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1 Abstract

During the observation of an ambiguous figure, our perception becomes unstable and alter-
nates repeatedly between mutual exclusive interpretations. Tiny changes of the stimulus
features can disambiguate the figure and stabilize percepts. Recent EEG studies found
much smaller amplitudes of two event-related potentials (ERPs), an anterior P200, 200 ms
after stimulus onset and a posterior P400, 200 ms later, when participants observed an am-
biguous stimulus compared to disambiguated stimulus variants. Interestingly, this pattern
of results was found across stimuli differing in ambiguity (geometry, motion and gestalt) and
in visibility. We postulate a meta-perceptual / meta-cognitive evaluation instance that rates
the reliability of perceptual constructs at a high processing level generalized beyond sensory
details. We further postulate that the above described ERP effects reflect the outcome of
this evaluation process.

According to these hypotheses, the distributions of these ERP effects on the scalp across
three different stimulus categories, should originate from the same neural structures in the
sensor and source space. This was tested by calculating EEG inverse solutions using a novel
artificial neural network - based approach. We found very similar sources across stimulus
categories, both on the level of individual participants and on the group level. Regions
involved in the earlier processing steps (P200) encompass lateral occipital cortex, inferior
parietal cortex and medial cingulate cortex. Later processes (P400) originated mostly from
the right inferior temporal cortex. Our findings were consistent with comparable studies
using functional magnetic resonance imaging and EEG source imaging. In summary, we
found highly coherent neural sources of the ERP Uncertainty Effects. The underlying
processes may be related to a common uncertainty resolution at a higher processing level
beyond sensory details.
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2 Introduction

The information available to our senses is incomplete and to varying degrees ambiguous. Our

perceptual system needs to disambiguate and interpret this limited information in order to

produce stable and reliable perceptual interpretations as fast as possible. Ambiguous figures,

like the Necker Cube [1] or Boring’s Old/Young Woman [2], are extreme cases, where two

(or more) valid interpretations are about equally probable for one and the same visual

information, leading to only transiently stable percepts with short transitions (reversals)

from one interpretation to another (multistability). Ambiguous figures were used extensively

in the past decades to study our perceptual system in various contexts. The majority of

the work was focused on the mechanisms underlying perceptual reversals (e.g., 3, 4, 5, 6).

A different focus on the topic was set by a number of more recent EEG studies [7, 8].

The authors were interested in the differences between stable neural representations of

disambiguated and unstable representations of ambiguous stimuli They found significantly

smaller amplitudes of two event-related potentials (ERPs), a more anterior P200 and a more

posterior P400.

Interestingly, this pattern of results generalized across different categories of ambigu-

ous stimuli, like the Necker cube, von Schiller’s Stroboscopic Alternative Motion (”SAM”,

also known as the motion quartet; 9) and Boring’s old/young woman. Besides ambiguous

figures, very similar effects are also found for stimuli of varying visibility, e.g., concerning

the emotional expression of faces [8, 10]. Since these ERP effects can be observed for both

ambiguous and low-visibility stimuli they were termed ”ERP Uncertainty Effects” (see 8

for a discussion on this).

This generalization of the ERP Uncertainty Effects indicates common neural mecha-

nism of ambiguity or uncertainty processing at a meta-cognitive / meta-perceptual level of

processing beyond low-level feature extraction. In the present work we analyzed the neural

sources of the ERP Uncertainty Effects evoked by ambiguous/ low visibility stimuli and
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disambiguated/ high visibility stimulus variants from three very different categories. We

studied whether the apparently similar scalp distributions of ERPs across stimulus cate-

gories are based on the same underlying neural sources.

The present work aims to identify the neural generators underlying these meta-perceptual

ERP Uncertainty Effects for a set of three different stimuli: Necker Lattices, smileys and

abstract figures. The data was previously analyzed and published by [11]. A classical

ERP analysis revealed highly similar Uncertainty Effects for the three stimulus types. In

the present study, we investigate whether highly similar amplitude effects combined with

highly similar scalp distributions of the related ERP signatures are based on the same neu-

ral sources, confirming our hypothesis. In order to test this, we applied an advanced EEG

source analysis method based on artificial neural networks (ANNs, 12, 13). ANNs have

shown better source localization accuracy compared to classical, linear approaches to the

inverse problems such as exact low-resolution tomography (eLORETA, 14). One important

advantage has been the ability for ANNs to not only estimate the location but also the

spatial extent of neural sources. However, since the ANNs are a relatively new re-emerging

method in the field, we have decided to also calculate the established linear inverse solution

local autoregressive average (LAURA, 15) as a complement.

