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Abstract 

For the best structure and reliable maintenance, two- or multiphase flow is becoming more and 

more essential in engineering systems. However, a variety of different of biological organisms and 

natural phenomena that exhibit two-phase situations can be explored to improve our knowledge of 

this. This is so because current industrial technology does not place these limitations. This research 

aims to investigate the effect of an external magnetic field on unsteady laminar incompressible 

two-phase flow in a porous medium via a rectangular curved duct. The relevant governing 

equations are represented by the Navier-Stokes equations and by the Level set equation with 

boundary conditions. Fluid flow through curved rectangular ducts behaves differently from fluid 

flow through straight ducts due to the centrifugal action generated by duct curvature. Within 

curved ducts, centrifugal force is generated secondary flow vortices and spiraling fluid motion. 

This analysis graphically depicts the fluid phase distribution, the Dean vortex, velocity contours, 

and fluid volume fractions. Furthermore, displayed are the effects of the aspect ratio, porosity, 

Dean number, radius of curvature, and Hartmann number. Additionally, a comparison of two-

phase flow between various fluids is presented. 

Introduction 

Fluid mechanics is fundamentally interested in the flow of curved ducts or pipes, as well as in 

practical problems in many applications. Products like this channel or duct are produced in nations 

that produce oil. It is particularly significant in engineering, including biological transport 

phenomena, heat exchangers, aviation intake diffusers, and turbomachinery blade tunnels. The 
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existence of a secondary rotational motion caused by curvature that is perpendicular to the stream 

wise flow direction was first analytically demonstrated Eustice [1, 2] and later theoretically 

investigated by Dean [3, 4]. Dean vortex-based secondary flow is caused by a difference in the 

stream wise velocity of the fluid in the channel center and near the wall. Although there have been 

many relevant and important studies (Thangnam and Hur [5, 6], Khuri [7], Nadeem and Shahzadi 

[8, Mondal et al. [8, 9], and Yamamoto et al. [10], there have not been enough focus on the creation 

and development of secondary flow curved duct flow (laminar flow, Stokes flow, peristaltic flow, 

non-isothermal flow, Dean flow). In particular, numerous experimental research on flow 

investigation in a constant area curved duct have been conducted (Dong and Ebadian [11], Ligrani 

and Hedland [12], Avramenko et al. [13], Biswas et al. [14]. Flow on non-aligned straight rotating 

pipes and curved pipes has been critically examined by Hye and Khan [15, 16] as well. 

In many industrial applications, non-mixing multi-component fluid flows are popular. A few of 

these examples are the transportation of crude oil mixed with water in the oil and gas industry, the 

chemical fluid flow within reactors in pharmaceutical production processes [17], and the flow of 

lubricant and refrigerant mixtures in refrigeration systems [18, 19]. The study of two phase flow 

therefore represents a factors that help for researchers. The discipline has seen the completion of 

numerous significant investigations, many of which are still ongoing (Okechi and Asghar [20], 

Garg et al. [21], and Jason [22]). Various experimentally investigated on multiphase flow have 

been carried out (Xu et al. [23], Crandall et al. [24], Kishor et al. [25], and Al-Jibory et al. [26]). 

The study of the dynamics of electrically conducting fluids is known as magnetohydrodynamics (MHD), 

which is a combination of the Navier-Stokes equations for fluid dynamics and Maxwell's equations for 

electromagnetism. The main principle of the MHD is that magnetic fields can generate currents in moving 

conductive fluids, which in turn apply forces on the fluid and affect the magnetic field. MHD flow has 

received a significant amount of attention from researchers because of its potential applications. Haque and 

Alam [27], Chen et al. [28], and Vaidya et al. [29] examined the MHD influence on several fluid types. The 



stability of magnetohydrodynamics for various types of channel flow was computationally investigated by 

Md. S. Alam et al. [30–32] and M.K. Rahman et al. [33]. 

Engineers and scientists are fascinated by the flow through porous media concept. Also eager are 

politicians and economists who see the importance of groundwater flows and various tertiary oil 

recovery processes. Use of flow through porous media was outlined by Bear [34] in his book. In 

his explanation of the pseudo transport coefficients of permeability, pressure gradients, and 

dispersion, Greenkorn [35] reviews the fundamentals of steady flow through porous media. 

Different kinds of difficulties relating to porous media were studied by Dwivedi et. al. [36], 

Devakar et. al [37], Gunnar and Hellström [38], Roy et. al. [39], and Chowdary et. al. [40]. 

The influence of magnetohydrodynamics on two-phase flow via a rectangular curved duct is not 

yet documented in the open literature, to the best of the author's knowledge. The objective of this 

study is to use a rectangular curved duct to introduce an external magnetic field into a two-phase, 

incompressible, unsteady flow in a porous medium. The Navier-Stokes equations and the level set 

equations with boundary conditions in the important in this era are solved using the finite element 

method. To understand the impact of the Hartmann number, radius of curvature, Dean number, 

aspect ratios, porosity, and particle concentration on each domain, the phase distribution, vector 

plot of the field flow (Dean vortex), velocity contour, and volume fraction of fluid on the domain 

are being shown for various times. Also compared are the results.  

 

 Mathematical Model 

A laminar viscous incompressible unsteady three-dimensional two-phase flow is considered here. 

