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ABSTRACT 24 

Time and cost are essential criteria for analyzing project feasibility. Project 25 

managers analyze the cost and duration of projects and make trade-offs between 26 

them before project initiation. During the implementation phase of a given project, 27 

a delay exists, making the initial plan impractical. Additionally, the contractor 28 

must pay a certain amount of money as delay fine based on the contract or spends 29 

extra money in order to reduce the duration of the project. This study proposes a 30 

new method to consider a trade-off between these two alternatives as a way to 31 

minimize the total time and the total extra money that should be paid. To this end, 32 

four strategies–minimizing costs, omitting delay under a minimum budget, 33 

minimizing cost and delay of the project simultaneously, and reducing the delay up 34 

to a particular level under a minimum budget–are taken into account to help 35 

decision-makers make the best decision. A case study is presented in this work, 36 

and 13 swarm intelligence and evolutionary algorithms are applied to find optimal 37 

solutions. A new index is developed and is used to compare various strategies and 38 

different algorithms. Based on the results, the introduced approach can reduce 39 

project costs and project delays by 28.8% and 85.7%, respectively. Moreover, the 40 

cuckoo search algorithm, invasive weed optimization, coyote optimization 41 

algorithm, and differential evolutionary algorithm outperform the other algorithms 42 

based on outcomes and the Tukey pairwise comparison results. Furthermore, the 43 

firefly algorithm is recognized as being the fastest algorithm for solving a delay 44 

time-cost trade-off problem. 45 
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1 INTRODUCTION 59 

 60 

Cost is one of the most critical criteria of project, and affects all projects 61 

significantly. Cost is considered to be one of the sustainability criteria. That is to 62 

say, reducing the required cost of projects enhances sustainable development 63 

(Naseri et al. 2020). Likewise, the duration of projects (time) is an essential 64 

criterion used for analyzing project feasibility. Therefore, project managers and 65 

decision-makers analyze the cost and duration of projects meticulously and make 66 

trade-offs between them before a project starts. Subsequently, they may opt for the 67 

best alternative as the project schedule. This process can lead to completing a 68 

project on time with a minimum budget. Additionally, unpredictable events can 69 

postpone certain project activities, which may cause a delay in the timetable. 70 

Accordingly, this paper introduces a novel methodology that can be used to 71 

compensate for the influence of delays in projects. 72 

Various techniques have been used to solve time-cost trade-off problems (TCTPs). 73 

These methods can be classified into two groups: mathematical programming and 74 

metaheuristic algorithms. Hindelang and Muth (1979) proposed a dynamic 75 

programming method that is used to find the optimal solution for a TCTP. 76 

Hindelang and Muth (1979) used the critical path method (CPM) to evaluate the 77 

total duration of the project, and the minimization of total cost is taken into 78 

account by the problem’s objective function. Burns et al. (1996) stated that linear-79 

based algorithms, such as the simplex method, can provide optimal solutions for 80 

TCTPs. Hafezalkotob et al. (2018) used a cooperative game theory for trade-off 81 

problems associated with project resources and total duration.  82 

The TCTP is an integer programming problem, so increasing the dimension of this 83 

problem makes it NP-hard. Mathematical methods such as linear programming 84 

algorithms and dynamic programming cannot solve the aforementioned problem. 85 

To this end, swarm intelligence and evolutionary algorithms have become 86 

appropriate approaches to tackle the high-level complexity of large-scale TCTPs.  87 

Agdas et al. (2018) used a genetic algorithm to solve a large-scale TCTP. The 88 

results of this investigation indicated that the genetic algorithm is highly effective 89 

at solving large-scale construction TCTPs. Total project duration, resource 90 

moment deviation, and cost were simultaneously considered in a study conducted 91 

by Ghoddousi et al. (2013). The non-dominated sorting genetic algorithm (NSGA-92 

II) was employed to search for optimal solutions, which provided a suitable level 93 

for all of the objectives simultaneously. According to the outcomes of the 94 

Ghoddousi et al. (2013) study, the NSGA-II is highly qualified for finding optimal 95 

solutions for TCTP, which leads to a reduction in project cost and duration and 96 

saves resources. Additionally, the genetic algorithm has been applied to analyze 97 



 

TCTP under different conditions. The results of these investigations revealed that 98 

the genetic algorithm can solve various forms of TCTP and provides valuable 99 

optimal solutions (Leu et al. 2001; Lo and Kuo 2011; Monghasemi et al. 2015). 100 

Aminbakhsh and Sonmez (2016) applied a discrete particle swarm optimization 101 

technique to address the high-level complexity of large-scale TCTPs. The discrete 102 

particle swarm optimization technique was able to solve a large-scale TCTP within 103 

seconds, and it arrived at the desired solutions. The ant colony optimization 104 

algorithm has been utilized to solve TCTP problems (Afshar et al. 2007). 105 

Similarly, this algorithm can provide appropriate solutions and it can be deduced 106 

that various forms of metaheuristic algorithms can tackle the high-level complexity 107 

of large-scale TCTPs (Afshar et al. 2007). Although metaheuristic algorithms have 108 

been qualified to solve various forms of TCTP, the application of novel 109 

evolutionary and swarm intelligence algorithms has not received enough attention 110 

in the context of TCTP.  111 

Traditional time-cost trade-off analysis assumes that time, cost, and resource 112 

consumption of an option within an activity are deterministic. However, in reality, 113 

these parameters are uncertain. Thus, uncertainties should be considered when 114 

analyzing the TCTP, and time–cost optimization decisions should be analyzed in a 115 

more flexible and realistic manner (Chung-Wei Feng, Liang Liu 2000; Zheng and 116 

Ng 2005; Eshtehardian et al. 2009; Kalhor et al. 2011; Ke 2014). Although 117 

uncertainty has been taken into account in TCTP, an approach that prevents the 118 

detrimental influences of project delays is lacking. 119 

As described in the above references, a time-cost trade-off analysis has been 120 

previously used to schedule projects before starting them. The predicted cost and 121 

duration of projects are not deterministic. Hence, uncertainty is part of all projects, 122 

and the majority of project delays are unavoidable. Delay analysis was neglected in 123 

previous studies, although it is an immense concern. To this end, this study 124 

introduces a novel approach that helps to make an optimal decision regarding the 125 

circumstances that the project does not complete before the deadline. With the aid 126 

of proposed method, project management can make optimal decisions dynamically 127 

in different implementation phases of projects.  128 

Consequently, four strategies are introduced and these strategies are compared by 129 

proposing a novel index. Furthermore, the application of novel and robust 130 

metaheuristic algorithms has not been considered for TCTP problems, and 131 

comparing the ability of various metaheuristic algorithms has been overlooked. 132 

Hence, 13 metaheuristic algorithms, including water cycle algorithm (WCA), 133 

invasive weed optimization (IWO), coyote optimization algorithm (COA), soccer 134 

league competition algorithm (SLC), ant colony optimization (ACO), particle 135 

swarm optimization (PSO), salp swarm algorithm (SSA), marine predators 136 



 

algorithm (MPA), firefly algorithm (FA), cuckoo search algorithm (CS), 137 

differential evolutionary (DE), genetic algorithm (GA), and covariance matrix 138 

adaptation evolution strategy (CMA-ES) are utilized to prevent the effects of delay 139 

on the project by consideration of various strategies. The performance of these 140 

algorithms is compared in order to determine their effectiveness and to introduce 141 

the best algorithm among these alternatives. This comparison can help decision-142 

makers use the most precise methods to solve the TCTP and to obtain better 143 

solutions. 144 

 145 

2  OBJECTIVES AND SCOPE 146 

 147 

During project implementation, the implemented time of activities and their 148 

planning time on timetable should be compared in order to analyze the physical 149 

improvement and status of projects. Hence, monitoring and inspecting times are 150 

required for most projects. TCTP can be used after each monitoring activity 151 

because, after checking out the projects, the critical (most time consuming) path 152 

may be changed due to delays. Moreover, the total time of a project may be 153 

increased, and TCTP can be utilized to reduce the duration of activities. 154 

Employing extra workers, increasing the number of work shifts, and using more 155 

efficient equipment are common methods for performing each activity in less time. 156 

Hence, this study introduces a new technique to reduce delays and their 157 

corresponding negative effects on projects. That is, this paper considers a case 158 

study that measures the effectiveness of TCTP at compensating for the impact of a 159 

delay on the project. The goal is to balance delay (time) with paying the delay fine 160 