The majority of existing studies on neural sources of ambiguity processing are based on

functional magnetic resonance imaging (fMRI) and mainly focused on the reversal process

(for an extensive review, see 3). Only few studies have contrasted correlates of neural

representations during periods of stable percepts and compared these between ambiguous

stimuli and disambiguated variants thereof (e.g., 16). None of those studies had a focus on

the relation between ambiguity and visibility with a specific focus on uncertainty processing

and particularly on the Uncertainty Effects reported by our lab [10, 8, 17, 18]. We therefore

have no a priori spatial regions of interest (ROI) for our analysis and thus followed a

mainly explorative approach. However, we expect that: (1) there will be an overlap of
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the ambiguity/uncertainty effects of all three stimuli used in the present study due to the

similarity in scalp distributions of the ERP Uncertainty Effects. (2) This overlap will be

larger between the smileys and abstract figures because of the larger stimulus similarity.

3 Methods

3.1 Participants

Twenty participants (9 male) between 19 and 34 years (median age: 24 years) with normal or

corrected-to-normal visual acuity, as measured with the FrACT [19] took part in the present

study. All participants gave their informed written consent. The study was approved by the

ethics committee of the University of Freiburg and in accordance with the ethical standards

laid down in the Declaration of Helsinki (SRC, [20]).

3.2 Stimuli

The stimulus set consisted of three ambiguous figures and their unambiguous variants,

namely Necker Lattices, Smileys and Abstract Figures (see Fig. 1). The Necker Lattices

are construed of 3 × 3 stacked up Necker Cubes [1, 21]. Disambiguated lattice variants

(Fig. 1, top left), representing the two perceptual alternatives of the ambiguous lattice,

were created by adding depth cues like shading, central projection and aerial perspective

(OpenGL lighting model; 22). All lattices extended over a visual angle (VA) of 7.5× 7.5.

Interestingly, [8] found recently highly similar ERP Uncertainty Effects for ambigu-

ity/uncertainty in the emotional expression of smiley faces, but also for uncertainty con-

cerning low-level visibility of curvature elements of an abstract figure. The Smileys depict

a minimalistic facial expression of a face with happy or a sad emotional expression (Fig

1, center column). This facial expression was varied by simply changing the radius and

orientation of the mouth curvature. Uncertainty with respect to emotion can be evoked
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Figure 1: Stimulus Set Top row: Unambiguous Versions. Bottom row: Ambiguous ver-
sion. Ambiguity in Necker Lattices exists with regard to stimulus orientation. Smileys are
ambiguous regarding their emotional expression. Abstract Figures show ambiguity regard-
ing low-level features of line curvature on the bottom.

by increasing the radius of the mouth curvature, which flattens it. All Smileys were sized

to extend over 4 × 4 VA. Abstract Figures contained the same mouth curvature lines as

the smileys, which were however embedded in abstract structures, containing also mirror

symmetry and the same total sum of white area as the smileys but being otherwise very

dissimilar to faces (Fig. 1, right column).

3.3 Procedure

In two separate experimental sessions, participants completed in total six different experi-

mental conditions including ambiguous and unambiguous variants of Necker lattices. The

two sessions took place on two different days that were maximally one week apart from each

other. Abstract figures were always shown in the first session and smileys in the second

session to avoid an association between the abstract figures and a facial stimulus. Each

condition was split up into three blocks of 7 minutes (lattices) or 6 minutes (smileys and

abstract figures) each. The order of experimental blocks and the presentation order within
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the blocks was randomized. Participants sat in front of a cathode ray tube with 1.14 m

distance between the eye and the screen. Luminance of all stimuli was kept at 40cd/m2.

Stimuli were shown discontinuously (see 23) for 1 second, followed by a dark screen that

persisted for 0.4 seconds. Participants were asked to compare their current percept with the

percept during the previous trial by button press. They indicated stability if the percept

remained the same and reversal if it changed since the last trial. For lattices the two possi-

ble perceptions were front-side pointing upwards or downwards (Fig. 1, top left). Smileys

could be perceived as either happy or sad. For the abstract figures the bent line could be

perceived to point either upwards or downwards. Participants were instructed to not focus

on the line curvature of ambiguous smileys but instead try to respond to the subtle changes

in the perceived emotion (wholistic perception of face and emotion).