The flow passes through a curved duct with a rectangular cross-section as it flows through the 

porous medium. The length and width of the cross-section are ℎ(𝑚)  and 𝑑(𝑚),respectively. For 

consideration ℎ = 4𝑚 and 𝑑 = 4𝑚 are taken fixed for square duct. Let 𝑂 indicate the duct's curvature's 

center and 𝐿(𝑚) indicate the radius of curvature shown in Fig.1. The analysis uses a mixture of 

water and Engine oil as the immiscible working fluid, which is sustained together into the curved 

duct path. In the curved channel inlet, Engine oil enters the outer domain, and water enters the 



inner domain with different velocities. It is considered that though the inlet velocity is different 

the Reynolds number remains the same for the fluid in both domains. An uniform magnetic field 𝐵0 

is imposed into the outer domain of duct along the horizontal direction (X-direction). All physical 

properties of the assumed fluids are constant. 

 

            𝑍  

  

                 𝐿                                              𝐵0 

                  ℎ                                 𝑋                       

                                                                      𝑔 

    𝑌                                        𝑑                  (𝑎) (𝑏) 

Fig. 1: (a) Co-ordinate system, (b) cross sectional view 

The governing equations for the mathematical model are given by Kucuk [41] and Gyves [42] as 

follows: 

Continuity equation:   𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 + 𝑢𝑥 + 𝐿 = 0 
(1) 

Momentum equations:   𝜕𝑢𝜕𝑡 + 𝑢 𝜕𝑢𝜕𝑥 + 𝑣 𝜕𝑢𝜕𝑦 − 𝑤2𝑥 + 𝐿 = − 1𝜌 𝜕𝑃𝜕𝑥 + 𝜈 [𝜕2𝑢𝜕𝑥2 + 𝜕2𝑢𝜕𝑦2 + 1𝑥 + 𝐿 𝜕𝑢𝜕𝑥 − 𝑢(𝑥 + 𝐿)2] − 𝜇𝑢𝐾 − 𝜎𝐵02𝑢𝜌  
(2) 

𝜕𝑣𝜕𝑡 + 𝑢 𝜕𝑣𝜕𝑥 + 𝑣 𝜕𝑣𝜕𝑦 = − 1𝜌 𝜕𝑃𝜕𝑦 + 𝜈 [𝜕2𝑣𝜕𝑥2 + 1𝑥 + 𝐿 𝜕𝑣𝜕𝑥 + 𝜕2𝑣𝜕𝑦2] − 𝜇𝑣𝐾  
(3) 

𝜕𝑤𝜕𝑡 + 𝑢 𝜕𝑤𝜕𝑥 + 𝑣 𝜕𝑤𝜕𝑦 + 𝑢𝑤𝑥 + 𝐿 = − 1𝜌 1(𝑥 + 𝐿) 𝜕𝑃𝜕𝑧 + 𝜐 [𝜕2𝑤𝜕𝑥2 + 𝜕2𝑤𝜕𝑦2 + 1𝑥 + 𝐿 𝜕𝑤𝜕𝑧 − 𝑤(𝑥 + 𝐿)2] − 𝑔 
(4) 

where 𝑢, 𝑣, and 𝑤 are velocity components in 𝑥, 𝑦 and 𝑧 directions, respectively, 𝜌 is density, 𝜈 is 

kinematic viscosity,  𝜎 is electrical conductivity, 𝐵0  is external magnetic force (Lorentz force), 𝐿 

is radius of curvature and 𝐾 is the porosity of the medium. The model neglects all terms of the 

order 
1𝐿 and

1𝐿2, except the centrifugal force term as in Gyves [43].  



The boundary conditions at the channel and core walls and for inlet & outlet  (𝑢, 𝑣, 𝑤) = 0                        𝑎𝑡 𝑟 = 𝐿,  𝑟 = 𝐿 + 𝑑,   ℎ = 0, and  ℎ = ℎ (5) 

At the inlet-1                      𝑢 = 𝑢1𝑛̅                                                         

and at the inlet-2                𝑢 = 𝑢2𝑛̅                        on the outlet 𝑃 = 𝑃0 

(6) 

The Dean number is typically denoted by  

 𝐷𝑒 = 𝑅𝑒 (𝑑𝐿)1 2⁄
 (7) 

Where 𝑅𝑒 is the Reynolds number, d is a typical length scale associated with the channel cross-section, L is 

the radius of curvature of the path of the duct.  

Where Reynolds number 𝑅𝑒 is defined by 

 𝑅𝑒 = 𝜌𝑑𝑈𝜇  (8) 

The Hartmann number is denoted by 

 𝐻𝑎 = 𝐵0𝐿√𝜎𝜇 (9) 

Where 𝐻𝑎 is Hartmann number, 𝐵0 is the magnetic field density, L is the radius of curvature of the path of 

the duct, 𝜎  is the electrical conductivity and 𝜇 is the dynamical viscosity.  

Where 𝜌 and 𝜇 are densicity and dynamical viscosity of the fluid. Since the governing equations are non-

dimensional and 𝜌, 𝑑 and 𝜇 are considred constant, so Dean number(𝐷𝑒) as well as Reynolds number (𝑅𝑒)  

depand on value of 𝑢.   

Porosity can be written as  

𝐾 = 𝑉 − 𝑉𝑠𝑉 = 𝑉𝑝𝑉 = 𝑃𝑜𝑟𝑒  𝑉𝑜𝑙𝑢𝑚𝑒𝐵𝑢𝑙𝑘 𝑉𝑜𝑙𝑢𝑚𝑒  (10) 

Where 𝑉 is the bulk rock volume 𝑉  that is not occupied by solid matter, 𝑉𝑠 is volume of solid and 𝑉𝑝 =𝑉 − 𝑉𝑠 is the pore volume. 

