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Abstract
Nonylphenol ethoxylate, used mainly in detergent production, is transformed under environmental
conditions into the endocrine disruptor, Nonylphenol (NP). 4-Nonylphenol (4-NP) was identi�ed in drinking
water samples from a developing country without regulations (Mexico) to establish exposure and
environmental concentrations. The extraction and quanti�cation of 4-NP were performed using solid
phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS). A
derivatization process was carried out to increase sensitivity in the method. Eighty percent of the samples
showed concentrations above the detection limit, and 57% of the samples presented concentrations
above the Directive on the Quality of Water intended for human consumption (0.3 µg L-1). Our data gives
an overview of the exposure levels and the environmental and health risks that these may represent.
According to the results, continuous monitoring and regulations of this pollutant are highly recommended
to prevent exposure and ecological and health effects.

1. Introduction
Water quality research has focused on nutrients, microbial contaminants, heavy metals, and priority
pollutants. Recently, a new type of pollutants (emerging pollutants) has been recognized (EPA 2005).
Currently, more than 1036 emerging pollutants are listed in the European Aquatic Environment NORMAN
Network (www.norman-network.net) signi�cantly affecting water quality and causing potential public
health and security problems (Bilal et al. 2019). However, due to its recent detection and low
concentrations (µg L-1, ng L-1), there is a gap in the knowledge about its occurrence, fate, behavior, risk
assessment, and ecological and human effects (Vargas-Berrones et al. 2020a). In addition, population
growth has resulted in major environmental impacts, being water bodies the most affected in terms of
availability and quality (Peña-Guzmán et al. 2019). One of the most reported organic pollutants in
wastewater, e�uents, rivers, drinking water, sediments, and soil are the Alkylphenol Ethoxylates
(APEs) (Belmont et al. 2006, Chen et al. 2013, Dong et al. 2015, Jie et al. 2017, Van Zijl et al. 2017). APEs
are non-ionic surfactants widely used in detergent manufacturing, plastic additives, emulsi�ers, and
pesticides (Ferrara et al. 2011). Above 95% of APEs are removed from wastewaters with conventional
treatment plants processes; however, the main problem is the formation of resistant metabolites
classi�ed as endocrine disruptors (Petrović et al. 2003). The most used APE is the nonylphenol
ethoxylated (NPE) due to its capacity to form micelles in solution (Araujo et al. 2018). After their disposal,
NPE is degraded by microorganisms or ultraviolet light under environmental conditions transforming
them into nonylphenol (NP), including mainly 4-nonylphenol (4-NP) (Cheng et al. 2017). NP is classi�ed
as an endocrine disruptor which are external agents that interfere with the formation, elimination,
transport, attachment, activity, or displacement of natural hormones that maintain homeostasis
development, reproduction, and behavior (EPA 1997). Endocrine disruptors are hardly reviewed and
regulated, so there is scarce information regarding their occurrence, fate, and health impacts (Gavrilescu
et al. 2015). Therefore, NP has been included as a priority pollutant by some authorities. The Water
Framework Directive of the European Union allows maximum concentrations in surface water of 2 µg L-1
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(European Union 2013), and the Environmental Protection Agency (EPA) of the United States establishes
a maximum concentration of 6.6 µg L-1 in surface water (EPA 2005). Also, regulations to restrict the use
of NPE in industries have been introduced. For example, the European Union (EU) with the Directive
2003/53/EC establishes that NPE “…may not be placed on the market or used as a substance or
constituent of preparations in concentrations equal or higher than 0,1 % by mass…” (Union 2003), and
Directive 775/2004(02/2076) prohibits the use of NPE in pesticides formulations (Union 2006). On the
other hand, the EPA added NPE to the Toxics Release Inventory (TRI) list and meets the toxicity listing
criteria of the EPA´s Emergency Planning and Community Right-to-know Act (EPCRA) section 313(d)(2)
(C) indicating that NPE is highly toxic to aquatic organisms (EPA 2018). However, regulations in
developing countries that restrict levels of NP in water are null, and their health and environmental effects
are not well understood (Shannon et al. 2008). 