3.4 EEG Recording

EEG was recorded using 32 active electrodes according to the international 10-20 system

(ActiCap) and an ActiChamp amplifier (Brain Product). Data was sampled at 1000 Hz

and online band-pass filtered from 0.01 to 120 Hz.

3.5 EEG Preprocessing

All preprocessing of the EEG data was accomplished using mne-python (v1.0.2, 24). All

code used for the analyses described henceforth is publicly available at https://github.

com/LukeTheHecker/ambiguity_sources/.

Raw data was referenced to common average and filtered using a FIR bandpass from

0.01 - 45 Hz. In some cases, line noise remained even after filtering. Therefore, we removed

line noise at 50 Hz and all harmonics up until 500 Hz using a notch filter using a finite

impulse response (FIR) filter and a 1 Hz width of the transition band.

Eye artifacts were removed using independent component analysis, specifically the PI-
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CARD method [25, 26]. Next, bad channels were detected and interpolated using random

sampling consensus algorithm as implements by the autoreject package for python [27, 28].

This procedure yielded clean EEG data which was then epoched into trials of the differ-

ent conditions. Finally, we rejected all trials that contained amplitudes exceeding 150µV .

3.6 Forward Model

Standard channel positions were assumed for all q = 32 electrodes according to 10-20

System since no true channel positions were available from the data set. We used the

”fsaverage” [29] template T1 image as provided by the Freesurfer image analysis suite

(https://surfer.nmr.mgh.harvard.edu/). The forward model was computed using the bound-

ary element method (BEM, 30) as provided by mne-python. Each shell (brain, skull & scalp

tissue) was composed of 5120 vertices. Conductivity was set to 0.3S/m for brain and scalp

tissue, and 0.06S/m for the skull.

The source space was created using p = 1284 dipoles with icosahedral spacing. A fixed

orientation of dipoles orthogonal to the surface of the cortical sheet was assumed due to the

reasonable physiological assumption and in order to reduce computational complexity.

3.7 Source Analysis

3.7.1 Artificial Neural Network (ANN)

Neural sources underlying the ERPs were calculated using a fully-connected ANN, which

has shown to yield accurate inverse solutions with respect to source location and estimation

of source extent [31, 13]. We used simulated neural sources and scalp EEG data to train the

fully-connected (FC) ANNmodel. The esinet package (v.0.2.4, https://github.com/LukeTheHecker/esinet)

for python was used to simulate neural sources and corresponding EEG data and to build

and train the FC model.

We simulated 20,000 samples of source and EEG activity. Each sample contained brain
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activity of 1 - 15 randomly located and sized sources spanning 50 time points. The activity

of each source was determined using noise that followed the frequency spectrum f−β , where

β is the slope of the 1
f
spectrum. This slope was calculated for the ERP of each participant’s

EEG data and found in the range of 1.3 to 1.8. A value within this range was randomly

selected within the range for each simulated sample. Signal-to-noise ratio (SNR) was also

estimated from the ERPs of each participant and condition. This was achieved by first

calculating the global field power (GFP) for each participant and condition. Then we

calculated the ratio between the maximum of the GFP and the averaged GFP during a

baseline interval from 200 ms pre-stimulus until stimulus onset. We found that the SNR of

our participants ranged from 4.2 - 19.9, which was again used as the parameter range for

the simulation. For further details on the simulation procedure please refer to [13].

The ANN was built and trained using tensorflow 2.5.0 [32] and keras 2.5.0 [33]. The

FC was composed of an input layer with 32 neurons, corresponding to the q = 32 EEG

electrodes. Two hidden layers were followed with 300 and 500 neurons, respectively. Tanh

activation functions were applied to each hidden layer and dropout was applied during

training at a rate of 20 %. The output layer consisted of 1284 neurons, corresponding to

the p = 1284 dipoles in our source model (i.e., positions in the brain). The model contained

a total number of 803,684 parameters. The model was trained on the simulated EEG

and source data for 75 epochs using a batch size of 8. We used the adaptive momentum

estimation (ADAM, 34) optimizer with default parameters. As a loss function we used the

cosine distance, which calculates the error independent of scaling (similar to a correlation

coefficient).