(cost). Additionally, the performance of various metaheuristic algorithms is 161 

evaluated in order to identify the most valuable algorithms to solve TCTP. 162 

3      METHODOLOGY  163 

 164 

Initially, the project’s improvement and its timetable are compared in order to 165 

identify the existence and the status of a delay. This step categorizes paths into 166 

delayed and normal paths. Normal paths are the paths that are finished before the 167 

project’s deadline, and the completion time of the project cannot be changed by 168 

condensing their time. Accordingly, normal paths are not considered in delay 169 

analysis. Conversely, delayed paths are paths that are completed after the deadline, 170 

and they are a major cause of delay in the project. Therefore, delayed paths and the 171 

activities associated with them (delayed activities) are detected. As previously 172 

mentioned, the duration of activities can be decreased by increasing resources. 173 



 

Accordingly, various feasible modes of implementation for each delayed activity 174 

are recognized by previous data and resource analysis. 175 

   Different strategies are subsequently considered in order to meticulously analyze 176 

the model. Strategies consist of different goals, and each of them can be selected 177 

according to the situation and the company’s purposes. Minimizing total cost, 178 

omitting delay, reducing time and cost simultaneously, and reducing delay up to a 179 

certain level are the strategies investigated in this study. 180 

The model is subsequently solved by 13 algorithms, which allowed for the most 181 

valuable algorithm to be identified. Additionally, the algorithms are compared 182 

based on their convergence speed, ability to find the optimal solution, and their 183 

efficiency. In this paper, water cycle algorithm (WCA), invasive weed 184 

optimization (IWO), coyote optimization algorithm (COA), soccer league 185 

competition algorithm (SLC), ant colony optimization (ACO), particle swarm 186 

optimization (PSO), salp swarm algorithm (SSA), marine predators algorithm 187 

(MPA), firefly algorithm (FA), cuckoo search algorithm (CS), differential 188 

evolutionary (DE), genetic algorithm (GA), and covariance matrix adaptation 189 

evolution strategy (CMA-ES) as robust evolutionary and swarm intelligence 190 

algorithms are utilized to solve delay time-cost trade-off problem (delay TCTP). 191 

Delay TCTP is a new type of time-cost trade-off problem introduced in this study 192 

that attempts to compensate for the negative impacts of delay on projects. 193 

Ultimately, a novel equation (improvement) was developed that was used to 194 

analyze the value of each solution. The optimal results produced by various 195 

algorithms and different strategies are compared with this equation, and the best 196 

solution was identified. The steps of the methodology introduced in this 197 

investigation are shown in Figure 1.  198 

 199 

Insert Figure 1 200 

 201 

3.1  Proposed model 202 

 203 

On the day of monitoring, the contractor can spend additional money on extra 204 

resources to reduce the delay fine, if it is economical. This has two useful aspects: 205 

the total money is reduced, and the contractor’s credit and prestige are not 206 

tarnished. Each activity 𝑖 has 𝑚𝑖 modes. The time and cost pair of activity 𝑖 for its 207 𝑣𝑡ℎ mode is (𝑡𝑖,𝑣 , 𝑐𝑖,𝑣), where 𝑡𝑖,𝑣 and 𝑐𝑖,𝑣 are associated time and associated cost, 208 

respectively. For each two modes (𝑖 , 𝑣1) and (𝑖 , 𝑣2), it is assumed that 𝑡𝑖,𝑣1 >209 𝑡𝑖,𝑣2 implies 𝑐𝑖,𝑣1 < 𝑐𝑖,𝑣2; i.e., shorter durations require extra resources and, 210 

accordingly, higher costs. Furthermore, 𝑣1 < 𝑣2 implies 𝑡𝑖,𝑣1 > 𝑡𝑖,𝑣2 for all 𝑖; that 211 



 

is, the activity modes are indexed according to decreasing order of duration 212 

(Hafızo˘glu and Azizo˘glu 2010). The decision variable of this model is as follows: 213 

 214 𝑦𝑖,𝑣 =  {1          𝑖𝑓 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑜𝑑𝑒 𝑣     0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     (1) 215 

 216 

Each activity is allowed to be assigned to exactly one mode. Thus: 217 

 218 ∑ 𝑦𝑖,𝑣𝑚𝑖𝑣=1 = 1                              𝑖 = 1, 2, … , 𝑍                             (2) 219 

 220 

Moreover, in each path, time is the sum of all activities located in that path. 221 

Accordingly: 222 

 223 𝑇𝑃𝑎𝑡ℎ =  ∑  𝑚𝑖𝑣=1 ∑ 𝑦𝑠,𝑣 × 𝑡𝑠,𝑣𝑍𝑠=1                                                 (3) 224 

 225 

where 𝑇𝑃𝑎𝑡ℎ is the total time of each path and 𝑠 are the activities that are located in 226 

the path. The duration of the project is equal to the most time-consuming path. The 227 

extra cost that should be paid for a project delay can be calculated based on the 228 

following equation (Naseri 2018): 229 

 230 𝐸𝑥𝑡𝑟𝑎 𝐶𝑜𝑠𝑡 =  ∑  𝑚𝑖𝑣=1 ∑ 𝑦𝑖,𝑣 × 𝑐𝑖,𝑣𝑍𝑖=1 + 𝑈𝑃𝑢𝑛 ×  [𝑀𝑎𝑥 (𝑇𝑗 ) −  𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒]      𝑖 =231 1, 2, … , 𝑍                                                     (4) 232 

 233 

where 𝑈𝑃𝑢𝑛 is the unit delay fine, which should be paid for each unit time (day) of 234 

delay. 𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 is the deadline of the project. 𝑐𝑖,𝑣 is the cost of each activity 𝑖 for 235 

its 𝑣𝑡ℎ mode. 𝑍 is the number of remaining activities in the delayed paths. 𝑇𝑗 is the 236 

duration of delayed paths. 237 

3.2  Algorithms process 238 

 239 

As previously mentioned, one of the aims of the current study is to compare the 240 

effectiveness of evolutionary and swarm intelligence algorithms for solving a 241 

delay TCTP. To this end, 13 algorithms were applied. The process of these 242 

algorithms is briefly described in this section. 243 

The WCA is a meta-heuristic algorithm and was introduced by Hadi Eskandar et al 244 

(2012). This algorithm was inspired by the water cycle in the environment and 245 

how water flows from streams and rivers to seas (Sadollah et al. 2015b). In this 246 

algorithm, initial data are considered to be raindrops and the best data is associated 247 



 

with the sea. A number of good raindrops are selected as rivers and the remaining 248 

data are considered to streams that flow into rivers and seas. That is to say, each 249 

solution vector is associated with a raindrop. Next, the solution vectors are ranked 250 

based on their fitness value, and the weaker solution vectors move toward the most 251 

valuable solutions. If the distances of the sea and streams are reduced to a 252 

particular level, the evaporation operator is performed. The evaporation operator 253 

prevents the solution vectors from accumulating in local-minimum areas. 254 

Consequently, a rain operator is performed in order to generate new data in 255 

random points of the feasible region (Sadollah et al. 2015a). 256 

IWO is inspired by weed colonization. The initial population is considered to be 257 

seeds. This population (seeds) is located in different parts of the search region. 258 

Then, each seed grows into a flowering plant that may generate new seeds based 259 

on its fitness value. The new seeds grow into new plants that are located at various 260 

points in the search region randomly. In other words, better solution vectors can 261 

survive in each iteration and the best solution vectors can produce a new 262 

population. Accordingly, the fitness value of seeds can be gradually enhanced. 263 

Consequently, a seed with the best fitness value is considered to be the solution to 264 

the problem in the last iteration (Mehrabian and Lucas 2006). 265 

COA is a new metaheuristic algorithm introduced in 2018. This algorithm was 266 

inspired by the social behaviors and interactive experience of Canis latrans. 267 

Coyotes are associated with solution vectors and their fitness value is assessed by 268 

their social behavior. First, coyotes are randomly classified into different groups. 269 

The social behavior of coyotes is calculated and the most valuable coyote in each 270 

group is called alpha. Afterward, each coyote is impacted by its group mates and 271 

the alpha of its group. In this regard, solution vectors are moved toward the 272 

solution vectors of their group and the best solution of their corresponding group. 273 

