generated the hashes (presented in the next source code) received the String of the block
and created an array of bytes using a MessageDigest instance that calculated the data according to the
provided encryption method. The array was then converted in a Hexadecimal format to be �nally
formatted into a readable String.

private String generateHash(String pStr, String EncryptMethod)

Page 7/20

{

 try

 {

 MessageDigest digest =

 MessageDigest.getInstance(EncryptMethod);

 byte[] hash = digest.digest(pStr.getBytes("UTF-8"));

 StringBuffer hexadecimalString = new StringBuffer();

 for (int i = 0; i < hash.length; i++)

 {

 String hexadecimal =

 Integer.toHexString(0xff & hash[i]);

 if (hexadecimal.length()==1)

 hexadecimalString.append('0');

 hexadecimalString.append(hexadecimal);

 }

 return hexadecimalString.toString();

 }

 catch(Exception ee) return null;

}

To corroborate that the mining process was correct, a procedure (next code) was executed for every mined
block in an iteration of the entire blockchain, concatenating the string of the block with the previously
calculated nonce to generate a new hash, which is compared with the hash of the previous block. If the
two hashes concorded, then the proof fo work was considered as valid, if not, the procedure returns false
to indicate that the entire blockchain was broken (Shahriar & Mahmoud, 2020). For this study, the elapsed
time of this validation as also recorded.

 public boolean getProofOfWork_overBlock(Block pBlk,

Page 8/20

 String EncryptMethod)

 {

 String sStr= pBlk.toString();

 String sNonce= Integer.toString(pBlk.getNonce());

 String sHash=this.generateHash(sStr+sNonce);

 if (sHash.equals(pBlk.getHash())) return true;

 else return false;

 }

The complete source code, developed with Apache Netbeans 13, can be freely downloaded from
https://github.com/carlosm-sa/mining-performance

Results And Discussion
A chain of 1 thousand blocks was built speci�cally for each test. Table 1 shows how many bytes
composed the hash of each algorithm. MD5 (version 2) created the smallest hashes, which were also the
easiest to calculate. Hashing algorithms working in the modality of 256-bits returned hashes of 64 bytes,
while those with the 512-bit mode, returned hashes of 128 bytes. Both SHA2 and SHA3 in 512-bits mode,
showed more security potential because they are also more di�cult to compute.

Table 1.

Byte length of the resulting hash values

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

Bytes 32 64 128 64 128

Each algorithm was tested with different levels of complexity. For the �rst run, the proof of work of two
characters was enforced for the hashing methods of MD5, SHA2-256, SHA2-512, SHA3-256, and SHA3-
512. This complexity level was named “C-2”. The other levels of three, four, �ve, and six characters, were
respectively named “C-3”, “C-4”, ”C-5” and “C-6”. Table 2 shows the maximum amount of used RAM
memory consumed per each of them while generating the blockchain of 1 thousand blocks. In fact, those
values are the average of the real RAM peaks obtained through the test of every hashing method. It is
known that the Linux capabilities for caching and sharing memory can lead to misinterpretations of how
much “space” is really used by a process, however, the values returned by meminfo offer a general idea of
how much load is produced. In this case, the trend was that given the greater complexity, also the greater

Page 9/20

use of RAM. Note that C-5 and C-6, demanded a lot of resources for a chain of 1 thousand blocks, meaning
that the compute costs in a real-life application would be very expensive and could only be afforded in
cases of extreme security requirements for those businesses of high revenue that impose security over
cost (Albayati et al., 2020).

Table 2.

Maximum RAM usage while mining

 Complexity level

 C-2 C-3 C-4 C-5 C-6

RAM peak 21.9 Mb 52.3 Mb 251.89 Mb 538.73 Mb 1.44 Gb

Note: each value is the average of the maximum peaks obtained when running the test of each hashing
method, con�gured with the indicated complexity level.

Fig. 1 shows the exponential increase in maximum memory usage when testing different levels of
complexity; regression analysis was not required since each graphed level was a discrete variable.
According to these results, it would be necessary to improve RAM capacity in servers when the proof of
work method is hardened for security means.