3.7.2 Local Auto-Regressive Average (LAURA)

We decided to complement the inverse solutions yielded from the LSTM model with a those

from a simpler linear inverse solution and see if the results of the two approaches are approx-
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imately aligned. We therefore decided for Local Auto-Regressive Average (LAURA, 15),

a linear approach to solve the M/EEG inverse problem using biophysical constraints. The

constraints include the assumption on electromagnetic fields in biological media where mag-

nitude of current decreases proportionally with the squared distance. We have decided for

LAURA since it is capable to localize multiple neural sources and showed good localization

accuracy in our tests. Furthermore, it has been used to find the neural generators of Necker

cube reversals [35] already, which allows for a more direct comparison. The LAURA inverse

solutions were calculated using the invert packagehttps://github.com/LukeTheHecker/invert. The

optimal regularization parameter was found using generalized cross validation as described

by [36].

3.8 Similarity Analysis

The core of this study is to determine whether similar ERP Uncertainty Effects identified

with our three stimulus categories are based on similar neural sources. Similarity will be

measured on two levels: On the level of individual participants and on the level of the

grand-average.

The individual similarity was calculated as follows: First, the sources underlying the

ERPs to all stimuli (lattice, smiley and abstract figures) and conditions (unambiguous/high

visibility and ambiguous/ low visibility) were calculated using the LSTM model. Then we

calculated the difference source for each participant and stimulus (unambiguous/high visibility−

ambiguous/low visibility). Finally, we calculated the Pearson correlation coefficient be-

tween the source vectors of each pair of stimuli at each time point. This results in a

time-resolved source similarity measure per subject and for the three stimulus-pairs. Using

this approach, we lose the information of where the effects are located in the brain but

gain a clearer picture of when the processing of ambiguity/uncertainty is similar among two

different stimulus categories.

9
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The grand-average analysis allows us to localize sources on the group-level and requires

the calculation of the sources of the uncertainty effects per participant as a first step. For

each stimulus type (lattice, smiley & abstract figure) we calculated the difference between

the unambiguous/high visibility and ambiguous/low visibility condition by subtraction.

Next, the resulting difference was normalized per subject in order to reduce inter-individual

differences in amplitudes. Normalization was calculated by dividing the difference source

matrix by its own mean absolute deviation.

A grand average was then calculated by averaging the normalized source differences

across subjects for each stimulus, individually.

3.9 Source Statistics

Source activation maxima were identified in the grand-average at the two components of

interest, P200 (150-300 ms) and P400 (300-600 ms). First, the values below the 10th

percentile were set to zero in order remove sources that contribute little to the overall

pattern. Next, we identified local maxima in the grand-average. We defined a maximum

as a vertex whose 5 closest neighbors had lower values. Finally, the resulting maxima were

filtered when there was a larger maximum within a radius of 30 mm. This filtering removed

local maxima.

Statistic was then calculated based on the individual’s values at the location of the

aforementioned maxima. Statistical significance of voxel activations were assessed using a

two-sided one-sample Wilcoxon test against the null hypothesis H0 of no significant devia-

tion from 0. The anatomical regions of the maxima were described using the Multi-Modal

Parcellation of the Human Connectome Project (HCP-MMP1, 37) and using classic Brod-

mann areas [38]. Coordinates of the maxima were reported in MNI-space.
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4 Results

4.1 Event-Related Potentials (ERPs)

Fig. 2 shows the ERPs in response to each stimulus, separately. Responses are divided into

unambiguous/ high visibility, ambiguous/ low visibility and their difference ERP (dERP).

The ERPs largely resemble those found in the previous analysis of the present data (cf. 8,

Fig. 4), apart from the different EEG reference. We find that each stimulus evokes a P200

component, which is larger in the unambiguous/ high visibility stimulus.

Similarly, all stimuli evoked a P400 component which extends from 300 to 600 ms after

stimulus onset. The topographies of the difference P200 (dP200) components are similar

between smileys and abstract figures, whereas the lattice’s dP200 shows a dipolar pattern

peaking at frontal and occipito-temporal electrodes distinct to that of the other two stimuli.

On the contrary, the dP400 is largely similar across all different stimuli.

We have quantified the similarity of difference-based topographies between each stimulus

pair by calculating subject-wise and time-point-wise Pearson correlation coefficients (see

Similarity Analysis) as depicted in Fig. 3a. It shows that the individual dERP topographies

are highly correlated after stimulus onset between all three pairs of stimuli. This correlation

is especially strong starting from 150ms after stimulus onset and declines slowly after a peak

between 300 and 600 ms.