The main exposure pathway of NP is through food and water intake, which leads to bioaccumulation and
biomagni�cation. Effects of NP exposure in animals have been previously reported in concentrations
from 1 to >195 µg L-1 (Lussier et al. 2000, Scaia et al. 2019, Tabassum et al. 2017); however, effects in
humans are still debated and require more investigation. Some studies have suggested potential health
effects like decreased sperm count, reproductive malformations, immune de�ciency, an increase in
prostate, breast, ovarian and testicular cancer, neurological effects, poor intellect development in children,
and psychological effects being the more vulnerable population fetuses and newborns (Bolong et al.
2009, Lussier et al. 2000, Tijani et al. 2016). The predicted no-effect concentration (PNEC) of NP has not
been established because there is not enough toxicity data, and the speci�c mechanism in organisms is
still unclear (Bakke 2003). Therefore, the World Health Organization (WHO) suggests a maximum
concentration of 0.3 µg L-1 in drinking water based on the precautionary values that comply with existing
environmental quality standards (WHO 2017). There is a current concern about the future and transport
of NP through the environment and humans because of the continuous detection and identi�cation of NP
in water sources. Thus, the objective of this study was to monitor the concentrations of 4-NP in drinking
water from countries without regulation (Mexico) to demonstrate potential human health risks from water
intake (Figure 1). It is paramount to implement monitoring strategies in water to contribute to the
generation of regulatory framework in developing countries due to the toxicity associated with NP and the
extensive use of NPEs.

2. Materials And Methods

2.1 Reagents and chemicals
Stock standard solution of 4-NP (1000 µg L-1) was prepared in acetone and stored in the dark at -40ºC
until further analysis. SPME �ber DVB/CAR/PDMS (50/30 µm stable�ex
divinylbenzene/carboxen/polydimethylsiloxane) was supplied by Supelco (Edo. Mexico) and it was
conditioned before its use following the manufacturer´s instructions. A 0.1 M hydrochloric acid (HCl)
solution (JT Baker, Edo. Mexico), sodium chloride (NaCl) (JT Baker, Edo Mexico), N-Methyl-
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bis(tri�uoroacetamide) (MBTFA) ≥ 97.0% GC (Sigma Aldrich, Edo. Mexico), and Milli-Q deionized water
(18.3 MΩ, Millipore) were used for the derivatization process. Samples were analyzed in a gas
chromatograph (GC) (Agilent 6890) coupled to a mass spectrometry detector (MS) (Agilent 5975) in
electron impact ionization mode (EI). The injection port was operated in splitless mode with a 0.75 mm
liner without glass wool. GC separation was performed on a HP 5MS (60 m x 0.25 mm x 0.25 µm)
column (Agilent). Helium, used as carrier gas, was controlled at a �ow rate of 1 mL min-1 and 36 psi. The
injection port temperature was set at 230ºC, and the oven temperature program used was as follows:
90ºC (2 min), 180ºC (30ºC min-1), 200ºC (1ºC min-1), 230ºC (30ºC min-1) and held for 5 min with a run
time of 31 min. The tune parameters were: emission: 34.6; energy: 69.9; repeller: 26.6 and EMVolts: 1341.
The SCAN mode (50–500 m/z) was used to identify the compound. The identi�cation and quanti�cation
ions were selected for SIM mode (203/316 m/z). Results were obtained and processed with Chemstation
Software (Agilent).

2.2 Sampling preparation
Directed monitoring of drinking water samples was performed. Since tap water is not potable in Mexico,
water samples were collected from jugs of different water puri�ers in Mexico. One-liter plastic bottles
previously rinsed with Milli-Q water were used. No detergent was applied to prevent contamination.
Immediately after sampling, they were stored in the dark at -20°C until further analysis.

2.3 4-NP quanti�cation
4-NP quanti�cation was performed based on the methodology described by Vargas-Berrones et al
(Vargas-Berrones et al. 2020b). The lineal range (r2 = 0.99) of the method was from 0.5 to 50 µg L− 1, the
detection (LOD) and quanti�cation (LOQ) limits were determined by blank signal and the obtained values
were 0.01 µg L− 1 and 0.15 µg L− 1, respectively. One milliliter of water sample, 20 µL of HCl (0.1 M), and
NaCl (3%) were added to a 10 mL sealed amber vial with gentle agitation. HCl and NaCl were used to
adjust pH and enhance ionic strength, respectively. Solid phase microextraction (SPME) was carried out
with a DVB/CAR/PDMS (50/30 µm stable �ex divinylbenzene/carboxen/polydimethylsiloxane) sorbent.
The �ber was exposed to the headspace at 80°C for 20 min magnetically stirred at 600 rpm. After the
extraction of 4-NP, a derivatization process with N-Methyl-bis(tri�uoroacetamide) (MBTFA) was carried
out to improve the volatility and sensitivity of the method. This consisted of exposing the �ber to the
headspace of a solution of acetone (1 mL) with MBTFA (100 µL) at 60°C for 10 min magnetically stirred
at 600 rpm. After derivatization, samples were analyzed by gas chromatography (GC) (Agilent 6890)
coupled to a mass spectrometry detector (MS) (Agilent 5975) in electron impact ionization mode (EI).