The level set function ∅ can be represented by the following equation: Olsson et al [44]. 𝜕∅𝜕𝑡 + 𝒖. 𝛻∅ = 𝛾𝛻. (𝜀𝛻∅ − ∅(1 − ∅) 𝛻∅|𝛻∅|) 
(11) 

 



 

Fig. 2: Phase distribution 

Where 𝒖 is the fluid velocity. The 𝜀 parameter determines the thickness of the layer of the 

interface. The 𝛾 parameter determines the amount of reinitialization and ∅  is the level set function 

varies from zero to one. For Engine oil ∅ = 0 and for water  ∅ = 1.  

The level Set function ∅ is defined by  

∅(𝑥) = {0        𝑥 ∈ 𝑝ℎ𝑎𝑠𝑒 − 11        𝑥 ∈ 𝑝ℎ𝑎𝑠𝑒 − 2 (12) 

For calculating surface tension, the interface normal and curvature are obtained according to the 

sign function 

𝑛 = 𝛻∅|𝛻∅||∅=0 and 𝑘 = ∇. ∇∅|∇∅||∅=0 (13) 

The level set function is used to determine the density and dynamic viscosity globally by 𝜌 = 𝜌𝐸𝑜 + (𝜌𝑤 − 𝜌𝐸𝑜)∅ (14) 𝜇 = 𝜇𝐸𝑜 + (𝜇𝑤 − 𝜇𝐸𝑜)∅ (14) 

where 𝜌𝐸𝑜, 𝜌𝑤, 𝜇𝐸𝑜 and 𝜇𝑤 are the density and dynamic viscosity of engine oil and water 

respectively.  

Numerical Solution 

The finite element method is a numerical technique used to solve the problem. To create a 

simulation, the entire structure must be divided into small elements, called mesh. Calculations are made for 

each individual element. Combining the individual results gives the final result of the structure. Among the 

elements that are taken, we know the values at certain points but not on each point. These 'fixed points' are 



called nodal points and are often located at element boundaries. The finite element method formulation of 

a boundary value problem finally results in a system of algebraic equations. And the system of algebraic 

equation will be solved by matrix formula.  

 

Fig. 3: Mesh generation of the 3D domain 

The Finite element meshing of the computational Domain is displayed in Figure 3. A grid 

refinement test has been performed until the results show insignificant change for further refined 

mesh size.  

Table 1: Element size comparison 

Mesh Size Extremely 

Coarse 

Extra Coarse Coarse Coarser Normal Fine 

Number of 

elements 

2256 6448 18196 61314 131956 389530 

Average 

Velocity 
0.16343 0.17918 0.18732 0.19989 0.21281 0.21299 

From the above Table-1, it is observed that results for average velocity magnitude have no 

significant change up to three decimal places for Normal and Fine mesh size. Therefore, Normal 

mesh size is chosen to find the grid independent solution and to save computational time. 

Results and Discussion 

Two-phase and single-phase fluids display fundamentally different flow behavior. Because their 

components may have different flow (slip) velocities and may not experience mass exchanges 

between phase boundaries, two-phase fluids display unusual flow dynamics. Consequently, the 

relative magnitudes of fluid component properties, in particular the density and viscosity, have an 



effects on the flow behavior of non-mixing two-phase fluids. The centrifugal forces generated by 

the radius of curvature in a curved duct have a significant impact on the heavier fluid components. 

The distribution, deformation, phase interface area, and flow control in a fluid flow are mostly determined 

by such combined interactions. 

Table 2: Thermo-physical properties of the different fluids as follows 

Physical 

properties 

Water (𝐻2𝑂) 

Engine 

oil (EO) 

Kerosene Ethylene 

glycol 

Gasoline Ethanol Heptane  

𝐶𝑝 [𝐽𝑘𝑔−1𝐾−1] 4179 1880.3 2090 2417 2200 2440 2242 𝜌 [𝐾𝑔𝑚−3] 997.1 888.23 780 110.7 714.6 790 684 

κ [𝑊𝑚−1𝐾−1] 0.613 0.145 0.149 0.252 0.15 0.18 0.13 𝜇[𝐾𝑔𝑚−1𝑠−1] 0.001003 0.8541 0.00164 0.0162 0.006 1.194 0.389 𝜎 [𝑠−1] 5.5 × 10−6 23.004 6 × 10−10 0.256 2.5 × 10−5 0.554 3 x 10−2 

The magnetohydrodynamic effect on unsteady laminar incompressible two-phase fluid flow in a 

porous medium through a three-dimensional rectangular curved channel is shown here.The results 

in terms of phase distribution, axial flow velocity, velocity contour and vector plot of flow field 

have been discussed for the various radius of curvature (20𝑚 ≤ 𝐿 ≤ 100𝑚) and compared with 200𝑚, Dean number (45 ≤ 𝐷𝑒 ≤ 1800), aspect ratio (1:1 to 1:6), particle concentration of outer 

domain ( 0.0 ≤ ∅ ≤ 1 ) and several time steps (0s to 300s). Also, six different fluids (Engine Oil, 

Kerosene, Ethylene glycol, Heptane, Gasoline, Ethanol) have been tested in the outer domain. All 

the figures are taken at the cut plane of 𝑌𝑍-plane at 𝑥 = 0.  

   t = 0𝑡ℎs t = 60𝑡ℎs t = 120𝑡ℎs 



   t = 180𝑡ℎs t = 240𝑡ℎs t = 300𝑡ℎs 

Fig. 4(a): Volume fraction visualization at different time. When De = 180, Ha = 1, L = 20m and ∅ = 0.0  at 

outer domain for aspect ratio (1:1). 