Furthermore, coyotes are replaced with the coyotes of other groups to transfer 274 

different cultures. This replacement leads to checking more area in the feasible 275 

region and reduces the possibility of accumulating solution vectors in local-276 

minimum areas. Ultimately, the weakest coyotes die and they are replaced with 277 

new generations (Pierezan and Coelho 2018). 278 

SLC is a powerful algorithm, which investigates to obtain optimal solutions in 279 

discrete or continuous space. SLC is inspired by the competitieness of soccer 280 

players and teams for winning titles and becoming the best player, respectively. 281 

The players are the solution vectors and these players are divided into various 282 

teams. Each team’s players are classified as being either fixed or substitute players. 283 

The most powerful players of each team are classified as fixed players and the 284 

remaining players are classified as substitutes. The best player of each team and 285 

the best player of the league are called star players and superstar players, 286 



 

respectively. First, the fitness value (power) of all players is calculated according 287 

to the objective function of the problem. Each team’s power is equal to the average 288 

power of its fixed players. Next, the league starts and all possible pairs of teams 289 

play games. The possibility of each team winning is directly dependent on the 290 

corresponding team’s power. During these competitions, the power of players is 291 

increased by the provocation and imitation processes. Accordingly, the winning 292 

team’s fixed players imitate (move toward) both their team’s star play and 293 

superstar player. At the same time, the winning team’s substitute players are 294 

transferred to the center of their team’s fixed players in order to make progress in 295 

becoming fixed players (Moosavian and Kasaee Roodsari 2014).  296 

The ACO algorithm is one of the swarm intelligence algorithms inspired by the 297 

foraging behavior of certain ant species (Dorigo et al. 1996). In this algorithm, 298 

solution vectors and optimal solutions are simulated by ants and sources of food. 299 

When ants need to find food, they randomly explore adjacent areas. Whenever an 300 

ant discovers a food source, it assesses the quality and quantity of this food source. 301 

Furthermore, a portion of the discovered food is carried back to the nest (Dorigo 302 

and Socha 2007). During the carrying process, the ant marks the path by dropping 303 

a chemical pheromone on the ground. The exact pheromone may depend on the 304 

quality and quantity of food at the discovered source. Accordingly, the pheromone 305 

can help other ants find valuable food sources in a less amount of time. Hence, the 306 

content of pheromone is significantly increased in the paths that go to the best food 307 

sources. Moreover, the distance from the nest to the food source is decreased 308 

during this process. In the last iteration, the most valuable food source is 309 

considered to be the solution to the problem (Dorigo and Blum 2005). 310 

The PSO algorithm is a classic metaheuristic algorithm inspired by flocks of flying 311 

birds. In this algorithm, each solution vector is called a particle. Particles cooperate 312 

in the swarm and compete with each other for becoming valuable swarms. 313 

Particles adjust their movement according to their moving experiences and the 314 

movement experienced by their competitors (Shi and Eberhart 1999). That is to 315 

say, each solution vector moves toward its best prior (local) location and the 316 

location of the best solution vector (global) that had been discovered up to the 317 

current iteration. Afterwards, the experiences of particles are enhanced and the best 318 

local and global solution vectors are updated (Eberhart and Kennedy 1995). Thus, 319 

the fitness value of solution vectors can be steadily improved. Ultimately, the 320 

global solution vector of the last iteration is declared to be the solution to the 321 

problem (Eberhart and Shi 2001). 322 

The salp swarm algorithm is a novel swarm intelligence algorithm. Development 323 

of this algorithm was inspired by the swarm behavior of salps when foraging and 324 

navigating in oceans. Each solution vector is considered a salp in this algorithm 325 



 

(Mirjalili et al. 2017). Salps usually live in chains and stick to each other. In a salp 326 

chain, there is a leading salp that other salps follow. First, the salps are generated 327 

with random positions. Next, the fitness value of salps are evaluated and the best 328 

salp is considered to be the source of food. Consequently, the leading salp chases 329 

the food source and the other salps follow the leading salp. The position of the 330 

food source is updated in each iteration in the event that a better solution (salp) is 331 

found (Sayed et al. 2018). 332 

The MPA is a recently developed algorithm that uses the chasing pattern of ocean 333 

predators to solve optimization problems. In other words, this algorithm is inspired 334 

by the movement strategies of ocean predators, such as Brownian and Lévy 335 

movements, and the reaction of their prey. In this algorithm, both predators and 336 

prey are considered to be search agents. However, their movement and, 337 

accordingly, their duties change in different iterations (Faramarzi et al. 2020). That 338 

is to say, three different moving strategies are considered for predators and prey. In 339 

the first strategy (initial iterations), it is assumed that the velocity of prey is higher 340 

than that of predators. Hence, the best strategy for predators is to stop moving. In 341 

these iterations, exploration matters. In the second strategy (intermediate 342 

iterations), it is presumed that the speed of the predators and prey is equal, and 343 

they move at the same pace. Ergo, both exploitation and exploration matters. Both 344 

the predators and prey are responsible for exploration and exploitation, 345 

respectively. In this phase, the algorithm considers prey moves in Lévy while 346 

predator moves in Brownian. In the third strategy (final iterations), exploitation is 347 

important, and predators move faster than prey. The best movement strategy is 348 

Lévy for predators. Ultimately, the most valuable search agent is regarded to be the 349 

solution to the optimization problems (Faramarzi et al. 2020).  350 

The FA is a nature-inspired algorithm that mimics the characteristics and flash 351 

patterns of fireflies. Fireflies search for prey, communicate, and mate. The fireflies 352 

and their brightness simulate the solution vectors and their fitness value based on 353 

the objective function (Senthilnath et al. 2011). In this algorithm, it is assumed that 354 

all of the fireflies are unisex and that all of them are attracted to others regardless 355 

of sex. Additionally, attractiveness directly correlates with brightness. 356 

Accordingly, less bright fireflies moves toward brighter ones. That is to say, 357 

attractiveness is proportional to brightness, which decreases with increasing 358 

distance between fireflies. If there is no firefly brighter than one specific firefly, it 359 

moves randomly in the feasible region. The feasible region is meticulously 360 

investigated according to the following rules in order to find optimal or near-361 

optimal solutions for optimization problems (Gandomi et al. 2013b). 362 

The CS is a swarm intelligence optimization algorithm that is inspired by the 363 

breeding behavior of particular cuckoo species (Ouaarab et al. 2014). Some cuckoo 364 

species lay their eggs in the nests of other host birds (almost other species) and 365 



 

they may eliminate existing eggs so as to increase the hatching likelihood of their 366 

eggs. The CS mimics the cuckoo’s brood parasitism. There are three types of 367 

brood parasitism: intraspecific brood parasitism, cooperative breeding, and nest 368 

takeover (Yang et al. 2009). That is, cuckoos simulate solution vectors and nests 369 

are particular areas in the feasible region. It is assumed that each cuckoo can lay 370 

only one egg at a time, and the generated egg (new solution vector) is dumped into 371 

a random nest. The most valuable nest with high-quality solutions will be 372 

transferred to subsequent generations. Some host nests may detect an alien egg. If 373 

an alien egg is discovered by host nests, the host can throw away this egg or 374 

abandon the nest and go find a new nest. The feasible region is investigated using 375 

the following process and the optimal or near-optimal solution to the optimization 376 

problems is presented (Gandomi et al. 2013a). 377 

The differential evolutionary algorithm is an evolutionary algorithm that was 378 

introduced in the 1990s. Although the differential evolutionary algorithm is an old 379 

algorithm, it can find valuable solutions to engineering problems (Shirzadi Javid et 380 

al. 2020). In this algorithm, solution vectors are responsible for searching in the 381 

feasible region. Because of the mutation and crossover operations, the quality of 382 

solution vectors is improved and they are transferred to better areas in the feasible 383 

space (Varadarajan and Swarup 2008). The goal of crossover is to combine various 384 

solution vectors in order to find valuable combinations, whereas mutation changes 385 

certain features of solution vectors randomly in order to enhance the possibility of 386 

finding the optimal solution to the problems. In this algorithm, the most valuable 387 

solution vector is considered to be the solution to the optimization problem (Storn 388 

1997). 389 

The genetic algorithm represents the first generation of metaheuristic algorithms. 390 

The genetic algorithm is a classic evolutionary algorithm that has been used to 391 

solve various optimization problems. In this algorithm, each chromosome is 392 

assigned to a solution vector, which contains a certain number of genes (Holland 393 