The validity of all the generated blockchains was veri�ed by a second and separated calculation, but this
time recreating the hash by concatenating the block representing String with the nonce value (Puthal et. al.,
2018). This veri�cation requires only one iteration and therefore is much lighter than the whole mining
process executed when creating new blocks, an action that required thousands to billions of iterations. In
Fig. 2, it is shown that the average time required to verify the whole blockchain, was very similar for
complexity levels of C-2, C-3, C-4, and C-5 (see tables 3 to 7). On the contrary, the value increased greatly
when computing with C-6 for any algorithm.

The blockchain-creating process using C-2 was the fastest test, requiring about a quarter million iterations
for each hashing method and up to 5 milliseconds to generate each block (Table 3). This high e�ciency is
at expense of chain security, which is not recommended for applications where information integrity is
critical. Level C-3 constituted a more reliable con�guration (Table 4), requiring about 4 million iterations to
generate the sample blockchain, and the block mining time took from 13 to 52 milliseconds. Although
these measurements do not seem to be signi�cant, this means that the fastest method MD5 would
probably consume about 3.6 hours to mine one million blocks in a real-life application, and the heaviest
method SHA3-512 would require about 14.4 hours. This difference is very signi�cant and clearly indicates
that every mining method can have a different impact on both security and e�ciency. For C-4, more than
60 million iterations were required to mine each block and elapsed times from 183 to 838 milliseconds
(Table 5). This means that, for example, mining a blockchain with one million elements would last from 50
to 233 hours. When using C-5, the security was improved because about a billion iterations were required
to perform the test (Mingxiao et. al., 2017), having approximate mining times from 2.5 to 17.5 seconds per
block. In the case of the best method for encryption security, SHA3-256, generating the test of a thousand

Page 10/20

blocks took more than 4 hours and one million blocks could take up to 5 thousand hours or more than 200
days of computer processing. However, it is important to notice that the proof of work of the entire
blockchain test did not take much time regardless of the hashing method. For C-6 (Table 7), the tests
consumed more time due to the requirement of more than 10 billion iterations and a few minutes of
elapsed time per block; if one million blocks were to be generated, the process would last about 8 years
and this invalidate this alternative for the use of common organizations (Yusoff et al., 2022).

Table 3.

Mining test results, using complexity level of 2 characters.

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

Iterations 259,060 235,921 254,267 242,535 263,058

Proof of Work 0.017 s 0.013 s 0.013 s 0.014 s 0.020 s

BMT 0.002 s 0.003 s 0.003 s 0.003 s 0.005 s

Notes: The decimal separator is the point and the thousands separator is the comma.
 BMT stands for ‘block mining time’. The same applies for Tables 4 to 7.

Table 4.

Mining test results, using complexity level of 3 characters.

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

Iterations 4,242,809 4,163,061 4,217,957 3,979,857 4,081,028

Proof of Work 0.013 s 0.017 s 0.016 s 0.014 s 0.021 s

BMT 0.013 s 0.030 s 0.026 s 0.032 s 0.052 s

Page 11/20

Table 5.

Mining test results, using complexity level of 4 characters.

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

Iterations 67,948,703 65,845,949 67,982,908 65,054,242 66,335,940

Proof of Work 0.012 s 0.016 s 0.012 s 0.014 s 0.021 s

BMT 0.183 s 0.443 s 0.347 s 0.476 s 0.838 s

Table 6.

Mining test results, using complexity level of 5 characters.

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

Iterations 995,404,013 1,019,771,696 1,033,485,474 1,012,483,152 1,055,056,190

Proof of Work 10 s 13 s 13 s 17 s 28 s

BMT 2.456 s 5.673 s 5.931 s 9.711 s 17.480 s

Table 7.

Mining test results, using complexity level of 6 characters.

