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Abstract

Purpose

Saliva has been considered a suitable sample material for SARS-CoV-2 testing but uncertainty remained
regarding the sensitivity and reliability of different saliva collection methods for community mass testing.
This study aimed to investigate the potential utility of expectorated saliva (ES) and drooled saliva (DS)
through a large cohort study.

Methods

ES and DS samples were collected in a two-stage non-randomized prospective cohort study. Their utility
for SARS-CoV-2 RNA gRT-PCR testing was assessed by comparison with results for combined throat and
nose (CTN) swabs. A total of 2,878 subjects were recruited, from which 2,747 were evaluable for
statistical analyses.

Results

Using CTN swab-based results as reference,DS- and ES-based tests showed the same high level of
concordance (98% vs 98%) or specificity (99% vs 99%). Sensitivity seemed to be higher for DS than for ES
(93% vs 80%) but not significantly once viral concentration was taken into account. Multivariable
analysis indicated however an inferior sensitivity of saliva-based testing for female compared to male
subjects with low viral burden. Assuming no false positive gRT-PCR results, an unbiased comparison
showed no significant difference in sensitivity between saliva- and swab-based testing.

Conclusion

SARS-CoV-2 RNA testing based on saliva showed high diagnostic accuracy and can be considered an
alternative where swabbing may not be tolerated or operationally feasible. Drooled saliva yielded the
same diagnostic performance compared to expectorated saliva and may present a preferred option with
reduced aerosol risk and increased compliance. Observed sex-specific difference in detection
performance however warrant further investigations.

Introduction

The emergence of the novel coronavirus SARS-CoV-2 and its associated disease COVID-19 in early 2020
led to a global surge in the development of diagnostic tests and analytical methodologies. The current
“gold standard test” for SARS-CoV-2 is the detection of viral nucleic acid via nucleic acid amplification [1].
Previous experience from coronavirus non-COVID-19 related infections enabled the rapid development
and implementation of quantitative reverse transcription PCR (qRT-PCR) based testing (hereafter simply
referred to as ‘qgPCR’) [2]. Nasopharyngeal (NP), mid-turbinate nasal (MT) and oropharyngeal (OP) swabs
have been identified as optimal sample types for detecting upper respiratory tract pathogens by the
European Centre for Disease Prevention and Control (ECDC) [3] and US Centre for Disease Control and
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Prevention (CDC) [4]. At the time of this study, the standard method of sample collection for community
testing for SARS-CoV-2 in England was a combined throat and nose (hereafter referred to as ‘CTN’) swab
sample; this could be collected by a trained professional or self-collected by the individual being tested

[5].

Whilst this method is effective, other methods to collect samples for viral testing have been put forward
[6]. Saliva may be a particularly suitable sample type for SARS-CoV-2 RNA testing, considering there
might be multiple pathways for SARS-CoV-2 to be present in the saliva including from the salivary glands,
respiratory tract and blood [7, 8]. Saliva collection may also overcome some of the challenges of
MT/NP/OP swab methods and offers advantages such as the ease of self-testing, reduced need for
specialist equipment such as swabs in VTM and increased adherence to continuous surveillance testing
[9]. Thus, the less invasive nature of saliva collection could increase individuals’ test-seeking behaviour,
thereby allowing additional cases of COVID-19 to be diagnosed and onward community transmission
reduced through self-isolation and other public health interventions. On the other hand, saliva as
specimen poses challenges for sampling handling and processing in laboratories due to its inherent
properties such as viscosity and heterogeneity [10]. Furthermore, saliva contains PCR inhibitors which
may affect the effectiveness for PCR-based diagnostics especially if saliva is directly used in the PCR
reaction [11].

Systematic reviews comparing the use of professionally collected NP/OP swab and saliva have indicated
a similar diagnostic performance between the two sampling methods [6, 12—-16]. However, the direct
comparison between studies remained challenging because of great heterogeneity in terms of saliva
collection. Saliva collection methodologies have included spit/drool saliva collection, direct saliva
sampling and saliva-based swabbing, expectorated saliva and gargling saline [8, 17]. Saliva samples
may contain whole saliva, sputum and gingival crevicular fluid [18]. Spit or drool-based samples are
formed from whole saliva, including nasopharyngeal and posterior oropharyngeal secretions and can
involve the unstimulated or stimulated accumulation of saliva [3, 12]. Expectorated saliva, collected
through the process of throat-clearing and coughing followed by production of saliva, can contain both
upper and lower respiratory tract secretions [12]. It remains unclear whether these diverse sample types
and collection methods impact on the detection of SARS-CoV-2 by qPCR. There exists also uncertainty
whether factors that are difficult to control in a community testing setting such as eating, drinking,
smoking or vaping prior to providing a saliva specimen can affect the detection of viral RNA.