2019). Each gene represents the mode of a dimension of the problem. With the 394 

help of two operators (mutation and crossover), new generations (chromosomes) 395 

are created. The crossover operator combines two chromosomes (parents) that 396 

generates new chromosomes (children). Mutation plays a crucial role in the search 397 

for new areas in the feasible region. In other words, the mutation operator avoids 398 

the algorithm to get stuck in local optimum (Naseri et al. 2020). 399 

The covariance matrix adaptation evolution strategy is an evolutionary algorithm 400 

that has served as a standard method for continuous black-box evolutionary 401 

optimization. The primary superiority of the covariance matrix adaptation 402 

evolution strategy as compared to the classical evolutionary algorithm is related to 403 

correlated mutations instead of axis-parallel ones (Loshchilov 2013). Initially, the 404 

covariance matrix adaptation evolution strategy generates new populations with a 405 

probability distribution. Subsequently, the covariance matrix is adjusted. This 406 



 

algorithm is derived from the concept of self-adaptation in evolution strategies. 407 

The covariance matrix adaptation evolution strategy learns correlations between 408 

parameters and utilizes the acquired correlations to increase convergence speed. 409 

Although the performance of the covariance matrix adaptation evolution strategy 410 

has been demonstrated, the performance of this algorithm on continuous problems 411 

is more efficient than that of the integer problems (Iruthayarajan and Baskar 2010). 412 

This algorithm generates new populations by offspring. Additionally, the 413 

covariance matrix and the global step size are updated during the iterations. 414 

Updating the aforementioned parameters increases the algorithm’s power during 415 

the run process (Hansen 2009). 416 

 417 

4        MODEL APPLICATION 418 

 419 

A case study is presented here to verify and determine the effectiveness of the 420 

proposed model. In this project, prior to the implementation phase, the duration of 421 

the project was estimated to be 120 days. The sixtieth day after project initiation 422 

was considered to be the monitoring and inspecting day. That is to say, 𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 is 423 

equal to 60 days. On this day, it was understood that a delay had occurred, 424 

resulting in a considerable increase to the total time of the project. A delay fine of 425 

$400 was levied for each day in the contract. Therefore, the contractor had to pay 426 

the delay fine or had to spend money to decrease the duration of the project by 427 

employing additional and expert workers, utilizing more useful gadgets and 428 

equipment, and increasing the number of work shifts (Tran et al. 2016). Table 1 429 

presents the delayed activities and their predecessors. Table 1 shows that there 430 

were 23 delayed activities that occurred in this project. The predicted time of 431 

activities is the estimated durations assigned to them before starting the project. 432 

Figure 1 shows the network of the project on the day of monitoring (60th day). This 433 

network is based on the predecessors identified in Table 1. As previously 434 

mentioned, activities that are not located in delayed paths are not considered in the 435 

delay analysis and are therefore overlooked. Based on Figure 2 and Table 1, nine 436 

delayed paths existed, as shown in Table 2. As can be seen in Table 2, the range of 437 

paths delays is between 4 and 14. Moreover, A-B-C-D-E-F is the most time-438 

consuming path of the project. The duration of this path must be reduced in order 439 

to decrease the total duration and delays of the project. 440 

 441 

Insert Figure 2 442 

Insert Table 1 443 

Insert Table 2 444 



 

 445 

Table 2 shows that the duration of nine paths exceeds 60 days. Ergo, they are the 446 

chief cause of delay in the project and should therefore be analyzed. Finishing time 447 

is the summation of the duration time of each path and monitoring day, which is 60 448 

in this project. The most time-consuming delayed path is A-B-C-D-E-F, which 449 

takes 74 days. Thus, the project was completed 134 days after it was started. The 450 

deadline was 120 days. Hence, a 14-day delay occurred in this project if the 451 

remaining activities were implemented based on the timetable. In this case, the 452 

contractor had to pay $5600 ($400 per day) as the delay fine. 453 

Following an investigation of different kinds of resources, certain implementation 454 

modes are assigned to each delayed activity. The first mode is the primary 455 

planning mode and paying extra money for this implementation mode is not 456 

needed. In other modes, the time of each activity can be reduced by paying extra 457 

money. If more money is spent on each activity, the duration time of that activity is 458 

further reduced. Table 3 and Table 4 represent different types of implementing 459 

modes for all activities, which are located in delayed paths. These values are 460 

extracted from the previous data related to similar projects. The duration of some 461 

activities can be reduced by two days, while the duration of others can be 462 

decreased even more. The variety of mode numbers is due to the substance of 463 

activities and the maximum amounts of resources that can be provided.  464 

 465 

Insert Table 3 466 
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 468 

5        STRATEGIES 469 

 470 

This study evaluated four different strategies for analyzing the financial benefits 471 

and prestige of the company comprehensively. The best strategy can be identified 472 

with the assistance of this analysis. Financial profit is one of the essential criteria 473 

for every company. Accordingly, project expenditures should be reduced, which 474 

benefits the corresponding companies (Shirzadi Javid et al. 2020). Similarly, the 475 

credit and prestige of contractors can help the company achieve a prosperous 476 

future. The credit and prestige of contractors are consistent with the project’s 477 

delay. Thus, the delay of the project should be reduced and companies try to 478 

complete the project before the deadline. 479 

The goal of the first strategy is to minimize the total cost of the project. This 480 

strategy can be used in situations where financial profit is the unique goal of 481 

decision-makers. Nevertheless, the contractor’s prestige may be tarnished if this 482 



 

strategy is implemented. The objective function of the first strategy is shown in 483 

equation (5). 484 

 485 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐶𝑜𝑠𝑡 = (400 × 𝐷𝑒𝑙𝑎𝑦) + ∑  𝑚𝑖𝑣=1 ∑ 𝑦𝑖,𝑣 × 𝑐𝑖,𝑣𝑍𝑖=1                              (5) 486 

 487 

The purpose of the second strategy is to omit the delay under the minimum budget. 488 

That is to say, the second strategy will find the most economical type of 489 

implementation to complete the project by the deadline. This strategy will enhance 490 

the prestige of the company. Nonetheless, this strategy may significantly increase 491 

the total cost of the project. The corresponding objective function is represented by 492 

equation (6). 493 

 494 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐶𝑜𝑠𝑡 = ∑  𝑚𝑖𝑣=1 ∑ 𝑦𝑖,𝑣 × 𝑐𝑖,𝑣𝑍𝑖=1                                                           (6) 495 

s.t: Delay=0 496 

 497 

The third strategy uses a multi-objective model to simultaneously reduce the 498 

duration and total cost of the project. The time and cost of the project have various 499 

ranges. The cost range is much higher than the time range. Hence, to normalize 500 

these ranges, equation (7) is used to scale them between 0 and 1 (Naseri et al. 501 

2019).  502 

 503 𝑉𝑠 =  𝑉𝑟− 𝑉𝑚𝑖𝑛𝑉𝑚𝑎𝑥− 𝑉𝑚𝑖𝑛                                                                                                 (7) 504 

 505 𝑉𝑠 is the scaled data, 𝑉𝑟 is the rough data, and 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the maximum and 506 

minimum values of the rough data, respectively. The maximum and minimum 507 

values of delay are 14 (current delay) and 0, respectively. The maximum and 508 

minimum costs are extracted from the second and first strategies, respectively. In 509 

other words, initially, strategy I and strategy II are solved. Consequently, the 510 

maximum logical amounts of cost (cost for omitting delay) that are vital and 511 

necessary for modeling the third strategy are extracted from the best solution of the 512 

second strategy, because the delay is 0 in this mode and it is not logical to spend 513 

more money than this level. Moreover, the minimum value of cost is considered to 514 

be the best solution of the first strategy so as to scale the cost objective function. 515 

Because the purpose of the first strategy is to minimize the project’s total cost, it is 516 

not possible to reduce the cost by more than the value introduced in the first 517 

strategy. Equation (8) is used to simultaneously optimize cost and time. 518 

 519 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑍 = 𝑤1 × 𝑆𝑐𝑎𝑙𝑒𝑑 𝐶𝑜𝑠𝑡 + 𝑤2 × 𝑆𝑐𝑎𝑙𝑒𝑑 𝐷𝑒𝑙𝑎𝑦                          (8) 520 



 