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

Iterations 12,329,239,600 13,764,806,500 11,346,805,800 15,032,843,700 14,349,920,600

Proof of
Work

124 s 175 s 143 s 252 s 381 s

BMT 36.154 s 90.388 s 66.695 s 137.983 s 248.370 s

The results of the processing time of the �ve methods per each complexity level, obtained after generating
the test blockchain, are shown in Fig. 1. The cluster of graphs allows the rapid comparative appreciation of
the average performance of every test. C-2 had the lowest elapsed time and C-6 the highest, but the
progression between levels was not linear. Every time a new character was added for proof of work, the
load for processing increased exponentially by about ten times (Gui et. al., 2017), which is the reason why
the axes of graphs is logarithmic. This has a direct implication on real applications design because each

Page 12/20

character added to the proof of work will delay the process ten times, therefore, important investments in
computing capabilities might be required to compensate for the load. MD5 was the simplest algorithm
(Ghoshal et. al., 2020) but if it is con�gured to operate with C-5, it can still perform faster than other
algorithms while its inherent weaknesses could be mitigated due to the elevated exigences of the proof of
work. Another scenario is that SHA3-256 might be considered the best option because it is a strong
algorithm (Alexan et. al., 2021), but its use should be restricted to C-3 because this algorithm is slow.
SHA2-256 can operate with C-4 with similar computing costs to the previously mentioned, but with
enhanced mining security. Even if SHA2 is theoretically weaker than SHA3 (Sharma & Khanum,
2022), stronger levels of complexity can offer better mining security. The validity of the test blockchain
was veri�ed by executing a new proof of work, but this time concatenating their string value with the
previously obtained nonce to recalculate the hash in one single step. Results (Fig. 4) indicated that MD5,
SHA2-256, SHA2-512, and SHA3-256 performed very similarly and the cost validating is very low for C-2, C-
3, and C-4. However, C-5 and mostly C-6 had a very high compute cost and resulted to be too slow. C-4 was
the best in terms of its cost-bene�t ratio.

The indicator of algorithm e�ciency was determined by the average number of iterations required for
generating a new block (Table 8). For MD5 and SHA2-256, the most e�cient execution was C-5; for SHA-
512, SHA3-256, and SHA3-512, it was C-4. However, even if the �rst two methods performed better with a
higher level of complexity, C-5 still requires a lot more iterations than C-4. This last complexity level
demonstrated the best relationship between the bene�t of security and the cost of time consumption.

According to the results obtained, the best options for fast processing and acceptable security were MD5
and SHA2-512 when operating complexity level of 3 (at least) or 4 (best). SHA2-256 produced shorter
hashes and performed slower than SHA2-512. SHA3-256 and SHA3-512 performed slower than the other
methods, but are recommended for applications where security is crucial, due to their strong hashing
capabilities. In general terms, complexity levels of 5 and 6 characters, are too heavy to be used in common
applications and are only recommended for extreme scenarios where security is the top priority and the
volume of transactions is low enough to allow waiting a few minutes for each block to be mined.

Page 13/20

Table 8.

Hash iterations per second

 Hashing method

 MD5 SHA2-256 SHA2-512 SHA3-256 SHA3-512

C-2 160,608 91,442 97,720 82,327 54,964

C-3 332,665 139,485 161,936 122,631 78,507

C-4 370,676 148,637 195,916 136,562 79,170

C-5 405,329 179,762 174,251 104,263 60,359

C-6 341,025 152,285 170,131 108,947 57,776

Note: The highlighted values are those representing the best average performance per method.

Conclusion
Information security is a topic of permanent relevance. It is achieved through virtual mechanisms that
usually require considerable computing power. Evaluating the performance of various hashing algorithms
and their different con�gurations can help organizations to make appropriate decisions when sizing the
mining load that a blockchain-based computer system may incur. Since each hashing method can operate
with different levels of di�culty, it is necessary to choose appropriately the number of characters that will
be validated during a proof of work to keep applications e�cient in the long term after deployment. The
mining methods must be carefully tested and selected according to the nature and scope of the business
on which they will be implemented, taking into count realistic criteria of security needs, processing times,
and investment budget.

Declarations
Ethical Approval: Not applicable because there was not conducted any research on humans or animals.

Competing interests: There are no particular con�icts of interest with the funding of this article. It was
developed as part of the academic duties

 Authors' contributions: Carlos Roberto Martínez Martínez, author of the complete article.

Funding: There was no funding received

Availability of data and materials: The data obtained can be downloaded
from https://drive.google.com/�le/d/1xL_F5b6fDZRJzY_reJaEKbL_Htz-4UZJ/view?usp=share_link. The
complete source code, developed with Apache Netbeans 13, can be freely downloaded
from https://github.com/carlosm-sa/mining-performance

Page 14/20

References
1. Albayati, H., Kim, S. K., & Rho, J. J. (2020). Accepting �nancial transactions using blockchain

technology and cryptocurrency: A customer perspective approach. Technology in Society, 62, 101320.