This study aimed to assess the suitability of saliva as a specimen for qPCR analysis in a community
mass testing setting. Additionally, we wanted to examine the performance of two common saliva
collection methods, namely expectorated saliva (ES) and drooled saliva (DS) in comparison to self-
collected CTN swab as standard care.

Materials And Methods
Study Design
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To accomplish the two aims of the study (suitability of saliva sampling and comparison of saliva
sampling methods) a non-randomized prospective cohort study with 2-stage design was carried out

(Fig. 1) using three testing methods (i) expectorated saliva (ES), (ii) drooled saliva (DS) and (iii) self-
collected combined throat and nose (CTN) swab (standard of care reference test). The saliva collection
methods were chosen, as they were considered to provide enough specimen to support the pandemic
testing response. Self-collected CTN swabbing was the standard diagnostic sample collection method for
gPCR testing within England’s COVID-19 community testing programme at that time of the study. Stage 1
was designed to assess whether one saliva collection method showed a better concordance with CTN. In
stage 2, recruitment would be continued for the superior method to increase statistical power and to
assess effects of co-variates on performance. In case of equal performance in stage 1, the default was to
select the DS method, which was considered the simpler and potentially safer collection method.

During the first part of stage 1, each subject was required to provide one ES sample (which involved
clearing of the throat and expectoration of material into a collection vessel) and one self-sampled CTN
swab. Once the required number of subjects were recruited for ES samples (19 August 2020), recruitment
continued and subjects were requested to provide a DS sample, involving a passive “drool” of saliva into
the collection vessel, as well as a self-sampled CTN swab. When the minimum recruitment target for
stage 1 was reached (700 samples for each saliva collection method, see Sample Size section),
recruitment to stage 2 was initiated to obtain at least 900 samples for the selected method i.e. DS (see
Sample Size section). The combined data across both stages is reported in the analysis for the DS cohort
when compared with the ES cohort.

Study recruitment and procedures

For both stages, data were collected from adult subjects across 21 NHS Test and Trace symptomatic
ambulatory community testing sites in the East Midlands, Yorkshire and North West regions of England
(including Leicester, Blackburn, Oldham, Rochdale, Nelson, Darwen, Kirkleen, Bradford, Bolton, Middleton,
and Leeds) between 30 July 2020 and 8 October 2020. To resemble faithfully the heterogeneity typically
found in community testing settings, no strict inclusion criteria were set for this study Participants were
requested to abstain from food or drink 30 minutes prior to testing, but this was not enforced and
participants ignoring this request were still included. The time of the last food or drink intake, as well as
records of smoking or vaping prior to sampling was provided by 833 participants.

For both ES and DS groups, samples were collected via a plastic funnel into a polystyrene tube
(International Scientific Supplies Ltd) to the minimal required level (1mL), to which 2.5mL of 0.9% Y/,

saline was added. Subjects were required to add the saline from the pouch provided, remove funnel and
seal the vial. The procedure was monitored by a trained testing operator and the method of taking the
samples were recorded in a case report form.

Samples were collated and sent to the Milton Keynes UK Lighthouse Laboratory for processing. For both
saliva and swab samples, RNA was purified using Thermo Fisher Kingfisher Flex instrument with
MagMAX Viral/Pathogen Il Nucleic Acid Isolation kit (ThermoFisher Scientific, UK). For detection,
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ThermoFisher Applied Biosystems TagPath COVID-19 RT-PCR assays were performed. Thes assay
amplifies regions of the ORF1ab, N gene and S gene of the SARS-CoV-2 genome and uses a
bacteriophage MS2 as internal PCR and extraction control. A gPCR test was determined as positive if a
quantification cycle (Cq) value of less than 40 was observed for at least one of the three target genes.
Both samples of a subject were stored and transported together and run together on the same PCR plate.
Laboratory staff were blinded as to subject identity and mode of sample collection.