 521 𝑍 is the objective function of the third strategy and 𝑤1 and 𝑤2 are the weights of 522 

delay and cost, respectively. These weights are assumed to be equal (0.5).  523 

 524 

The fourth strategy uses a comprehensive search method to find optimal solutions 525 

to the model. The comprehensive search method is a useful method for calculating 526 

the fitness value of all the data that exist in a feasible region. No data is overlooked 527 

by this method. However, using this strategy to solve the large-scale problem is not 528 

feasible, because it takes a long time. The aim of this this strategy is to minimize 529 

the total cost for different amounts of delay. That is to say, possible amounts of 530 

delays are considered to be a constraint and minimal costs are identified by various 531 

algorithms. This strategy can be useful when the decision-maker intends to reduce 532 

the delay up to a certain level. 533 

The objective function of this strategy is shown in equation (9). 534 

 535 

Minimize         𝐶𝑜𝑠𝑡 = (400 × 𝐷𝑒𝑙𝑎𝑦) + ∑ 𝐶𝑜𝑠𝑡𝑖𝑛𝑖=1                                         (9) 536 

s.t: Delay = j              j = 0,1,2,…,n 537 

 538 

j is the feasible amount of delay and n is the maximum amount of delay according 539 

to the feasible region. 540 

 541 

6        RESULTS AND DISCUSSIONS 542 

 543 

The aim of this paper was to compensate for the effect of delays on projects. The 544 

contractor has two alternatives in this situation: 1) pay the delay fine; a unit delay 545 

fine ($400) should be paid for each day of delay during the project; 2) spend 546 

money to increase resources and equipment that will reduce the project’s delay. 547 

This study investigated the trade-off between these two alternatives. Four 548 

strategies were analyzed, including minimizing cost, omitting delay of the project 549 

under minimum cost, multi-objective programming to simultaneously reduce the 550 

time and cost of the project, and comprehensive search method. The WCA, IWO, 551 

COA, SLC, ACO, PSO, SSA, MPA, FA, CS, DE, GA, and CMA-ES were used to 552 

find optimal solutions. This section presents the optimal solutions and compares 553 

the performance of the aforementioned algorithms. Tukey pairwise comparison is 554 

employed to compare the results of all possible algorithm pairs, and to determine 555 

the performance of which algorithms are considerably different from others. 556 

The aforementioned algorithms are coded in MATLAB 2019a edition. They were 557 

run under the same conditions so that the results could be directly compared. Each 558 



 

algorithm was run ten times per strategy, and the average value of the objective 559 

function, the best achievable solution, and average run time were determined in 560 

order to compare their performance. To compare algorithm run time, the 561 

population number and the number of solution vectors (population) were 562 

considered to be 1,000 and 50 (equally), respectively. Next, the parameters of the 563 

other algorithms were tuned and the fastest algorithm was considered to be the 564 

algorithm with the lowest average run time. 565 

Table 5 shows the total extra cost, delay, average running time, the average value, 566 

the median, the standard deviation, and the minimum value of the objective 567 

function corresponding to the algorithms of the first strategy. As can be seen in 568 

Table 5, the minimum average value of the objective function is obtained by COA, 569 

followed by DE, IWO, MPA, ACO, CS, WCA, SLC, FA, PSO, CMA-ES, SSA, 570 

and GA. Likewise, COA generated the lowest median value of the objective 571 

function and can be regarded as being the most valuable algorithm in this strategy. 572 

The lowest value of the objective function was 3,865. This value was generated by 573 

IWO, COA, MPA, and DE. Among these four algorithms (IWO, COA, MPA, and 574 

DE), MPA identified the global-optimal solution in the least amount of time. The 575 

best objective function value for WCA, FA, CS, SLC, ACO, PSO, CMA-ES, SSA, 576 

and GA was $15, which was $15, $20, $20, $20, $35, $75, $95, and $125 more 577 

than that of IWO, COA, MPA, and DE. 578 

Accordingly, it can be postulated that COA performed better than the other 579 

algorithms in the first strategy because it provided the lowest average objective 580 

function value (3,870), the lowest median value of objective function, and it 581 

achieved the best solution. The optimal solution to the first strategy reduced the 582 

extra cost of the project by 31% (from 5,600 to 3,865). Additionally, MPA was the 583 

fastest algorithm, which generated the optimal solution to the first strategy. 584 

Table 6 presents the Tukey pairwise comparison results for the first strategy. 585 

Regarding the results of Table 6, the performance of COA and DE is better than 586 

other algorithms for the first strategy. Meanwhile, the performance of IWO, MPA, 587 

ACO, and CS could be acceptable. On the other hand, GA and SSA are the worst 588 

algorithms in the first strategy based on the Tukey pairwise comparison results. 589 

The Tukey pairwise comparison outcomes are in line with the results presented in 590 

the previous part. 591 

 592 

Insert Table 5 593 
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 595 

Table 7 shows the average value of the objective function, the minimum value of 596 

the objective function, the median, the standard deviation of solutions, and the 597 



 

lowest amount of cost presented by different algorithms in the second strategy. 598 

Each algorithm reduced delay. The presented cost is the extra cost that should be 599 

paid in order to finish the project before the deadline. As shown in Table 7, the DE 600 

outperformed the other algorithms based on the average value of the objective 601 

function among different runs. That is to say, the lowest average value of the 602 

objective function is achieved by DE with a value of 4300, followed by COA, 603 

IWO, ACO, MPA, CS, SLC, WCA, FA, PSO, SSA, CMA-ES, and GA. Similarly, 604 

DE dominates other algorithms, based on the median and standard deviation of the 605 

objective function in which the median and standard deviation of the objective 606 

function in DE is equal to 3600 and 0, respectively, which indicates that DE 607 

reached 3600 in all runs. 608 

In the second strategy, eight algorithms, including WCA, IWO, COA, ACO, SSA, 609 

MPA, CS, and DE, provide a solution with the minimum amount of cost. The best 610 

value of the objective function identified by these algorithms is equal to $4300. 611 

The next most valuable solutions are related to SLC, FA, PSO, CMA-ES, and GA, 612 

with the best objective function values of 4330, 4400, 4460, 4510, and 4625, 613 

respectively. In this strategy, the best solution (cost = 4300) ultimately removed 614 

the project’s delay, which could help the company in the future. Furthermore, the 615 

extra cost of the project was reduced by 23.2%. In other words, the most valuable 616 

solution to the second strategy decreased the project’s extra cost from $5600 to 617 

$4300 and removed the project’s delay simultaneously.  618 

Table 8 shows the Tukey pairwise comparison outcomes for the second strategy. A 619 

more detailed look at the results of Table 8 reveals that DE, COA, IWO, ACO, 620 

MPA, and CS outperforms other algorithms in the second strategy, and their 621 

results are better than the other algorithm results. The weakest algorithm to solve 622 

the second strategy is GA, and the performance of GA is by far worse than the 623 

other algorithms applied in this study. The Tukey pairwise comparison results are 624 

consistent with the results presented in Table 7. 625 

 626 

Insert Table 7 627 
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 629 

Table 9 shows the results of algorithms as part of the third strategy. As shown in 630 

Table 9, DE is the most valuable algorithm based on the average value of the 631 

objective function. MPA is recognized as the second most powerful algorithm, 632 

with an average objective function of 0.403. The next most valuable algorithms are 633 

IWO, SLC, COA, CS, ACO, FA, WCA, CMA-ES, PSO, SSA, and GA. 634 

Furthermore, DE and MPA had the lowest median and standard deviation value of 635 

the objective function, respectively. Based on the results, the COA, DE, MPA, 636 



 

IWO, CS, and ACO are capable of finding the third strategy’s best solution. These 637 

six algorithms generated an objective function of 0.393. This value represents a 638 

solution with a two-day delay and a cost of $3,990. Nevertheless, running ACO 639 

takes approximately 6.6 times longer than MPA. The aforementioned solution 640 

reduced cost by 30.4% and reduced delay by 85.7%. The next valuable solution is 641 

obtained by SLC, with an objective function value of 0.4. The SLC optimal 642 

solution generated the lowest value of delay. This solution reduced delay to 1 day, 643 

and required $4105 to be implemented. The third solution is related to FA. The FA 644 

solution can decrease project cost by 28%; however, this expenditure is $20 more 645 

expensive than that of the best solution (0.393). In this strategy, the weakest 646 

solution is associated with GA because it presents a solution with the lowest fitness 647 

value; additionally, it is the only algorithm that provide solutions with an average 648 

objective function of greater than 0.8. Moreover, PSO is the only algorithm that 649 

reduces the delay from 14 to 3 days. The maximum value of delay belongs to PSO 650 

optimal solution in the third strategy. 651 

The Tukey pairwise comparison outcomes for the algorithms in the third strategy 652 

are indicated in Table 10. According to the result of Table 10, DE, MPA, IWO, 653 