4.2 Source Analysis

While the similarity between individual dERPs of the different stimulus categories was

considerably high, it is unclear whether these similarities originate from the same regions in

the brain. We have conducted a source analysis of the individual ERPs using two different

approaches in order to get a more reliable estimate: Using the FC network and using the

linear inverse solution LAURA. The former will henceforth be presented in the main results
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Figure 2: Event-Related Potentials (ERPs) Left column shows the ERPs unambigu-
ous/ high visibility (orange) and ambiguous/ low visibility (blue) stimuli and the difference
unambiguous/ high visibility minus ambiguous/ low visibility (green) at the vertex elec-
trode Cz. The topographical plots on the right column show the voltage distribution of the
difference ERP (dERP) at our temporal regions of interest (tROI) with the vertex electrode
highlighted in white. The tROI of the P200 spans from 150 ms to 300 ms after stimulus
onset, whereas the P400 spans from 300 ms to 600 ms post-stimulus (see area shaded in
grey). HV: High-visibility stimulus. LV: Low-visibility stimulus.
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(a) Electrode-Space (b) Source-Space (FC)

Figure 3: Time-Resolved Individual Similarity Grand-average of the pair-wise Pearson
correlation between differential neural responses to unambiguous/high visibility vs. ambigu-
ous/low visibility stimuli. (a) Topographic similarity (electrode-space analysis). (b) Source
similarity (source-space analysis). Top row: Lattice difference-ERPs (unambiguous - am-
biguous) compared to smiley dERPs (high visibility - low visibility). Middle row: Lattice
dERPs (unambiguous - ambiguous) compared to abstract figure dERPs (high visibility -
low visibility). Bottom row: Smiley dERPs (high visibility - low visibility) compared to
abstract figure dERPs (high visibility - low visibility). Shadings indicate standard errors.
Red line indicates significant correlations per time point tested across participants.
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section. See Appendix A for equivalent analyses using LAURA, showing a comparative

pattern.

The source-space similarity (Fig. 3b) is highly significant, yet overall lower compared to

the electrode-space similarity (Fig. 3a). In source-space, uncertainty effects in lattice and

smiley stimuli show a significant, albeit lower similarity overall with correlation coefficients

r <= 0.38 peaking at 500 ms after stimulus onset. In stark contrast, the source similarity

between smileys and abstract figures is considerably higher in the source space, indicating

that uncertainty resolution is a highly similar process with these two stimulus categories.

The correlation is significant 80 ms after stimulus onset until stimulus offset, peaking at

500 ms with at r = 0.56. The similarity between lattice stimuli and abstract figures sits

between the aforementioned contrasts, peaking at 400 ms with r = 0.50. A highly similar

pattern was observed using the LAURA inverse solution (see Appendix A).

As described earlier, we also calculated grand-averages of the source-space uncertainty

effects for the dP200 and dP400, respectively. The grand-average source estimates of the

dP200 are visualized in Fig. 4 and the list of maxima is found in Table 1.

We identified multiple clusters of ambiguity-/uncertainty-related neural sources that

are shared between all stimulus categories during the P200 time window (see Tab. 1).

The largest clusters encompass the bilateral lateral occipital cortex (LOC) and the right

inferior/middle temporal cortex (IT/MT) (see Intersection in Fig. 4). A scattered cluster

of shared generators was found in the left postcentral gyrus and the middle cingulate cortex

(MCC). Using LAURA, we can see a highly similar pattern of intersecting brain regions of

the dP200 uncertainty effects (Appendix A), including bi-lateral LOC, right IT and MCC.

The sources of the dP400 show broader activations, which may in part be due to stronger

effects in that time window (cf. Fig. 2 & Tab. 2) leading to more significant differences in

source space. We find a large overlapping cluster throughout the right lateral and medial

temporal cortex. Each stimulus, however, showed that the peak of this broad activity is

14



Figure 4: FC-Sources of the P200 Grand average of the FC source differences unambigu-
ous/high visibility - ambiguous/low visibility averaged across the P200 time range (150 -
300 ms post-stimulus) are shown. Units are arbitrary due to normalization of the individual
differences. Only vertices that showed a significant difference at α < 0.05 are shown. The
intersection shows a binary mask of the vertices that were significantly active in all three
stimuli. Sources in the left occipito-temporal and right lateral temporal cortex show larger
activity for the unambiguous/ high-visibility stimuli throughout all categories.
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Stimulus HCPMMP1 BA Hem X Y Z T p