Volume fraction visualization at different moments is shown in Fig. 4(a). The multiphase fluid 

was located in a different domain at time 𝑡 = 0𝑡ℎ𝑠. Water enters the inner domain (red), engine oil 

enters the outer domain (blue), and yellow denotes the domain interface. The multiphase flow will 

be mixed after a little time. Low viscosity fluid will be positioned at the top, with high viscosity 

fluid positioned at the bottom. It was also noted that the interface will become periodic at times t = 60𝑡ℎs and 120𝑡ℎs and that the mixed fluid will reach steady state at time t ≥ 300𝑡ℎs.   

   t = 60𝑡ℎs t = 120𝑡ℎs t = 150𝑡ℎs 



   t = 180𝑡ℎs t = 240𝑡ℎs t = 300𝑡ℎs 

Fig. 4(b): Velocity contour at different time. When De = 180, Ha = 1, L = 20m and ∅ = 0.0  at outer domain for 

aspect ratio (1:1). 

The velocity contour of the flow is depicted in Fig.4(b). When eight additional contours were 

shown inside the main vortex, which is located in the upper part of the duct cross-section, at time 𝑡 = 60𝑡ℎ𝑠, it is concluded that the Dean's flow is in rotational form. At time 𝑡 =120𝑡ℎ𝑠 , 150𝑡ℎ𝑠𝑎𝑛𝑑 240𝑡ℎ𝑠 ,there are ten contours, and it also manifests the axial flow shift at the 

duct's inner and outer walls. Dean's flow has grown erratic as a result. But when time 𝑡 =180𝑡ℎ𝑠 𝑎𝑛𝑑 300𝑡ℎ𝑠 ,there are twelve to fourteen contours, which also demonstrate the dispersed 

axial flow in both domains. That's why Dean's flow is likewise disorganized. 

   t = 60𝑡ℎs t = 120𝑡ℎs t = 150𝑡ℎs 



   t = 180𝑡ℎs t = 240𝑡ℎs t = 300𝑡ℎs 

Fig.   4(c): Vector plot of flow field (Dean vortex) at different time. When De = 180, Ha = 1, L = 20 and ∅ =0.0  at outer domain for aspect ratio (1:1). 

A vector plot of the flow field is displayed in Fig. 4(c). One Dean vortex of solution is seen to be 

centered in the duct's center at time 𝑡 = 60𝑡ℎ𝑠 s. At time 𝑡 = 120𝑡ℎ𝑠 and 150𝑡ℎ𝑠 ,there are two 

Dean vortices of secondary flow patterns in addition to a few parallel lines all along wall. The 

adjacent vortices are moving in opposing directions. Four Dean vortices of solution for secondary 

flow are present at time 𝑡 = 180𝑡ℎ𝑠 and 240𝑡ℎ𝑠 . And the directions of each pair of vortexes are 

reversed. Furthermore, six symmetric Dean vortices and two symmetric vortex solutions with 

opposite directions are visible at time 𝑡 ≥  300𝑡ℎ𝑠. 

   t = 0𝑡ℎs t = 60𝑡ℎs t = 120𝑡ℎs 



   t = 180𝑡ℎs t = 240𝑡ℎs t = 300𝑡ℎs 

Fig.    4(d): Axial flow velocity at different time. When De = 180, Ha = 1, L = 20m and ∅ = 0.0  at outer 

domain. For aspect ratio (1:1). 

Fig. 4(d) demonstrates that the axial flow velocity is in a straight line at time 𝑡 = 0𝑡ℎ𝑠 because 

there is no velocity at this point. Axial flow velocity of mixed fluid exhibits a hyperbolic shape 

and multiple orbits at times 𝑡 = 60𝑡ℎ𝑠 and 120𝑡ℎ𝑠, having low viscosity fluid flowing at a greater 

rate than high viscosity fluid. Moreover, it has been observed that the axial flow velocity of mixed 

fluid has a curved line shape at times 𝑡 = 180𝑡ℎ𝑠 and that the velocity of high viscosity fluid is 

higher than that of low viscosity fluid. However, at  𝑡 = 240𝑡ℎ𝑠 , the axial flow velocity of the 

mixed fluid is curved and the velocity of the low viscosity fluid is larger than that of the velocity 

of the high viscosity fluid. Finally, when t=300 s, the axial flow velocity of a mixed fluid is 

hyperbolic and only generates two orbits, the velocity of low viscosity fluid is larger than that of 

high viscosity fluid. 

Figure 4(e) depicts the phase distribution at various locations. Phase 1 (heavier fluid/engine oil), 

which is seen to be in dynamic equilibrium at the this center, is surrounded by Phase 2 (light 

fluid/water) in the cross section at 𝑡 = 60𝑡ℎ𝑠. Further, extended centrifugal forces are applied to 

the fluid mixture. At time 𝑡 = 120𝑡ℎ𝑠, 150𝑡ℎ𝑠, 180𝑡ℎ𝑠 𝑎𝑛𝑑 240𝑡ℎ𝑠, Phase 1 is visible attached 

adjacent to the outer and inner walls, whereas Phase 2 is spread in the center. Again, at 𝑡 = 300𝑡ℎ𝑠, 

Phase 1 is visible close to the upper and lower wall, while Phase 2 is visible close to the outside 

and inner wall. 



   t = 60𝑡ℎs t = 120𝑡ℎs t = 150𝑡ℎs 

   t = 180𝑡ℎs t = 240𝑡ℎs t = 300𝑡ℎs 

Fig.   4(e): Phase distribution at different time. When De = 180, Ha = 1, L = 20m and ∅ = 0.0  at outer domain 

for aspect ratio (1:1). 

Effects of the Hartman number on the velocity contour depicted in fig. 5(a). There are sixteen to 

eighteen contours and the axial flow is shifted close to the duct's outer wall as depicted in the figure 

when 𝐻𝑎 = 1,100 𝑎𝑛𝑑 500. Thus, Dean flow is chaotic. 