SLC, ACO, and COA outweigh other algorithms in order to find valuable 654 

solutions. Similar to the first strategy and the second strategy results, GA is not 655 

qualified to solve the delay TCTP for the third strategy. 656 

 657 

Insert Table 9 658 
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 660 

The average value of the objective function of algorithms in the fourth strategy is 661 

shown in Figure 3. As shown in Figure 3, by reducing the delay up to a certain 662 

level, delay and cost are simultaneously reduced. Subsequently, delay reduction 663 

leads to an increased required cost. A more detailed examination of the lowest 664 

point of different delays reveals that the optimal solutions to ten points (delay from 665 

5 to 14) are dominated by the lowest point in 4 days delay. In other words, the 666 

optimal solution of 4 days delay dominates its left points because its delay and its 667 

cost are lower than those of the points containing more delays. However, the 668 

solution related to delay = 0 (S-4-0), delay = 1 (S-4-1), delay = 2 (S-4-2), delay = 3 669 

(S-4-3), and delay = 4 (S-4-4) cannot dominate each other and they are non-670 

dominated solutions. This result is consistent with the result of the first strategy in 671 

which the minimum value of cost is assigned to delay = 4. Accordingly, the 672 

optimal solutions of the previously mentioned five delays are located in a Pareto 673 

front and a trade-off between these points should be considered in this strategy. 674 

Additionally, Figure 3 indicates that the performance of DE, MPA, CS, COA, 675 



 

IWO, and WCA are significantly better than the other algorithms for finding the 676 

best solutions. Additionally, these algorithms are capable of finding the optimal or 677 

near-optimal solutions of delay TCTPs. Moreover, by increasing the complexity of 678 

the problem (increasing delay), the outcomes of algorithms are changed and, in 679 

high-level complexity problems, algorithm performance can be compared more 680 

easily. Table 11 shows the most valuable solution for a non-dominated sub-681 

strategy (S-4-0, S-4-1, S-4-2, S-4-3, and S-4-4) and the algorithms that acquired 682 

the previously mentioned solutions during their ten runs. Based on the results of 683 

this table, DE, MPA, CS, IWO, COA, WCA, and SSA are capable of finding the 684 

most valuable solution of S-4-0. The optimal solution to S-4-0 can reduce the 685 

delay and cost by 14 days and $1300. Additionally, this sub-strategy (S-4-0) is the 686 

same as the second strategy, which omits the delay completely. The optimal 687 

solution for S-4-1 decreases delay by 13 days and $1495 of additional cost that 688 

should be paid as a delay fine. DE, MPA, CS, IWO, COA, WCA, SLC, and ACO 689 

were better able to find the optimal solution to S-4-1 as compared to the other 690 

algorithms. DE, MPA, CS, IWO, COA, SLC, and ACO were able to achieve the 691 

optimal solution of S-4-2, which decreased extra cost and project delay by 28.8% 692 

and 85.7%, respectively. The most valuable solution to S-4-3 was found by DE, 693 

MPA, CS, IWO, COA, SLC, and WCA. These algorithms reduced the objective 694 

function to 3935, which implies that $1665 of extra cost and 11 days of delay can 695 

be reduced simultaneously by S-4-3. Furthermore, DE, CS, IWO, COA, and SLC 696 

arrived at the optimal solution to S-4-4. The minimum amount of cost is related to 697 

the optimal solution to S-4-4, which is the same as the first strategy in which the 698 

extra cost reached its lowest level. In this sub-strategy (S-4-4), the required cost 699 

was reduced from $5600 to $3865. Based on the following results, the 700 

performance of DE, MPA, CS, IWO, and COA for finding the optimal solution to 701 

a delay TCTP is better than that of the other algorithms considered in this study. 702 

DE, MPA, CS, IWO, and COA can find the most valuable solution for all sub-703 

strategies in the fourth strategy and the average value of the objective function 704 

presented by these algorithms is significantly lower than that of the other 705 

algorithms. 706 

 707 
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 710 

Average run time is one of the essential criteria for comparing the capability and 711 

power of evolutionary algorithms. If the population number and the number of 712 

iterations are 50 and 1000, respectively, and the algorithms are tunned, the lowest 713 

average run time is achieved by FA, followed by SSA, WCA, MPA, DE, CMA-714 



 

ES, COA, IWO, CS, PSO, GA, ACO, and SLC. Ergo, the solutions associated with 715 

a lower fitness value generated by FA and SSA may be due to the fewer number of 716 

evaluations in an iteration. Additionally, the performance of WCA can be accepted 717 

because it presents an appropriate solution in less time than most other algorithms. 718 

Additionally, it can be postulated that DE outperformed other algorithms because 719 

it found the most valuable solution for all strategies and its average running time 720 

was lower than the other algorithms that introduce optimal solutions for all 721 

strategies. 722 

 723 

Table 12 shows the optimal mode of activities for the most valuable solution 724 

achieved in various strategies. As can be seen in Table 12, the cost and delay 725 

introduced by the first strategy and S-4-4 are the same. Similarly, the solution and 726 

corresponding mode of activities presented by the second strategy and S-4-0 are 727 

identical. Likewise, the optimal solution presented by the third strategy and S-4-2 728 

are the same. However, their implementation mode of activities is not unique. That 729 

is to say, the third strategy and S-4-2 reduced the cost and delay to $4300 and four 730 

days, respectively, by introducing different modes of activities. The modes 731 

assigned to activities J and L are dissimilar in the optimal solution associated with 732 

them. The mode assigned to activities D, G, O, and Q do not change in different 733 

strategies and it is not recommended to modify these activities. This process may 734 

be due to the higher price that needs to crash these activities rather than other 735 

activities located in their paths. 736 

 737 

Insert Table 12 738 

 739 

In the results, eight solutions are presented based on various strategies and 740 

different algorithms. Some of these solutions are the same and the number of 741 

solutions is five. In other words, by analyzing the fourth strategy, all optimal 742 

solutions are analyzed, and the fourth strategy encompasses the solutions 743 

introduced by the first, second, and third strategies. The resulting solutions are 744 

better than paying the delay fine. They reduce both  the cost and duration of the 745 

project on the day of inspection and monitoring. Thus, time-cost trade-off analysis 746 

is a powerful technique that compensates for the effects of delay on projects. Table 747 

13 shows the percentage of time (delay) and cost reduction achieved by different 748 

strategies. 749 

 750 

Insert Table 13 751 

 752 



 

As can be seen in Table 13, all of the solutions decreased the total cost and 753 

duration of the project. The delay and cost were also reduced in all of the solutions 754 

presented in Table 13 by more than 71.4% and 23.2%, respectively. The most 755 

economical solution is related to the first strategy and S-4-4, which reduced the 756 

extra cost of the project by 31%. The lowest value of cost reduction is related to 757 

the optimal solution and to the second strategy and S-4-0, which reduced the total 758 

cost of the project by 23.2%. The second strategy provided solutions that 759 

completely omitted project delays. In contrast, the lowest delay reduction was 760 

related to the optimal solution and to the first strategy, which decreased the 761 

project’s delay by 71.4%. 762 

It is a difficult and challenging decision to opt for one of the previously mentioned 763 

solutions. Accordingly, a novel index was developed in order to compare the 764 

optimal solutions and assess their improvement. The previously mentioned index 765 

(equation (10)) was developed by sensitivity analysis, expert justice, and 766 

engineering analysis. 767 

 768 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡−𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 ) × ( 1 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑙𝑎𝑦−𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑙𝑎𝑦10 ) ×769 100                                             (10) 770 

 771 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is the value of each solution. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 and 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 772 

represent the delay fine (5600) and delay time (14) on the day of inspection and 773 

monitoring, respectively. The 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡 and 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 are the cost and 774 

delay introduced by the algorithms. The values of 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑐𝑜𝑠𝑡 and 775 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 are shown in Table 12. 776 

Using equation (10), the improvement achieved by optimal solutions under 777 

different strategies was calculated and is displayed in Figure 4. Based on Figure 4, 778 

the highest degree of improvement is relevant to the optimal solution to the third 779 

strategy (S-4-2), with an improvement value of 63.25%. The optimal solution to S-780 