Lattice
MT+ Complex and Neighboring Visual Areas BA 19 L -39.8 -68.1 -0.0 4.21 0.0005
Anterior Cingulate and Medial Prefrontal Cortex BA 24 L -11.8 14.2 34.3 2.96 0.0080
Lateral Temporal Cortex BA 37 R 42.0 -50.5 -12.0 2.89 0.0094
Dorsal Stream Visual Cortex BA 18 R 23.9 -80.2 18.5 -2.73 0.0133
Superior Parietal Cortex BA 7 L -9.2 -54.8 59.6 2.32 0.0318

Smiley
Posterior Cingulate Cortex BA 31 L -10.7 -38.4 41.8 5.13 0.0001
Orbital and Polar Frontal Cortex BA 11 L -16.9 14.5 -20.6 4.88 0.0001
Early Visual Cortex BA 18 L -14.7 -70.3 -3.9 4.73 0.0001
Somatosensory and Motor Cortex BA 4 L -40.8 -11.8 48.1 3.95 0.0009
Medial Temporal Cortex BA 36 L -34.5 -13.8 -25.1 3.88 0.0010
Posterior Cingulate Cortex BA 7 R 17.8 -75.4 43.4 3.53 0.0022
MT+ Complex and Neighboring Visual Areas BA 37 L -46.8 -64.8 -5.1 3.44 0.0028
DorsoLateral Prefrontal Cortex BA 6 L -16.6 19.7 57.2 3.35 0.0034
Superior Parietal Cortex BA 7 L -45.7 -41.5 40.8 3.26 0.0041
DorsoLateral Prefrontal Cortex BA 9 L -22.6 53.7 22.3 2.86 0.0101

Abstract
MT+ Complex and Neighboring Visual Areas BA 37 L -40.2 -60.1 -10.6 4.56 0.0002
Temporo-Parieto-Occipital Junction BA 22 R 46.0 -36.9 5.2 4.34 0.0004
Posterior Cingulate Cortex BA 23 R 6.3 -34.8 34.5 3.95 0.0009
Dorsal Stream Visual Cortex BA 18 L -16.5 -86.6 36.1 3.19 0.0048
Medial Temporal Cortex BA 35 R 15.0 -40.3 -2.3 2.70 0.0142
Dorsal Stream Visual Cortex BA 19 R 22.1 -71.1 40.6 2.60 0.0176
DorsoLateral Prefrontal Cortex BA 10 L -26.3 45.0 16.4 2.54 0.0201
Lateral Temporal Cortex BA 38 L -34.8 0.4 -25.0 2.40 0.0268

Table 1: P200 Maxima The source maxima of at the P200 time window 150 ms - 300
ms after stimulus onset. HCP-MMP1: The Multi-Modal Parcellation atlas of the Human
Connectome Project. BA: Brodmann Areas, X,Y,Z: MNI coordinates, T: T-value of the
Wilcoxon test. p: corresponding uncorrected p-value of the Wilcoxon test.
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Stimulus HCPMMP1 BA Hem X Y Z T p

Lattice
Superior Parietal Cortex BA 2 L -39.5 -34.8 35.4 3.80 0.0012
Somatosensory and Motor Cortex BA 3 R 40.7 -21.3 46.9 2.97 0.0078
Paracentral Lobular and Mid Cingulate Cortex BA 6 R 12.3 -0.1 46.8 2.88 0.0096
DorsoLateral Prefrontal Cortex BA 9 L -15.5 45.7 38.6 2.59 0.0181
Paracentral Lobular and Mid Cingulate Cortex BA 5 R 7.9 -49.6 58.6 -2.32 0.0315

Smiley
DorsoLateral Prefrontal Cortex BA 9 L -15.5 45.7 38.6 6.10 0.0000
Somatosensory and Motor Cortex BA 3 R 33.6 -26.2 45.9 4.86 0.0001
Temporo-Parieto-Occipital Junction BA 39 L -41.7 -69.5 11.8 4.11 0.0006
DorsoLateral Prefrontal Cortex BA 8 R 18.2 36.8 43.1 3.92 0.0009
Early Visual Cortex BA 19 L -17.5 -73.4 -10.1 3.61 0.0018
Somatosensory and Motor Cortex BA 3 L -38.6 -22.2 44.8 3.29 0.0038
DorsoLateral Prefrontal Cortex BA 10 R 27.8 46.1 14.7 2.42 0.0256
Orbital and Polar Frontal Cortex BA 10 L -23.4 50.2 2.0 2.12 0.0471