Primary and secondary outcomes

The primary outcomes were concordance for stage 1 and sensitivity for stage 2 determined as the ratios
(TP+TN)/(TP+TN+FP+FN) and TP/(TP + FN), respectively, based the number of True Positives (TP),
True Negatives (TN), False Negatives (FN) and the False Positives (FP) with self-sampled CTN swab
based testing as reference. Primary outcomes were derived for (i) ES- and (ii) DS-based testing and
compared. Secondary outcomes included specificity (TN/TN + FP), positive predictive value (PPV =
TP/(TP +FP)), and negative predictive value (NPV = TN/(TN + FN))

Sample Size
Stage |

To estimate the required sample size for stage 1, a power calculation for a two sample test for
proportions was carried out using the power.prop.test function implemented in the statistical
programming language R. Seven hundred subjects per group were required to detect a 10% difference of
concordance rates at a significant level of 0.05 with a power of 95%.

Stage Il

To obtain a precision of 10% for sensitivity, 80 positive cases based on CTN swabs were needed when
using the exact Clopper-Pearson method to derive confidence intervals (Cls). Assuming a prevalence rate
of 5%, which was observed in stage 1, the overall sample size was estimated to be 1,600, which required
at least an additional 900 subjects to be recruited in stage 2.

Statistical Analysis Methods

Statistical analyses were conducted on subjects with pairwise gPCR records of saliva collection (DS or
ES) and CTN swab. The observed concordance, sensitivity, specificity, PPV and NPV were determined for
ES and DS with respect to CTN swabs, along with exact 95% Cls using the Clopper-Pearson method.
Statistical significance of differences in concordance, sensitivity, specificity, PPV and NPV was assessed
using the x?-test with Yates' continuity correction. For analysis, Cq values for the different target genes
(ORF1ab, N and S gene) were averaged for each sample. To test whether age, smoking, drink, or food
intake could have influenced Cq values for saliva samples, univariable linear regression was carried out
for the different factors (age, time to last smoke, vape, meal or drink). Viral concentrations (in digital
copies/mL or dCopies/mL) were derived from Cq values based on previous calibration by the laboratory
using Qnostics linearity analytical panel [19]. Univariate and multivariate logistic regression models were
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used to model the relationship between the probability of a TP and logq viral concentrations (Log VC),

saliva collection, age in years, sex, and smoking/vaping status. For statistical analysis and visualisation
of results, R version 4.0.3. was used.

Results
Study population and demographics

In the initial stage, 874 and 722 subjects were recruited to the (i) ES and (ii) DS cohorts, respectively. As
concordance with CTN swab results was not statistically different (ES: 98.1%, DS: 98.0%, p = 0.8), the DS
method was continued and a further 1,282 subjects were recruited. In total, 2,878 subjects took part in the
study with 874 providing ES and 2,004 providing DS samples, while all participants underwent CTN
swabbing (see CONSORT diagram, Fig. 1). 131 subjects were excluded because of missing paired
samples or void samples. Statistical analysis was performed on the remaining 2,747 subjects, of which
1,904 were evaluable for comparison between DS vs CTN swabs and 843 between ES vs CTN swabs
(Table 1). For ES vs DS, respectively, median (range) age was 40 (13-92) vs 36 (15-83) years (p <0.001);
Males 52% vs 47% (p = 0.07); smokers: 30% vs 28% (p = 0.28). There were 1.03% vs 2.15% void samples
for ES vs DS respectively (p = 0.06). The positivity rate based on CTN swabs increased strongly from 5.2%
for stage 1 to 18.9% for stage 2 in line with an increased prevalence of infection in the wider population
over the relevant time period. The overall positivity rate was 10.4%.
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Table 1
Demographics (age, sex, smoking/vaping status) and saliva gPCR results

Stage 1 Stage1 &2 Total
Category Statistic/Value ES DS DS
All Subjects N 875 722 2003 2878
All Evaluable N 843 699 1904 2747
Subjects
Age (Years) Median 40 42 36 37
Min-Max (13-92) (15-83) (15-83) (13-92)
Sex (n, %) Male 439 (52%)  351(50%) 915 (48%) 1354 (49%)
Female 395 (47%) 340 (49%) 958 (50%) 1353 (49%)
Missing 9 (1%) 8 (1%) 31 (2%) 40 (1%)
Current smoker/vaper  Yes 254 (30%) 195 (28%) 529 (28%) 783 (29%)
(n, %) No 582 (69%)  495(71%) 1344 (71%) 1926 (70%)
Missing 7 (1%) 9 (1%) 31 (2%) 38 (1%)
gPCR results Positive 40 (5%) 41 (6%) 245 (13%) 286 (10%)
(n, %) Negative 803 (95%) 658 (94%) 1700 (87%) 2747 (90%)
Total 843 699 1904 2747
(100%) (100%) (100%) (100%)