3. Results And Discussion
Concentrations in drinking water from different water puri�ers are shown in Table 1.
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Table 1
Concentrations of 4-NP in different samples of drinking water from water puri�ers of

countries without regulation (Mexico).
Sample Concentration Sample Concentration Sample Concentration

1 1.33 21 0.47 41 3.05

2 <LOD 22 0.89 42 3.42

3 2.32 23 0.19 43 0.79

4 2.64 24 0.10 44 1.50

5 6.08 25 0.12 45 2.48

6 40.29 26 0.40 46 1.42

7 3.99 27 0.13 47 0.85

8 <LOD 28 0.37 48 4.62

9 <LOD 29 3.66 49 0.40

10 <LOD 30 0.14 50 0.09

11 <LOD 31 0.11 51 0.22

12 <LOD 32 2.99 52 2.17

13 <LOD 33 0.91 53 0.84

14 <LOD 34 0.20 54 0.95

15 0.85 35 0.23 55 0.31

16 <LOD 36 0.94 56 4.19

17 <LOD 37 3.34 57 0.25

18 <LOD 38 1.83 58 0.17

19 <LOD 39 6.43 59 0.16

20 15.29 40 1.82 60 0.09

*Units: µg L− 1; LOD: 0.01 µg L− 1

Values above the LOD were detected in 80% of the collected samples, and 57% of the samples presented
concentrations above the Directive on the quality of water intended for human consumption (0.3 µg L− 1)
(WHO 2017). Reported values are similar to previous studies (Table 2).
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Table 2
Concentrations of 4-NP in drinking water from different countries

  Country n Min Median Max Reference

Drinking
water

Mexico 5 <LOD 2.48 6.08 (Vargas-Berrones et al.,
2020b)

China 15 0.01 0.05 2.7 (Shao et al., 2005)

Czech
Republic

6 0.029 0.0335 0.045 (Pernica et al., 2015)

China 62 ND 0.027 0.558 (Fan et al., 2013a)

Italy 35 < 
0.0077

0.0149 0.084 (Maggioni et al., 2013)

China 21 0.108 0.170 0.298 (Li et al., 2010)

China 6 0.196 0.502 1.073 (Li et al., 2010)

France 8 <LOQ 0.0159 0.0594 (Dupuis et al., 2012)

China 8 0.0082 0.577
(media)

0.918 (Jie et al., 2017)

Taiwan 18 0.017 0.032
(media)

0.195 (Cheng et al., 2016)

Japan 9 0.016 0.076 0.078 (Toyo et al., 2000)

Greece 6 NR NR 0.15 (Amiridou and Voutsa,
2011)

United States 18 NR 100 93 (Benotti et al., 2009)

United States 12 NR NR 1.1 (Stackelberg et al., 2007)

Germany 10 0.0025 0.0066 0.016 (Kuch and Ballschmiter,
2001)

*Units: µg L− 1; LOD: limit of detection; LOQ: limit of quanti�cation; ND: not detected

Occurrence of NP has increased signi�cantly because of its great industrial demand (Silva et al. 2018). It
is di�cult to determine the source of contamination in water samples; however, the most common use of
NPE is in detergents (Kim et al. 2019, Priac et al. 2017). For example, 41% of 90 domestic detergents in
Taiwan contained from 0.2 to 21% of NP (Huang et al. 2014). This suggests that the presence of NP in
water is mainly due to the use of detergents, tourism, people washing clothes, illegal water discharges in
rivers, and inadequacy and lack of maintenance in drainage networks (Fenet et al. 2003, Gambolati et al.
2006). In countries where NP and its ethoxylates are not regulated, like Mexico, it is common to �nd these
compounds in detergents due to their excellent surfactant properties (Merrettig-Bruns &Jelen 2009) and
low cost (Perron &Juneau 2011). In this country, water jugs are washed each time before being re�lled.
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So, a poor rinse may explain the high concentrations of NP found in drinking water. Also, conventional
water puri�cation processes do not remove endocrine disruptors like NP (Van Zijl et al. 2017), and NPE
may be degraded into shorter ethoxylated chains in the treatment processes (Soares et al. 2008).
Furthermore, the chlorination process in water supply systems forms byproducts like monochloro-NP
(CNP) and dichloro-NP (DCNP). These compounds have previously demonstrated estrogenic activity (Fan
et al. 2013, Takemura et al. 2005).