Abstract
Early Visual Cortex BA 19 L -17.5 -73.4 -10.1 5.00 0.0001
Somatosensory and Motor Cortex BA 43 R 57.0 -8.6 18.6 5.02 0.0001
Somatosensory and Motor Cortex BA 3 R 33.6 -26.2 45.9 4.64 0.0002
DorsoLateral Prefrontal Cortex BA 9 L -15.5 45.7 38.6 4.49 0.0003
Superior Parietal Cortex BA 2 L -39.5 -34.8 35.4 3.81 0.0012
DorsoLateral Prefrontal Cortex BA 8 R 18.2 36.8 43.1 3.79 0.0012
Anterior Cingulate and Medial Prefrontal Cortex BA 24 L -6.8 -6.4 40.2 3.56 0.0021
Temporo-Parieto-Occipital Junction BA 39 L -41.7 -69.5 11.8 3.53 0.0022
Paracentral Lobular and Mid Cingulate Cortex BA 6 R 22.5 0.6 63.9 3.24 0.0044
Inferior Frontal Cortex BA 47 L -48.8 30.1 -1.2 2.50 0.0216

Table 2: P400 Maxima The source maxima of at the P400 time window 300 ms - 600
ms after stimulus onset. HCP-MMP1: The Multi-Modal Parcellation atlas of the Human
Connectome Project. BA: Brodmann Areas, X,Y,Z: MNI coordinates, T: T-value of the
Wilcoxon test. p: corresponding uncorrected p-value of the Wilcoxon test.

located in ventral stream regions, particularly in the right IT; with no maxima located at the

respective lateral temporal lobes (Fig. 5, Tab. 2). This activity may therefore be regarded

as blur. We find further clusters of intersecting regions in the inferior frontal cortex (IFC),

supplementary motor area (SMA), MCC and scattered bilateral regions in the parietal lobe.

The LAURA inverse solutions reveal a similar pattern with intersecting activity in the IFC,

bilateral IT/ Ventral stream regions, MC and inferior parietal lobe (IPL).
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Figure 5: FC-Sources of the P400 Grand average of the FC source differences unambigu-
ous/high visibility - ambiguous/low visibility averaged across the P400 time range (300 -
600 ms post-stimulus) are shown. Units are arbitrary due to normalization of the individual
differences. Only vertices that showed a significant difference at α < 0.05 are shown. The
intersection shows a binary mask of the vertices that were significantly active for all three
stimuli. Sources in the left precentral gyrus, right medial temporal gyrus and right inferior
temporal gyrus show larger activity for the unambiguous/ high-visibility stimuli throughout
all categories.
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5 Discussion

The human EEG shows a remarkable inter-individual variability that may be related to in-

dividual brain anatomies, conductivity and thickness of bones and meninges, etc. (e.g.,39).

As one consequence, comparison of estimated brain sources based on EEG source localiza-

tion suffers not only from the inverse problem but also from the inter-individual variability

in brain anatomies. The latter problem can be reduced to some degree, if individualized

brain models, based on anatomical MRI scans, are available and can be integrated into the

source analysis algorithms. For the present study, no anatomical MRI scans were available.

We thus decided to follow two parallel analysis traces:

(1) We focused on a within-participant statistics calculating a within-participant simi-

larity analysis in order to estimate how similar the individually identified brain sources are

across the three different categories of visual stimuli, given highly similar EEG topogra-

phies. This was based on correlations between the identified sources of the two conditions

(ambiguous vs. disambiguated stimuli and low vs. high visibility stimuli).

(2) Additionally, we used the source space grand means across participants in order

to estimate the shared brain sources of the ERP Uncertainty Effects across the stimulus

categories.

For the within-participant analysis, we found highly significant correlations of estimated

brain sources of the ERP Uncertainty Effects between smiley stimuli and abstract figures.

We also found significant but less strong correlations between lattices and smiley on one

hand and between lattices and abstract figures on the other hand. The grand mean analysis

revealed a number of brain sources that were restricted to individual stimuli, but also brain

sources that were strikingly similar across stimulus categories.

In the following we concentrate on those sources common to all stimuli: Using our ANN

source localization approach, the P200 is mainly characterized by sources in the bilateral

LOC, inferior parietal cortex and at the anterior cingulate cortex. The P400 is characterized
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by bilateral superior parietal activations and deeper sources in the IT cortex, the latter with

some lateralization to the right. These regions were also found with the LAURA inverse

solutions, which serves as a methodological validation of the ANN.