Comparison of Cq values from saliva and swab samples

We assessed Cq values obtained from the different specimens and found that saliva samples tended to
have lower quantities of viral genetic material compared to swab samples (Fig. 2, Supplementary Fig. 1).
This is reflected in significantly larger averaged Cq values for ES (mean: 25.04) and DS (24.17) with

respect to CTN swabs (23.01) and the increase in Cq values held for the individual qPCR target genes

(Fig. 2B-D). Despite differences in the underlying distributions, the correlation of Cq values between saliva

and CTN swab was highly significant for all gqPCR target genes (p < 0.001, Fig. 3). The strongest
correlation (R =0.56) was observed for averaged Cq values indicating that averaging over target genes
tends to reduce variability of saliva Cq values with respect to CTN swab Cq values.

In univariable linear regression analyses, neither Cq values for saliva nor for CTN swabs showed
statistically significant dependencies on age or time to last smoke, vape, meal or drink (Supplementary

Figures S2 and S3). In addition, no significant difference (p = 0.82 or 0.77) between median Cq value for
male (24.13 or 21.85) and female (24.0 or 21.95) was found for saliva or swab samples, respectively. A
small proportion (10.7%) of our cohort did not comply with the advised nil by mouth period of 30 min. We
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therefore analysed the Cq values from saliva samples of the 293 individuals who had their last meal (53),
drink (211) or smoke (86) within 30 minutes of testing. Notably, no statistically significant difference in
Cq values was observed between the samples taken within the 30 minutes window and those taken
following the advised nil by mouth period (Supplementary Figure S4). There was also no significant
difference detected between CTN swab Cq results from individuals with previous and without previous
swabbing experience (p = 0.22).

Performance of saliva gPCR testing with CTN swab as
reference

After merging data from stage 1 and stage 2, we assessed the saliva gPCR testing outcome with the
testing outcome of CTN swabs as reference (Table 2). No statistically significant difference between ES
and DS was found for concordance (98.1% vs 97.9%), specificity (99.0% vs 98.6%) and NPV (99.0% vs
99.0%). However, we observed a significantly higher sensitivity for DS (93.1%) compared to ES (80.0%, p
=0.007) as well as a higher PPV for DS (90.9%) compared to ES (80.0%, p = 0.04).

Table 2

Outcomes of saliva qPCR. Concordance rates, sensitivity, specificity, and predictive
values were derived with CTN swabs as reference.

Statistic ES DS Salivatotal DSvsES
(N=843) (N=1904) (N=2747) P-value

True Positive 32 229 261 -

True Negative 795 1635 2430 -

False Positive 8 23 31 -

False Negative 8 17 25 -

Concordance (95% Cl)  98.1 97.9 98.0 0.73
(96.4,98.9) (97.2,98.5) (97.4,98.5)

Sensitivity (95% Cl) 80.0 93.1 91.3 0.007
(64.4,91.0) (89.2,95.9) (87.4,94.3)

Specificity (95% Cl) 99.0 98.6 98.7 0.42
(98.1,99.6) (97.9,99.1) (98.2,99.1)

PPV (95% Cl) 80.0 90.9 89.4 0.04
(64.4,91.0) (89.2,95.9) (87.4,94.3)

NPV (95% ClI) 99.0 99.0 99.0 0.94
(98.1,99.6) (98.4,99.4) (98.5,99.3)
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Since elderly individuals are among COVID-19 high risk groups, the performance of saliva-based qPCR for
individuals of age 60 or more was examined (Supplementary table S1). Based on 319 participants in this
age group, a sensitivity of 90.9% was derived, which was not significantly different compared to the
sensitivity of 91.5% observed for the 2311 younger participants in our cohort. We also did not detect a
significant difference in sensitivity between smokers (92.86%) and non-smokers (91.08%, p = 0.82)
(Supplementary table S2).