4-3 represents the second valuable solution based on improvement. The 781 

improvement of the S-4-3 optimal solution is equal to 62.44%. The improvement 782 

of the first strategy optimal solution is 61.96%. Additionally, solving the sub-783 

strategy of S-4-1 provides a solution with an improvement value of 61.40%. The 784 

lowest improvement value is associated with the second strategy (S-4-0), with an 785 

improvement of 55.71%, which is lower than the improvement values generated by 786 

the other strategies. The second strategy optimal solution is the only model that 787 

had an improvement value lower than 60%. It can be postulated that omitting delay 788 

may not be an appropriate strategy in delay TCTPs. The third and fourth strategies 789 

are the best strategies, since they provided the highest level of improvement. 790 



 

Although the fourth strategy found the most valuable solution and in S-4-2 the 791 

highest level of improvement was detected, solving a delay TCTP with the fourth 792 

strategy (comprehensive search method) takes a long time, and it may be 793 

impractical to use this strategy for solving large-scale networks in logical time. In 794 

this study, solving the fourth strategy required approximately 14 times longer than 795 

that of the third strategy, while both of them arrive at a similar improvement. 796 

Hence, it can be postulated that the third strategy (multi-objective optimization) is 797 

the best method for compensating for the negative impacts of delay on projects. 798 

To compare the outcomes of algorithms and analyze their introduced solutions, the 799 

improvement value of the algorithm’s optimal solution for the points located in the 800 

Pareto front (S-4-0, S-4-1, S-4-2, S-4-3, and S-4-4) was calculated, and the results 801 

are shown in Table 14. As can be seen in Table 14, DE, CS, COA, and IWO are 802 

highly qualified for finding the optimal solution of delay TCTPs because these 803 

algorithms provide solutions with a higher level of improvement. That is to say, 804 

the average value of improvement related to DE, CS, COA, and IWO is 60.95, 805 

which is more than the other algorithms. The result of this index is consistent with 806 

the results presented in previous sections of this report.  807 

 808 

Insert Figure 4 809 

Insert Table 14 810 

 811 

7       Data and Availability Statement 812 

 813 

The data that support the findings of this study are available on request from the 814 

corresponding author. 815 

 816 

8       CONCLUSIONS 817 

 818 

This study used a variety of algorithms to minimize the influences of delay on cost 819 

and duration of TCTP, including WCA, IWO, COA, SLC, ACO, PSO, SSA, MPA, 820 

FA, CS, DE, GA, and CMA-ES. Four strategies were analyzed so that the best 821 

decision could be made regarding compensating for the effects of delay on 822 

projects. The Tukey pairwise comparison is employed to analyze the algorithm’ 823 

performance. A novel index was used to scrutinize the results generated by various 824 

strategies and different algorithms. The following conclusions can be drawn from 825 

the results of this study: 826 

• DE, CS, COA, and IWO are the best algorithms for solving the delay TCTP 827 

because they provide the most valuable solutions, with an average 828 



 

improvement value of 60.95%. The average value of the objective function 829 

presented by these algorithms is lower than that of other algorithms. The next 830 

powerful algorithms for solving a delay TCTP are MPA, SLC, WCA, ACO, 831 

PSO, FA, SSA, CMA-ES, and GA, with average improvement values of 832 

60.81%, 60.70%, 60.44%, 59.81%, 58.56%, 56.21%, 55.89%, 54.68%, 833 

54.65%, and 52.03%, respectively.  834 

• The Tukey pairwise comparison indicates that COA and DE are the most 835 

valuable algorithms to solve the first strategy. In the second strategy, DE, 836 

COA, IWO, ACO, MPA, and CS are better than other algorithms so as to find 837 

precious solutions. The Tukey pairwise comparison determines DE, MPA, 838 

IWO, SLC, ACO, and COA as the most valuable algorithms in the third 839 

strategy. However, GA is recognized as the worst algorithm by the Tukey 840 

pairwise comparison. 841 

• Based on a comparison of the various strategies, multi-objective optimization 842 

and comprehensive search method generated the best solutions, followed by 843 

minimizing cost and omitting delay. Furthermore, the multi-objective (third) 844 

strategy outperforms the comprehensive search method because solving a 845 

large-scale network under a comprehensive search method is not feasible. 846 

While the third strategy can generate the most valuable solution to delay 847 

TCTPs in logical time. Thus, it can be theorized that the solution introduced by 848 

multi-objective optimization is ideal because it was associated with the highest 849 

level of improvement (63.25%). The first strategy (cost minimization) ranked 850 

third among the proposed strategies due to providing an improvement value of 851 

61.96%. Besides, the second strategy (omitting delay) may not be a suitable 852 

method for compensating for the negative influences of project delays because 853 

the improvement it introduced was equal to 55.71%. 854 

• Eight solutions were presented for the problem. The best solution is achieved 855 

by the optimal solution of the multi-objective strategy with an improvement 856 

value of 63.25%. The best solution reduced project delays by 85.7% (from 14 857 

to 2 days) and decreased project costs by 28.75% (from $5600 to $3990). 858 

• With the same number of iterations and solution vectors and after the tuning 859 

and calibration process, FA is the fastest algorithm for the delay TCTP, 860 

followed by SSA, WCA, DE, CMA-ES, COA, IWO, MPA, CS, PSO, GA, 861 

ACO, and SLC. 862 
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Figure captions: 1034 

 1035 

Figure 1: Methodology flowchart 1036 

Figure 2: The network of project on the inspection day (60th day), NDA are 1037 

activities that are not located in delayed paths 1038 

Figure 3: Average value of the objective function concerning various amounts of 1039 

delay 1040 

Figure 4: Improvement values of optimal solutions generated by various strategies 1041 
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Figure 3: Average value of the objective function concerning various amounts 1060 
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Figure 4: Improvement values of optimal solutions generated by various 1073 
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Table 1: Delayed activities ID, predecessors, and predicting time 1121 

Delayed 

Activities 

ID 

Predecessors Predicting 

time 

A - 13 

H - 19 

M - 17 

S - 17 

W - 26 

B A 16 

I H 20 

N M 15 

T S 11 

G B 9 

O N 8 

C B 14 

J G,I,O 12 

P N 10 

D C 7 

K J 11 

U T,W 12 

Q U,P 8 

E D 11 

L K 9 

R Q 20 

V U 28 

F E 13 

 1122 

 1123 

 1124 
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 1126 

 1127 
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 1129 

 1130 

 1131 

 1132 

 1133 

 1134 



 

Table 2: Delayed paths 1135 

Delayed Paths Duration 

Time 

Finishing 

Time 

Delay 

A-B-C-D-E-F 74 134 14 

A-B-G-J-K-L 70 130 10 

H-I-J-K-L 71 131 11 

M-N-O-J-K-L 72 132 12 

M-N-P-Q-R 70 130 10 

S-T-U-Q-R 68 128 8 

W-U-Q-R 64 124 4 

S-T-U-V 68 128 8 

W-U-V 66 126 6 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

 1149 

 1150 

 1151 

 1152 



 

Table 3: Different modes of implementation for activities in delayed paths (A-1153 

L) 1154 

Activity Mode Time Extra 

Cost 

Activity Mode Time Extra 

Cost 

 1 13 0  1 9 0 

A 2 12 100 G 2 8 60 

 3 11 220  3 7 135 

 4 10 405  1 19 0 

 1 16 0 H 2 18 60 

B 2 15 80  3 17 135 

 3 14 190  4 16 230 

 4 13 330  1 20 0 

 1 14 0 I 2 19 55 

C 2 13 160  3 18 125 

 3 12 350  4 17 250 

 4 11 610  1 12 0 

 1 7 0 J 2 11 85 

D 2 6 205  3 10 200 

 3 5 520  4 9 390 

 4 4 1200  1 11 0 

 1 11 0 K 2 10 140 

E 2 10 95  3 9 315 

 3 9 225  4 8 530 

 4 8 415  1 9 0 

 1 13 0 L 2 8 50 

F 2 12 115  3 7 130 

 3 11 250  4 6 245 

 4 10 435     
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 1162 

 1163 

 1164 

 1165 



 

Table 4: Different modes of implementation for activities in delayed paths (M-1166 