2. Alexan, W., Ashraf, A., Mamdouh, E., Mohamed, S., & Moustafa, M. (2021). Iomt security: Sha3-512,
aes-256, rsa and lsb steganography. In 2021 8th NAFOSTED Conference on Information and
Computer Science (NICS) (pp. 177-181). IEEE.

3. Ampel, B., Patton, M., & Chen, H. (2019). Performance modeling of hyperledger sawtooth blockchain.
In 2019 IEEE International Conference on Intelligence and Security Informatics (ISI) (pp. 59-61). IEEE.

4. Bae, Y. S., Park, Y., Kim, T., Ko, T., Kim, M. S., Lee, E., ... & Yoon, H. J. (2021). Development and Pilot-Test
of Blockchain-Based MyHealthData Platform. Applied Sciences, 11(17), 8209.

5. Bertoni, G., Daemen, J., Peeters, M., Assche, G. V., Keer, R. V., & Viguier, B. (2018, July). K angarooT
welve: Fast Hashing Based on Keccak. In International Conference on Applied Cryptography and
Network Security (pp. 400-418). Springer, Cham.

�. Birim, M., Ari, H. E., & Karaarslan, E. (2021). GoHammer Blockchain Performance Test Tool. Journal of
Emerging Computer Technologies, 1(2), 31-33.

7. Blake, R. H., & Mangiameli, P. (2008, January). The Effects and Interactions of Data Quality and
Problem Complexity on Data Mining. In ICIQ (pp. 160-175).

�. Chand, P., Thakkar, J. J., & Ghosh, K. K. (2018). Analysis of supply chain complexity drivers for Indian
mining equipment manufacturing companies combining SAP-LAP and AHP. Resources Policy, 59, 389-
410.

9. Coron, J. S., Dodis, Y., Malinaud, C., & Puniya, P. (2005, August). Merkle-Damgård revisited: How to
construct a hash function. In Annual International Cryptology Conference (pp. 430-448). Springer,
Berlin, Heidelberg.

10. Dang, Q. H. (2015). Secure hash standard. Computer Security Resource Center, NIST. USA.
https://csrc.nist.gov/publications/detail/�ps/180/4/�nal

11. Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., & Capkun, S. (2016). On the security and
performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security (pp. 3-16).

12. Ghoshal, S., Bandyopadhyay, P., Roy, S., & Baneree, M. (2020). A journey from md5 to sha-3. Trends in
Communication, Cloud, and Big Data, 107-112.

13. Gui, J., Liu, T., Sun, Z., Tao, D., & Tan, T. (2017). Fast supervised discrete hashing. IEEE transactions on
pattern analysis and machine intelligence, 40(2), 490-496.

14. Guzman, L. B., Sison, A. M., & Medina, R. P. (2018, September). MD5 secured cryptographic hash value.
In Proceedings of the 2018 International Conference on Machine Learning and Machine Intelligence
(pp. 54-59).

15. Hassib, E. M., El-Desouky, A. I., El-Kenawy, E. S. M., & El-Ghamrawy, S. M. (2019). An imbalanced big
data mining framework for improving optimization algorithms performance. IEEE Access, 7, 170774-

Page 15/20

170795.

1�. Herlihy, M. (2019). Blockchains from a distributed computing perspective. Communications of the
ACM, 62(2), 78-85.

17. Huck, K. A., & Malony, A. D. (2005, November). Perfexplorer: A performance data mining framework for
large-scale parallel computing. In SC'05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing (pp. 41-41). IEEE.

1�. Ismailisu�, A., Popović, T., Gligorić, N., Radonjic, S., & Šandi, S. (2020, February). A private blockchain
implementation using multichain open source platform. In 2020 24th International Conference on
Information Technology (IT) (pp. 1-4). IEEE.

19. Kiayias, A., & Zindros, D. (2019). Proof-of-work sidechains. In International Conference on Financial
Cryptography and Data Security (pp. 21-34). Springer, Cham.