Previous studies have demonstrated adverse effects in biota (Table 3) and humans (Table 4). However,
more research in this regard is paramount to understanding the risks and effects due to the exposure of
this xenobiotic. A risk assessment regarding NP exposure through water intake could be performed as
future work with these results. The estimation of the non-carcinogenic risk obtained by the hazard
quotation (HQ) for water intake would indicate the potential risks of adverse health effects according to
the values established by the EPA (0.1 mg kg− 1 day− 1) (Bakke 2003). Risk assessment regarding NP
exposure has been previously reported in sludge (González et al. 2010, Kollmann et al. 2003, Roberts et
al. 2006), surface water, wastewaters (Chen et al. 2014, Gao et al. 2014, Jin et al. 2014), and aquatic
organisms (Lee et al. 2015, Pachura-Bouchet et al. 2006, Servos et al. 2003). Nevertheless, limited
information about risk assessment in humans is available because of high analysis costs and the lack of
scienti�c data in this area (Tijani et al. 2016). The United Nations Environment Programme has
established that the highest estimated value for human exposure through the environment is 5.31 x 10− 3

mg kg− 1day− 1 and the maximum intake combined from the air, water, and food exposure is 6.4 mg kg− 

1day− 1. However, there is uncertainty in the daily intake estimated making it di�cult to determine
accurate predictions in this regard (Bontje D. 2002). These values have only been considered in adults
though children are more vulnerable to hormone impacts caused by environmental xenobiotics. This
vulnerability is associated with physiological differences like constant increase in weight, higher
respiration and ventilation range, higher relative consumption of water and food, and faster brain
development (Longnecker et al. 2003, McElroy 2008, Mishra &Vankar 2002, Norgil Damgaard et al. 2002,
Selevan et al. 2000). Previous studies have shown that NP is ubiquitous in baby food representing a daily
intake from 0.23 to 0.65 µg kg− 1 bw d− 1 (Raecker et al. 2011). However, low concentrations in humans
may have virtually no chance to compete with natural hormones in the unions of free receptors, implying
that the health risks of endocrine disruptors may be insigni�cant (Autrup et al. 2020). Therefore, exposure
effects of endocrine disruptors at low doses during the development of humans have been
underestimated (Welshons et al. 2006). A greater potential risk for infants and babies is expected due to
the higher vulnerability to hormonal effects and their higher relative NP consumption through food and
water compared to adults; also, a reference dose for infants has not been established yet.



Page 8/18

Table 3
NP and 4-NP concentrations in different species.

Organism Specie Compound Concentration Effects Reference

Plants Vigna radiata NP 1000 mg/kg Leaf vein necrosis (Kim 2019)

Fish Orechromis
niloticus

NP 16 µg/L Alterations in the
female gonads

(Rivero
2008)

Bream and
black rock�sh

4-NP 50 µg /L Reduced
gonadosomatic
index

(Saravanan
2019)

Oncorhynchus
mykiss

NP 1 µg /L Alterations in the
immune system

(Hébert
2009)

Xiphophorus
maculatus

NP > 0.96 mg/L Negative effects on
testicular
morphology and
male fertility

(Kinnberg
2000)

Oyster Crassostrea
gigas

4-NP

NP

0.1–10 µg /L Development of
abnormalities

(Nice HE
2000)

Oyster Crassostrea
gigas

4-NP

NP

1-100 µg /L Increased incidence
of hermaphroditism

(Nice HE
2003)

Crustacean Elminus
modestus

4-NP 0.1–10 µg /L DNA adduct
formation, mutations
and genomic
rearrangements

(Atiezar FA
2002)

Amphibians Xenopus
laevis

NP 0.1–10 µg /L Increased mortality,
morphological
deformations, and
increased apoptosis

(Bevan CL
2003)

Mice Ratones NP 50–500 µg /L Negative effects on
spermatogenesis
and sperm quality

(Kyselova
V 2003)
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Table 4
Health effects in human by NP and/or 4-NP exposure

Sample Analyte Concentration Exposure Effects Reference

Semen NP < 7 pg/mL Normal
food and
water
intake

No signi�cant exposure (Katayama
et al.
2003)

Urine 4-NP < 110 ng/mL Normal
food and
water
intake

Not available (Inoue et
al. 2003)