   Ha = 1 Ha = 100 Ha = 500 



   Ha = 1000 Ha = 1500 Ha = 2000 

Fig. 5(a): Effect of Hartmann number on velocity contour. When L = 20m, De = 180, t = 300𝑡ℎs and ∅ =0.0  at outer domain for aspect ratio (1:1). 

Again It's also visible that there are twelve to fourteen contours and that the axial flow is displaced 

close to the duct's outer wall when the Hartmann number  𝐻𝑎 = 1000, 1500 𝑎𝑛𝑑 2000  . Thus, 

Dean's flow is also chaotic. 

Effect of Hartmann number on vector plot of flow field is shown in Fig. 5(b). There are six 

symmetric Dean vortex vortexes and each pair is moving in the opposite direction when the 

Hartmann number 𝐻𝑎 = 1, 500 𝑎𝑛𝑑 1000. However, there are eight Dean vortex solution for 

secondary flow, and each pair of vortex is moving in the opposite direction, according to Hartmann 

number 𝐻𝑎 = 1000, 1500 𝑎𝑛𝑑 2000. 

   Ha = 1 Ha = 100 Ha = 500 



   Ha = 1000 Ha = 1500 Ha = 2000 

Fig.  5(b): Effect of Hartmann number on vector plot of flow field. When L = 20m, De = 180, t = 300𝑡ℎs   and ∅ = 0.0  at outer domain and for aspect ratio (1:1). 

Fig. 5(c) displays Hartmann numbers effect on axial flow velocity. For 𝐻𝑎 = 1, 500 𝑎𝑛𝑑 1000, 

the axial flow velocity of the combined fluid is hyperbolic and produces multiple orbits. 

   Ha = 1 Ha = 100 Ha = 500 

   Ha = 1000 Ha = 1500 Ha = 2000 

Fig.  5(c): Effect of Hartmann number on axial flow velocity. When L = 20m, De = 180, t = 300𝑡ℎs and  ∅ = 0.0  at outer domain an for aspect ratio (1:1). 



Additionally, shows that high viscosity fluid flows with a higher velocity than low viscosity fluid. 

Again, when 𝐻𝑎 = 1000,1500 𝑎𝑛𝑑 2000, the axial flow velocity is in the shape of a curve line 

as well as the velocity of a high viscosity fluid is higher than that of the low viscosity fluid. 

Fig. 5(d) shows that the phase distribution for the effect of Hartmann number. Phase 1 (heavier 

fluid/engine oil) is found to reside in dynamic equilibrium in the upper and lower wall when Hartmann 

numbers 𝐻𝑎 = 1,100 𝑎𝑛𝑑 500, whereas Phase 2 (light fluid/water) is seen to be spread all through the 

entire duct. However, Phase 1 (heavier fluid/engine oil) is found to reside in dynamic equilibrium on the 

lower wall and Phase 2 (light fluid/water) on the top portion of the duct when Hartmann number 𝐻𝑎 =1000,1500 𝑎𝑛𝑑 2000. 

   Ha = 1 Ha = 100 Ha = 500 

   Ha = 1000 Ha = 1500 Ha = 2000 

Fig.   5(d): Effect of Hartmann number at Phase distribution. When L = 20m, De = 180, ∅ = 0.0 at time  t = 300𝑡ℎs  at outer domain for aspect ratio (1:1). 

 Fig.6(a) displays the effect of the radius of curvature on the velocity contour. There are fourteen 

contours and axial flow is shifted closer to the duct's outer wall when the radius of the curvature 



𝐿 = 20𝑚. Furthermore, there are eight contours at 𝐿 = 40𝑚 𝑎𝑛𝑑 60𝑚, which also demonstrates 

that the axial flow is shifted closer to the duct's outer wall. Dean's flow is also chaotic under this 

aspect. Again, at 𝐿 = 80𝑚, contours have a tendency to congregate in the centers, and at 𝐿 =100𝑚, four additional contours seem as inside the principal contour, all of which are positioned 

in the upper region of the duct cross-section. These suggest that the Dean's flow is transitioning to 

a steady state. Finally, all additional contours disappear when the radius of curvature is 𝐿 = 200𝑚, 

and only one principal contour exists. It suggests that behavior of the duct is shifting to resemble 

that of a straight closed channel or duct. 

   L = 20 L = 40 L = 60 

   L = 80 L = 100 L = 200 

Fig. 6(a): Effect of radius of curvature on velocity contour. When De = 180, Ha = 1, t = 300𝑡ℎs and ∅ = 0.0   at outer domain for aspect ratio (1:1). 

The impact of the radius of curvature on the vector plot of the flow field is depicted in Fig. 6(b). 

There have been six symmetric Dean vortex solutions for secondary flow at 𝐿 = 20𝑚 𝑎𝑛𝑑 40𝑚. 

Each pair of vortices is moving in the opposite direction. There are four asymmetric Dean vortex 



solutions at 𝐿 = 60𝑚  and two symmetric Dean vortex solutions at 𝐿 = 80𝑚 for secondary flow. 

Additionally, the directions of each pair of vortexes are reversed. However, there is only one Dean 

vortex solution at 𝐿 = 100𝑚. It is also say that when 𝐿 ≥ 100𝑚, vortex are found to oscillate on 

the centerline. Which shows that the flow behavior will change to resemble a parallel channel. 

Finally, there isn't any vortex solution when 𝐿 = 200𝑚. 

   L = 20 L = 40 L = 60 

   L = 80 L = 100 L = 200 

Fig.   6(b): Effect of radius of curvature on vector plot of flow field (Dean vortex). When De = 180, Ha = 1,  t = 300𝑡ℎs and ∅ = 0.0  at outer domain for aspect ratio (1:1). 