20. Klinkmüller, C., Ponomarev, A., Tran, A. B., Weber, I., & Aalst, W. V. D. (2019). Mining blockchain
processes: extracting process mining data from blockchain applications. In International Conference
on Business Process Management (pp. 71-86). Springer, Cham.

21. Lee, S. H., & Shin, K. W. (2018, January). An e�cient implementation of SHA processor including three
hash algorithms (SHA-512, SHA-512/224, SHA-512/256). In 2018 International Conference on
Electronics, Information, and Communication (ICEIC) (pp. 1-4). IEEE.

22. Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., & Qijun, C. (2017). A review on consensus algorithm
of blockchain. In 2017 IEEE international conference on systems, man, and cybernetics (SMC) (pp.
2567-2572). IEEE.

23. Misra, S., Mukherjee, A., Roy, A., Saurabh, N., Rahulamathavan, Y., & Rajarajan, M. (2020). Blockchain
at the edge: Performance of resource-constrained IoT networks. IEEE Transactions on Parallel and
Distributed Systems, 32(1), 174-183.

24. Nakamoto, S. (2008). A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.

25. Nugroho, K. A., Hangga, A., & Sudana, I. M. (2016, October). SHA-2 and SHA-3 based sequence
randomization algorithm. In 2016 2nd International Conference on Science and Technology-Computer
(ICST) (pp. 150-154). IEEE.

2�. Pika, A., ter Hofstede, A. H., Perrons, R. K., Grossmann, G., Stumptner, M., & Cooley, J. (2021). Using big
data to improve safety performance: an application of process mining to enhance data visualisation.
Big Data Research, 25, 100210.

27. Puthal, D., Malik, N., Mohanty, S. P., Kougianos, E., & Das, G. (2018). Everything you wanted to know
about the blockchain: Its promise, components, processes, and problems. IEEE Consumer Electronics
Magazine, 7(4), 6-14.

2�. Sapkota, H., Murukannaiah, P. K., & Wang, Y. (2019). A network-centric approach for estimating trust
between open source software developers. Plos one, 14(12), e0226281.

29. Schinckus, C. (2021). Proof-of-work based blockchain technology and Anthropocene: An undermined
situation?. Renewable and Sustainable Energy Reviews, 152, 111682.

Page 16/20

30. Shahriar, S., & Mahmoud, Q. H. (2020). Improving transaction speed and scalability of blockchain
systems via parallel proof of work. Future internet, 12(8), 125.

31. Sharma, S., & Khanum, S. (2022). Performance analysis of SHA 2 and SHA 3. Saba, Performance
analysis of SHA, 2.

32. Sumagita, M., Riadi, I., Sh, J. P. D. S., & Warungboto, U. (2018). Analysis of secure hash algorithm
(SHA) 512 for encryption process on web based application. International Journal of Cyber-Security
and Digital Forensics (IJCSDF), 7(4), 373-381.

33. Vukolić, M. (2015). The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In
International workshop on open problems in network security (pp. 112-125). Springer, Cham.

34. Walker, M. A., Dubey, A., Laszka, A., & Schmidt, D. C. (2017, December). Platibart: a platform for
transactive iot blockchain applications with repeatable testing. In Proceedings of the 4th Workshop on
Middleware and Applications for the Internet of Things (pp. 17-22).

35. Wang, Y., Zhao, Q., Jiang, L., & Shao, Y. (2010). Ultra high throughput implementations for MD5 hash
algorithm on FPGA. In High Performance Computing and Applications (pp. 433-441). Springer, Berlin,
Heidelberg.

3�. Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain technology overview. arXiv preprint
arXiv:1906.11078.

37. Yusoff, J., Mohamad, Z., & Anuar, M. (2022). A Review: Consensus Algorithms on Blockchain. Journal
of Computer and Communications, 10(9), 37-50.

Figures

Page 17/20

Figure 1

Memory peak while processing each complexity level.

Page 18/20

Figure 2

Calculation time proof of work, for each complexity level

Page 19/20

Figure 3

Block mining time vs. level of complexity. The scale is in logarithmic progression.

Page 20/20

Figure 4

‘Proof of work’ mining time of the test blockchain vs. level of complexity. The scale is in logarithmic
progression.