Human milk NP < 56.3 ng/mL Normal
food and
water
intake

No signi�cant exposure (Ademollo
et al.
2008)

Human breast
carcinoma cell
line (MCF-7)

NPEOs NA 100–200
µM

γ-H2AX generation caused
by direct chemically
induced DNA damage

(Zhao et
al. 2015)

Human breast
carcinoma cell
line (MCF-7)

NPEOs NA 100–500
µM

Generation of γ-H2AX
means the formation of
DSBs (DNA damage)

(Toyooka
et al.
2012)

CHO-K1 cells NP NA 0.025-
0.1 µM

DNA damage (sister-
chromatid exchange)

(Tayama
et al.
2008)

Jurkat cells 4-NP NA Not
speci�ed

Induced loss of
mitochondrial membrane
potential, caspase-8
activation, and
internucleosomal DNA
fragmentation

(Yao et al.
2007)

Jurkat cells NP NA 9.72–
38.9 µM

Induced DNA damage (Park
&Choi
2007)

Saccharomyces
cerevisiae cells

4-NP NA 50 mg/L Induced signi�cant
cytotoxic effect

(Frassinetti
et al.
2011)

Spermatozoa NP NA 5 µL Oxidative stress and DNA
damage

(Bennetts
et al.
2008)

*NA: Not applicable; NP: Nonylphenol; 4-NP: 4-nonylphenol; NPEOs: Nonylphenol Ethoxylates

Some limitations were considered when interpreting the results of this study. 1) Only 4-NP was
considered because of its commercial availability (Calafat et al. 2005). It is also important to
acknowledge that NP is a mixture of approximately 20 para-substituted isomers with different branched
alkyl chains and with intermediate structures compounds that make the mixture more toxic (Ieda et al.
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2005, Ruß et al. 2005, Thiele et al. 2004, Wheeler et al. 1997). Previous studies have reported that 4-NP
only represents 2.2% of the total mass in water, and represents only 26% of all the risk (Fenner et al.
2002). Moreover, NP isomers have relevant differences among them regarding their disruptive endocrine
activity. Therefore, it is not adequate to take any isomer as a general reference to establish models,
activities, structure relations, and/or risk assessments (Preuss et al. 2006). Thus, to achieve a complete
analysis, it would be necessary to examine all isomers in the sample. Even though our study only
considers 4-NP, it provides a reference point and allows to establish minimum exposure concentrations.
2) Other pollutants classi�ed as endocrine disruptors may be found in drinking water. Consequently, it
may be practically impossible to predict health problems caused by each compound since they can act
independently or in synergy with others. For example, Bisphenol A (BPA) is a monomer used for
polycarbonates and epoxy resin production. This product is used as a coating for food cans, water
containers, water pipes, reusable milk containers, food storage vessels, and baby bottles. Its incomplete
polymerization during manufacture and the temperature increment through bottling processes may cause
the compound to leach into food and beverages (Markey et al. 2001). Accordingly, phthalates (PEs) are
endocrine disruptors mainly used as plasticizers and in paints, adhesives, dyes, and cosmetics
manufacture. Usually, PEs are incorporated into food and water through packaging and manufacturing
processes (Serodio &Nogueira 2006). Good practices and environmental policies are needed to mitigate
potential risks to human and ecologic health established on the precautionary principle approach, based
on evidence of potential harm without compelling absolute scienti�c certainty.

4. Conclusions
According to the literature, this is the �rst monitoring of 4-nonylphenol in Mexico in drinking water
samples. This study aimed to provide a reference to establish minimum NP exposure concentrations
through water intake. An exposure scenario of 4-NP in drinking water is shown in countries without
regulations (Mexico). Our results demonstrate that 4-NP was detected in 80% of the water samples. Fifty
seven percent of the samples presented concentrations above the Directive on the quality of water
intended for human consumption. Although these results may not represent a signi�cant risk for the
consumption of NP through water intake, there is no consensus among the scienti�c community about
this issue. Moreover, it is critical to acknowledge that current parameters are considered only for adults,
and water intake in children may represent a greater risk. Efforts in investigation and strategies to
promote consciousness of the impact of NP as a pollutant are required. These developments would help
to establish a responsible approach regarding the use and handling of NP and its ethoxylates. The search
for environmental quality to protect human and ecological health is a compulsory long-term challenge
shared by most modern societies and civilizations worldwide.
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Figure 1

Context of nonylphenol analysis in drinking water samples to determine potential exposure risks through
water intake in developing countries.