The impact of radius of curvature on axial flow velocity is depicted in fig.6(c). When 𝐿 = 20𝑚, 

the mixed fluid's axial flow velocity assumes on a hyperbolic shape, generating multiple orbits, 

and the velocity of a high viscosity fluid is higher than that of the velocity of a low viscosity fluid. 

When 𝐿 = 40𝑚, the axial flow velocity of the mixed fluid takes the shape of a hyperbola, creating 

two orbits, with the velocity of the low viscosity fluid being higher than the high viscosity fluid. 

It was also noted that when 𝐿 = 60𝑚, the axial flow velocity of the mixed fluid has the shape of 



a curve line and that the velocity of a low viscosity fluid is greater than that of the high viscosity 

fluid. Once again, at 𝐿 = 80𝑚, the axial velocity of a mixed fluid takes on a hyperbolic shape, 

creating multiple orbits, as well as the velocity of the high viscosity fluid is higher than that of the 

low viscosity fluid. Therefore, when 𝐿 = 100𝑚 𝑎𝑛𝑑 200𝑚, the axial flow velocity is hyperbolic 

with two orbits, and indeed the velocity of a low viscosity fluid is greater than that of the high 

viscosity fluid. 

   L = 20 L = 40 L = 60 

   L = 80 L = 100 L = 200 

Fig.  6(c): Effect of radius of curvature on axial flow velocity. When De = 180, Ha = 1, t = 300𝑡ℎs and  ∅ = 0.0  at outer domain. For aspect ratio (1:1). 

The phase distribution for the influence of radius of curvature is depicted in Fig. 6(d). When the radius of 

curvature is 𝐿 = 20𝑚, Phase 1 (the heavier fluid/engine oil) is seen to be in dynamic equilibrium in the top 

and bottom wall, whereas Phase 2 (the lighter fluid/water) is seen to be spread throughout the whole duct. 

When the radius of curvature is  𝐿 = 40𝑚 𝑎𝑛𝑑 60𝑚,, Phase 1 is shown to be in dynamic equilibrium 

between the upper and lower walls, and Phase 2 is found to be in the middle between the both. However, 

phase 1 is seeking to gather at the cross section's center.  When 𝐿 = 80𝑚,, while phase 2 is on either side 



of it. Eventually, phase 1 was shown to be in dynamic equilibrium at 𝐿 = 100𝑚 𝑎𝑛𝑑 200𝑚, with phase 2 

surrounding it in the cross section's center. 

   L = 20m L = 40m L = 60m 

   L = 80m L = 100m L = 200m 

Fig.   6(d): Effect of radius of curvature at Phase distribution. When De = 180, Ha = 1,   ∅ = 0.0 at time  t = 300𝑡ℎs  at outer domain for aspect ratio (1:1).  

Fig. 7(a) displays the effect of the Dean number on the velocity contour. There are ten to twelve 

contours and axial flow is shifted closer to the duct's outer wall when the Dean number 𝐷𝑒 =45 𝑎𝑛𝑑 180. So, Dean’s flow is chaotic. Furthermore, there are two to four contours at 𝐷𝑒 =540 𝑎𝑛𝑑 900, which also demonstrates that the axial flow is shifted closer to the duct's outer wall. 

Dean's flow is also chaotic under this aspect. It is noted that there are only two contours at 𝐷𝑒 =1440 𝑎𝑛𝑑 1800, which also show that the axial flow is shifted near to the inner duct’s wall. These 

suggest that the Dean's flow is transitioning to a steady state.  

 



   De = 45 De = 180 De = 540 

   De = 900 De = 1440 De = 1800 

Fig. 7(a): Effect of Dean number on velocity contour. When L = 20m, Ha = 1, t = 300𝑡ℎs and ∅ = 0.0  at outer 

domain for aspect ratio (1:1). 

The impact of the Dean number on the vector plot of the flow field is depicted in Fig. 7(b). There 

have been six symmetric Dean vortex solutions for secondary flow at 𝐷𝑒 = 45, 180,540 𝑎𝑛𝑑 900. 

Each pair of vortices is moving in the opposite direction.  

   De = 45 De = 180 De = 540 



   De = 900 De = 1440 De = 1800 

Fig.  7(b): Effect of Dean number on vector plot of flow field (Dean Vortex). When L = 20m, Ha = 1,  t = 300𝑡ℎs and ∅ = 0.0  at outer domain and for aspect ratio (1:1). 

Furthermore, there are two symmetric Dean vortex solutions for secondary flow for 𝐷𝑒 = 1440. 

Each pair of vortices is moving in the opposite direction. However, there is only one Dean vortex 

solution  with some parallel line along the wall at 𝐷 = 1800. 

Fig. 7(c) illustrated the effect of Dean number on axial flow velocity. When 𝐷𝑒 = 45 𝑎𝑛𝑑 180, 

the mixed fluid's axial flow velocity assumes on a hyperbolic shape, generating multiple orbits, 

and the velocity of a low viscosity fluid is higher than that of the velocity of a high viscosity fluid 

for 𝐷𝑒 = 45 but for 𝐷𝑒 = 180, the velocity of a high viscosity fluid is higher than that of the 

velocity of a low viscosity fluid. Moreover, it has been observed that the axial flow velocity of 

mixed fluid has multiple small curved line shape at times 𝐷𝑒 = 540 and that the velocity of high 

viscosity fluid is higher than that of low viscosity fluid.  