Only few studies have contrasted neural activity underlying periods of stable percepts

and compared these between ambiguous stimuli and disambiguated variants thereof. [16]

compared BOLD responses to the Necker cube with BOLD responses from a disambiguated

cube version. In this contrast they found a significant bilateral BOLD effect in the superior

and inferior parietal lobe (SPL/IPL), which is also indicated in our data. Further they

found activity in the premotor area and the medial frontal gyrus (MFG), the latter is a

close neighbor of the anterior cingulate cortex we found. Although this was not explicitly

stated in their manuscript, they also show a significant difference within the LOC. Thusly,

there is significant overlap between the findings of [16] and our findings in parietal and

occipital cortices.

The large majority of related fMRI and EEG source imaging studies focused on the

event of a perceptual reversal (e.g., 40, 3). Reversal-related signatures reflect at least partly

unstable brain states. The present analysis, in contrast, focuses explicitly on brain states

during (temporally) stable percepts, thus stable brain states. One may postulate that

perception of transiently stable ambiguous figures may still involve reversal-related brain

networks. However, it is well possible that specific reversal-related activity may take place

in brain areas that are not necessarily active during periods of perceptual stability.

This is highlighted by [40], who found significantly increased BOLD responses in the

bilateral ventral occipital cortex (close to IT) and the bilateral IPL during perceptual re-

versals of Boring’s ambiguous old/young woman [2] and Rubin’s ambiguous face/ vase [41],

compared to stable percepts. These findings may correspond to our findings in IT during

the P400 window and the IPL activity in the P200 window. However, the conclusions need

be drawn with caution due to the differences in stimuli.
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Only a few studies on ambiguous stimuli estimated neural generators based on EEG

data. [35] calculated the sources underlying the EEG during perceptual reversals of the

Necker cube using LAURA, a linear solution to the EEG inverse problem. They focused on

the sources underlying two reversal-related ERP components: The Reversal Negativity (RN,

230-280 ms after reversal onset) and the late positive component (LPC, 400-470 ms after

reversal onset; ”Parietal Positivity” in [42]). Both ERP components have been described

earlier [43, 44].

[35] found that the RN component is mostly explained by sources in the bilateral IT,

with a slight lateralization towards the right hemisphere. The LPC was localized in bilateral

anterior IT and middle temporal gyrus as well as the bilateral superior parietal lobe. The

sources found in IT correspond well to our own findings, both in location and lateralization

towards the right hemisphere.

In summary, we found highly coherent neural sources of the ERP Uncertainty Effects

across three different stimulus categories, indicating comparable neural processes. This was

shown on the level of individual participants and at the group level using two vastly different

approaches to solve the inverse problem. We found some remarkable overlap between the

reported common sources and findings from the literature.

As stated in the introduction, the information available to our senses is a priori incom-

plete, noisy and to varying degrees ambiguous. Our perceptual system has to find the most

probable and reliable perceptual interpretation in order to interact successfully with the en-

vironment. Of course, the quality of the sensory evidence varies considerably. Ambiguous

stimuli, like the Necker cube or low-visibility stimuli, like the smileys and abstract figures

are extremely challenging cases for the perceptual system. However, visual phenomena, like

pareidolia (e.g., 45) indicate that our perceptual systems are trained to automatically pro-

duce results, independent of the quality of the sensory input. It is reasonable to postulate

the existence of a meta-perceptual instance that evaluates perceptual outcomes at a post
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perceptual processing step and indicates the reliability of perceptual interpretations (e.g.,

7, 46). The ERP Uncertainty Effects may reflect outcomes of such evaluation processes,

generalized across stimulus categories, with high amplitudes in the case of high reliability

and vice versa. The common neural sources identified in the present study may reflect the

underlying network. If this speculative interpretation is correct, it may allow interesting

predictions: In the case of deficiency, such an evaluation system may indicate high relia-

bility for erroneous perceptual interpretations, as for example described in certain cases of

schizophrenia [47, 48]. If this were the case, we should assume an untypical pattern of the

ERP Uncertainty Effects and underlying network activity. In the next step, we plan to test

this hypothesis.

6 Data Availability

The datasets used and/or analysed during the current study available from the correspond-

ing author on reasonable request.
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