W) 1167 

Activity Mode Time Extra 

Cost 

Activity Mode Time Extra 

Cost 

 1 17 0  1 17 0 

M 2 16 40 S 2 16 35 

 3 15 95  3 15 90 

 4 14 190  4 14 230 

 1 15 0  1 11 0 

N 2 14 60 T 2 10 120 

 3 13 135  3 9 265 

 4 12 210  4 8 415 

 1 8 0  1 12 0 

O 2 7 170 U 2 11 75 

 3 6 455  3 10 175 

 1 10 0  4 9 400 

P 2 9 115  1 28 0 

 3 8 280  2 27 60 

 4 7 465 V 3 26 140 

 1 8 0  4 25 245 

Q 2 7 165  5 24 530 

 3 6 390  6 23 995 

 1 20 0  1 26 0 

R 2 19 75 W 2 25 35 

 3 18 165  3 24 85 

 4 17 275  4 23 150 
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Table 5: Algorithm results for the first strategy 1177 

 1178 
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WCA 3880 3929.5 3932.5 28.58758 1.029 3880 5 

IWO 3865 3882 3885 6 2.291 3865 4 

COA 3865 3870 3865 7.745967 2.3258 3865 4 

SLC 3885 3933.5 3927.5 35.64057 8.729 3885 5 

ACO 3885 3892 3885 9.797959 7.374 3885 5 

PSO 3900 3980 3965 62.00806 3.383 3900 5 

SSA 3960 4059 4020 92.35259 0.491 3960 4 

MPA 3865 3882.5 3885 10.78193 1.235 3865 4 

FA 3880 3946.5 3957.5 32.40756 0.323 3880 5 

CS 3885 3895.5 3895 11.92686 3.055 3885 5 

DE 3865 3872.5 3872.5 7.5 1.900 3865 4 

GA 3990 4072 4040 72.11796 4.188 3990 5 

CMA-

ES 3940 3988.5 3982.5 40.99085 1.947 3940 4 
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Table 6: Tukey pairwise comparison outcomes for the first strategy 1191 

 1192 
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The first strategy 
Grouping 

Factor 

GA A    

SSA A    

CMA-ES  B   

PSO  B   

FA  B C  

SLC  B C D 

WCA  B C D 

CS   C D 

ACO   C D 

MPA   C D 

IWO   C D 

DE    D 

COA    D 



 

Table 7: Optimal solutions to the second strategy 1223 
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WCA 4300 4461 4492.5 110.2905 1.055 4300 

IWO 4300 4308.5 4300 10.5 2.327 4300 

COA 4300 4302 4300 2.44949 2.310 4300 

SLC 4330 4444 4407.5 117.3627 8.788 4330 

ACO 4300 4319 4312.5 23.5372 7.528 4300 

PSO 4460 4623.5 4582.5 176.2108 3.146 4460 

SSA 4300 4677 4582.5 241.8181 0.660 4300 

MPA 4300 4322.5 4312.5 23.26478 1.220 4300 

FA 4400 4569.5 4532.5 130.9284 0.348 4400 

CS 4300 4336 4315 39.35734 3.122 4300 

DE 4300 4300 4300 0 1.739 4300 

GA 4625 4957 4965 217.1428 4.088 4625 

CMA-

ES 4510 4718 4675 196.7765 1.883 4510 
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Table 8: Tukey pairwise comparison outcomes for the second strategy 1238 
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The second strategy 
Grouping 

Factor 

GA A    

CMA-ES  B   

SSA  B   

PSO  B C  

FA  B C  

WCA   C D 

SLC   C D 

CS    D 

MPA    D 

ACO    D 

IWO    D 

COA    D 

DE    D 



 

Table 9: Results of the algorithm that was used to solve the problem under the 1270 

third strategy 1271 
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WCA 0.422 0.540 0.533 0.078 1.061 4015 2 

IWO 0.393 0.405 0.400 0.012 2.408 3990 2 

COA 0.393 0.421 0.414 0.029 2.437 3990 2 

SLC 0.400 0.407 0.400 0.015 9.608 4105 1 

ACO 0.393 0.431 0.400 0.014 8.114 3990 2 

PSO 0.501 0.627 0.604 0.100 3.410 3975 3 

SSA 0.491 0.658 0.648 0.117 0.623 4075 2 

MPA 0.393 0.403 0.400 0.008 1.235 3990 2 

FA 0.416 0.537 0.505 0.077 0.340 4010 2 

CS 0.393 0.423 0.456 0.044 3.231 3990 2 

DE 0.393 0.399 0.393 0.009 1.784 3990 2 

GA 0.560 0.808 0.795 0.126 4.041 4135 2 

CMA-

ES 0.422 0.544 0.556 0.098 1.902 4015 2 
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Table 10: Tukey pairwise comparison outcomes for the third strategy 1284 
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The third strategy 
Grouping 

Factor 

GA A     

SSA  B    

PSO  B C   

CMA-ES   C D  

WCA   C D  

FA   C D  

CS    D E 

COA     E 

ACO     E 

SLC     E 

IWO     E 

MPA     E 

DE     E 
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Table 11: The most valuable solutions to the non-dominated sub-strategies of 1317 

the fourth strategy 1318 
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so
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C
o
st

 

($
) 

D
el

ay
 

(d
ay

) 

S-4-0 4300 

DE, MPA, CS, IWO, COA, WCA, 

SSA 4300 0 

S-4-1 4105 

DE, MPA, CS, IWO, COA, WCA, 

SLC, ACO 4105 1 

S-4-2 3990 DE, MPA, CS, IWO, COA, SLC, ACO 3990 2 

S-4-3 3935 

DE, MPA, CS, IWO, COA, SLC, 

WCA 3935 3 

S-4-4 3865 DE, MPA, CS, IWO, COA, SLC 3865 4 
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Table 12: Optimal mode of activities for the first, second, and third strategies 1336 

  Strategy IIII 

A
ct
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y
 

S
tr
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eg

y
 I

 

S
tr

at
eg

y
 I

I 

S
tr

at
eg

y
 I

II
  

S
-4

-0
 

S
-4

-1
 

S
-4

-2
 

S
-4

-3
 

S
-4

-4
 

A 3 4 3 4 3 3 3 3 

B 4 4 4 4 4 4 4 4 

C 2 4 4 4 4 4 2 2 

D 1 1 1 1 1 1 1 1 

E 3 3 3 3 3 3 3 3 

F 3 4 3 4 4 3 4 3 

G 1 1 1 1 1 1 1 1 

H 3 4 4 4 4 4 3 3 

I 3 3 3 3 3 3 3 3 

J 2 3 3 3 3 2 2 2 

K 1 2 1 2 1 1 1 1 

L 3 4 3 4 4 4 4 3 

M 3 4 4 4 4 4 3 3 

N 4 4 4 4 4 4 4 4 

O 1 1 1 1 1 1 1 1 

P 1 2 1 2 1 1 1 1 

Q 1 1 1 1 1 1 1 1 

R 2 4 3 4 4 3 3 2 

S 3 3 3 3 3 3 3 3 

T 1 2 1 2 1 1 1 1 

U 2 3 3 3 3 3 2 2 

V 2 4 3 4 4 3 3 2 

W 1 2 1 2 1 1 1 1 

Cost 3865 4300 3990 4300 4105 3990 3935 3865 

Delay 4 0 2 0 1 2 3 4 
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Table 13: Percentage of delay and cost reduction 1341 
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) 

D
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n

 

(%
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S-4-0 / Strategy II 23.2 100 

S-4-1 26.7 92.9 

S-4-2 / Strategy 

III 

28.8 85.7 

S-4-3 29.7 78.6 

S-4-4 / Strategy I 31 71.4 
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Table 14: Improvement values of optimal solutions to non-dominated sub-1358 

strategies 1359 
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S
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S
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A
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WCA 55.71 61.40 62.27 62.44 60.36 60.44 7 

IWO 55.71 61.40 63.25 62.44 61.96 60.95 1 

COA 55.71 61.40 63.25 62.44 61.96 60.95 1 

SLC 54.43 61.40 63.25 62.44 61.96 60.70 6 

ACO 55.71 61.40 63.25 62.06 60.89 59.81 8 

PSO 48.86 60.38 61.48 62.25 59.82 58.56 9 

SSA 55.71 53.80 55.98 56.25 57.68 55.89 11 

MPA 61.25 61.40 63.25 62.44 61.96 60.81 5 

FA 51.43 56.47 54.61 59.25 59.29 56.21 10 

CS 55.71 61.40 63.25 62.44 61.96 60.95 1 

DE 55.71 61.40 63.25 62.44 61.96 60.95 1 

GA 58.04 54.94 53.82 51.54 41.79 52.03 13 

CMA-

ES 56.61 56.81 59.13 54.01 46.71 54.65 12 

 1361 

 1362 