   De = 45 De = 180 De = 540 



   De = 900 De = 1440 De = 1800 

Fig.  7(c): Effect of Dean number on axial flow velocity. When L = 20m, Ha = 1, t = 300𝑡ℎs and ∅ = 0.0  at 

outer domain an for aspect ratio (1:1). 

However, at  𝐷𝑒 = 900,1440 𝑎𝑛𝑑 1800 , the axial flow velocity of the mixed fluid is curved and 

the velocity of the low viscosity fluid is larger than that of the velocity of the high viscosity fluid. 

   De = 45 De = 180 De = 540 

   De = 900 De = 1440 De = 1800 

Fig.   7(d): Effect of Dean at Phase distribution. When L = 20m, Ha = 1, ∅ = 0.0 at time t = 300𝑡ℎs  at outer 

domain for aspect ratio (1:1). 



The phase distribution for the influence of Dean number is depicted in Fig. 7(d). When the Dean number is 𝐷𝑒 = 45 𝑎𝑛𝑑 180, Phase 1 (the heavier fluid/engine oil) is seen to be in dynamic equilibrium in the top 

and bottom wall, whereas Phase 2 (the lighter fluid/water) is seen to be spread throughout the whole duct. 

Phase 1  is seen to reside in dynamic equilibrium in the  lower wall and  Phase 2 on upper wall for Dean 

number 𝐷𝑒 = 540. But When Dean number 𝐷𝑒 = 900,1440 𝑎𝑛𝑑 1800 , Phase 1  is seen to reside in 

dynamic equilibrium in middle of the  duct and  Phase 2 on near the wall . 

In Fig. 8, the axial flow velocity, velocity contour, and vector plot of the flow field on the cut plane 

are compared for different fluids at the same velocity inlet on two domains. In the outer domain, 

water is used, whereas the inner domain uses six distinct fluids: motor oil, kerosene, ethylene 

glycol, heptane, ethanol, and gasoline. Kerosene has a very low viscosity, but ethanol has a very 

high viscosity whenever two-phase flow is examined with different fluids (table-1). 

   Water − Kerosene Water − Heptane Water − Engine oil  

   Water − Ethylene glycol Water − Gasoline Water − Ethanol 
Fig.   8(a): Comparison among different fluid for velocity contour. When De = 180, Ha = 1,   L = 20m at t = 300𝑡ℎs and  ∅ = 0.0,  at outer domain. For aspect ratio (1:1). 



The mixed fluid flow for water-heptane, water-kerosene, water-gasoline, and water-ethanol 

generates eight to ten contours, and the axial flow is shifted near to the inner and outer walls of the 

duct, as displayed in Fig. 8(a). This is the reason Dean's flow is a chaos. Once more, the generation 

of ten to twelve via water-ethanol shows that the axial flow is shifted near to the duct's outer and 

inner walls. That's why Dean's flow is also chaotic. The axial flow is shifted near the top and 

bottom of the duct, as shown by water-ethylene glycol, which only produces two contours. Dean's 

flow has reached its steady state at this stage. 

   Water − Kerosene Water − Heptane Water − Engine oil  

   Water − Ethylene glycol Water − Gasoline Water − Ethanol 
Fig.  8(b): Comparison among different fluid for vector plot of flow field. When De = 180, Ha = 1,   L = 20m at t = 300𝑡ℎs and  ∅ = 0.0,  at outer domain. For aspect ratio (1:1). 

Water-heptane, water-kerosene, water-gasoline, water-ethylene glycol, and water-engine oil 

combined fluids everyone has six symmetric vortexes solutions, and each pair of such solutions is 

orientated in the opposite direction (see Fig. 8(b)). Two symmetric and two asymmetric vortex 



formations can be found in reverse for water-ethanol. It also shows that the direction of symmetric 

vortexes is opposite. 

According to Fig. 8(c), the mixed fluid flow velocity for water-heptane, water-kerosene, water-

ethylene glycol, water-gasoline, and water-engine oil has a hyperbolic form with numerous orbits. 

However, water-ethanol mixtures have a curved axial flow velocity. Additionally, it shows that for 

water-heptane, water-kerosene, water-gasoline, water-ethanol, and water-engine oil, the velocity 

of high viscosity fluids is higher than that of low viscosity fluids. Reversely, the combined flow of 

water and ethylene-glycol is likewise hyperbolic in shape with only two orbits, and the velocity of 

the low-viscosity fluid is higher than that of the high-viscosity fluid. 

   Water − Kerosene Water − Heptane Water − Engine oil  

   Water − Ethylene glycol Water − Gasoline Water − Ethanol 
Fig.   8(c): Comparison among different fluids for axial flow velocity. When De = 180, Ha = 1,   L = 20m at t = 300𝑡ℎs and  ∅ = 0.0,  at outer domain. For aspect ratio (1:1). 

A comparison of several fluid phase distributions is shown in fig. 8(d). When water-engine oil, 

water-heptane, water-kerosene, or water-gasoline is present, phase 1 appears to be in dynamic 



equilibrium in the upper and lower walls, and phase 2 is dispersed throughout the duct. However, 

Phase 1 of the water-ethylene glycol mixture be observed to be in dynamic equilibrium at the upper 

and lower walls, while Phase 2 is seen to be in the center. When of the water-ethanol phase 1 is 

observed to be in dynamic equilibrium on the lower wall and phase 2 to be in dynamic equilibrium on the 

top wall. 

   Water − Kerosene Water − Heptane Water − Engine oil  

   Water − Ethylene glycol Water − Gasoline Water − Ethanol 
Fig.   8(d): Comparison among different fluids for phase distribution. When De = 180, Ha = 1,   L = 20m at t = 300𝑡ℎs and  ∅ = 0.0,  at outer domain. For aspect ratio (1:1). 

The influence of aspect ratio on the velocity contour is shown in Fig. 9(a). Axial flow is shifted 

closer to the duct's outer wall when the aspect ratio is (1:1), generating twelve contours. It 

demonstrates that there are four to six contours and that the axial flow is shifted close to the centre 

of the duct channel for aspect ratios of (1:2), (1:3), and (1:4). Therefore, Dean's flow is chaotic. 

However, when the aspect ratio is (1:5) or (1:6), it is visible that there are only two contours and 

that the axial flow is shifted near to the inner wall and the center of the duct channel. In this 

respects, Dean's flow is becoming steady. The centrifugal force forces the liquid to flow radially 



from the inner to the outer duct wall because it has enough space to use it, generating lateral fluid 

circulation. 

 

 

 

Aspect ratio (1:1) 

 

Aspect ratio (1:2) 

 

Aspect ratio (1:3) 

 
Aspect ratio (1:6) Aspect ratio (1:5) Aspect ratio (1:4) 

Fig.  9(a): Aspect ratio effect on velocity contour. When 𝐿 = 20𝑚, 𝐷𝑒 = 180, Ha=1 at 𝑡 = 300𝑡ℎ𝑠 and  ∅ = 0.0 

at outer domain. 



 

 

 

Aspect ratio (1:1) 

 

Aspect ratio (1:2) 

 

Aspect ratio (1:3) 

 
Aspect ratio (1:6) Aspect ratio (1:5) Aspect ratio (1:4) 

Fig. 9(b): Aspect ratio effect on vector plot of flow field. When 𝐿 = 20𝑚, 𝐷𝑒 = 180, Ha=1 at 𝑡 = 300𝑡ℎ𝑠 and  ∅ = 0.0 at outer domain. 

 

The aspect ratio effect on the vector plot of the flow field (Dean vortex) is shown in Fig. 10(b). 

Secondary flow has six and four symmetric vortex solutions (the Dean vortex) when aspect ratios 

are (1:1) and (1:2), respectively, and each pair of vortex pairs is in the opposite direction. When 



aspect ratios are (1:3) and (1:4), secondary flow has two symmetric vortices (Dean vortex) and 

two asymmetrical vortices. Asymmetric vortex pairs flow in a direction normal to the top wall, 

whereas symmetric vortex pairs flow in the opposite direction. Similarly, when aspect ratios are 

(1:5) and (1:6), two asymmetric secondary flow vortices are positioned on the upper and lower 

walls, and their trajectories are opposite. 

The impact of aspect ratio on axial flow velocity is seen in Figure 10(c). The shapes are hyperbolic 

and have several orbits for the aspect ratios (1:1), (1:2), (1:3), (1:4), (1:5), and (1:6). High viscosity 

fluid seems to have a higher axial velocity than low viscosity fluid provides. 

   

Aspect ratio (1:1) Aspect ratio (1:2) Aspect ratio (1:3) 

   

Aspect ratio (1:4) Aspect ratio (1:5) Aspect ratio (1:6) 

Fig.  9(c): Aspect ratio effect on axial flow velocity. When 𝐿 = 20𝑚, 𝐷𝑒 = 180, 𝑡 = 300𝑡ℎ𝑠 and  ∅ = 0.0 at 

outer domain. 

Fig. 10 depicts the average magnitude of the velocity of the surface on the cut plane. Fig. 10(a) 

depicts the effect of radius of curvature. It has been found that when the radius of curvature 

increases, the velocity increases. The velocity behavior is similar to a straight duct for𝐿 ≥ 100. 

The Dean number's impact on the average surface velocity on the cut plane is seen in Fig. 10(b). 

The velocity line similarly increases as the dean number increases. Because the inlet velocity and 



Reynolds number both have an impact on the Dean number. Fig.10(c) signify the effect of 

Hartmann number on average value of velocity magnitude. Shows that the velocity is decreasing 

due to increasing of Hartmann number.  Fig.10(d) express that average value of velocity magnitude 

of surface on the cut plane increases due to decreasing of viscosity.  

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig.  10: Average value of velocity magnitude of surface on the cut plane (a) for effect radius of curvature, (b) for 

effect of Dean number, (c) for effect of Hartmann number, (d) Comparison of different fluid, (e) for effect porosity 

and (f) for effect of particle concentration on outer domain.  

From fig.10(e), it is found velocity is increases due to increasing of porosity. The effect of particle 

concentration on average value of velocity magnitude of surface on the cut plane established on 

fig. 10(f). When particle concentration increases on outer domain the velocity is also increases.    

Conclusion  

The effect of magnetohydrodynamics on two-phase fluid flow in three dimensions via a porous 

media through a curved duct with square and rectangular cross-sections was calculated. The 

principal results of the investigation are summarized in the list above. 

• As the radius of curvature increases, the number of contours declines and the Dean flow 

changes from chaotic to steady. 



• As the Dean number rises, the number of vortices decreases and the Dean flow changes from 

chaotic to periodic. 

• When the aspect ratio is changed from (1:1) to (1:6), there are fewer vortices and the flow 

changes from periodic to sustained. 

• It is clear by observing the two-phase flows of various fluids that the flow is more steady for 

the fluid with low viscosity than for the fluid with high viscosity. 

• When the radius of curvature is small, the velocity line is high; as the radius of curvature 

increases, the velocity line is low. The velocity behavior approaches that of a straight channel 

for large curve radius. 

• The velocity line is gradually increasing as a result of an increased dean number. 

• The velocity decreases with an increase in the Hartmann number. The Dean vortex increases 

with an increase in the Hartmann number. 

• The average surface velocity magnitude on the cut plane increases as viscosity increases. 
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