For 56 cases, we obtained divergent results for saliva- and swab-based testing. Thirty-one saliva samples
were apparent false positives i.e. they were qPCR positive while the paired CTN swab sample was
negative. Twenty-five saliva samples were apparent false negatives i.e. they were gPCR negative when
the paired CTN swab sample was positive. It appeared that most of the divergent cases were associated
with high Cq values (Supplementary figure S5). Some 90% of positive saliva samples paired with a
negative swab sample had Cq values greater than 27.5, which corresponds to a viral concentration of
1000 SARS-Cov-2 dCopies/mL. In contrast, only 16% of positive saliva samples had paired positive swab
sample with Cq values greater than 27.5. Similarly, 84% of the positive swab samples paired with a
negative saliva sample had Cq values greater than 27.5, while only 15% of positive swab samples paired
with positive saliva samples had Cq values greater than 27.5. Thus, discordant results between saliva
and swab were predominantly from individuals with low viral burden suggesting that testing performance
depends strongly on the viral concentrations of the samples. This observation motivated us to analyse
the relationships between testing outcomes and viral concentration or other covariates in more detail
using uni- and multivariable regression models.

Logistic models

The probability of observing a true positive saliva result was modelled with log,, viral concentrations
(based on the corresponding swab qPCR), type of saliva specimen, sex, smoking status and age as
independent continuous or categorical variables. Both univariable and multivariable logistic regression
models were fitted to the data (Table 3). Univariable models led to significant odds ratios (OR) for log,
viral concentrations (p <0.001) and type of saliva specimen (p = 0.008) in line with the previous
observations that false negatives occur mainly when low viral concentration was low and that DS led to a
higher overall sensitivity. Additionally, univariable modelling indicated a diminishing probability of a TP
with increased age although the effect is marginal with an OR close to one. As viral concentration had the
most significant effect, it was important to adjust for the viral concentration when assessing the impact
of covariates on the saliva test outcome. For the multivariable model, log,q viral concentrations remains
the most significant predictor variable. Notably, the OR for type of saliva sample was not significant after
adjustment for the Cq value of the reference samples (Fig. 4A). Thus, the higher sensitivity for DS-based
saliva gPCR can be explained by the higher viral concentrations observed in DS samples. Indeed, the
mean Cq value for true positive DS samples was 21.9, while it was 24.5 for true positive ES samples.
While age was not a significant predictor for a true positive saliva sample in the multivariable model, the
adjusted OR of 3.7 for sex was significant (p = 0.02). The difference in predicted probabilities of a true
positive is most notable for viral concentration below 10,000 dCopies/mL (Fig. 4B).
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Table 3

Logistic regression models. Odds ratios (OR) or adjusted odds ratios (aOR), their 95% ClI
and p-value from univariable and multivariable models. For multivariable models, the
reference categories were “ES" for saliva sample type, “Female” for sex, and “No” for
smoking/vaping status.

Independent variable  Univariable Multivariable

OR 95% Cl p-value aOR 95% Cl p-value

Log,o VC 280 1.95401 <0.0001 295 196,445 <0.001

Saliva sample (DS) 3.53 1.40,891 0.008 1.06 0.31,362 >0.9
Age (Years) 097 097,1.00 0.023 098 0098,1.01 0.14
Gender (Male) 217 092,515 0.078 3.69 1.23,11.1 0.02

Smoking Status (Yes) 1.28 0.46,3.56 0.60 1.01 0.283.61 >0.9

Unbiased estimation of sensitivity of SARS-Cov-2 detection
for saliva and swab samples

To assess the performance of saliva testing in community settings, we used self-sampled CTN swabbing
as reference test. Despite having observed that age, sex or behavioural covariates do not significantly
affect Cq values for swabs, we cannot fully exclude individual errors in the swabbing procedure. In
particular, insufficient swabbing might lead to false negative results. To provide an unbiased estimation
of sensitivities for qPCR tests based on different specimens, we assumed that all positive tests are true
positives. This is equivalent to the assumption that the specificity is 100% for both saliva and swab, or
that there are no false positives produced by qPCR tests. Under this assumption, we obtained a higher
sensitivity for detecting SARS-Cov-2 by DS with 93.7% (95% Cl: 90.1-96.3%) than by CTN swab with
90.3% (86.4-93.3%) or by ES with 83.3% (69.8—-92.6%). The differences in sensitivity for the three types
of specimens however were statistically not significant suggesting a similar capacity of SARS-Cov-2
detection.

Discussion

Saliva has been suggested as an alternative to NP/MT/OP swabs to obtain specimens for SARS-Cov-2
gPCR testing and various studies have compared their diagnostic performance [6, 8, 13, 15-17]. Most of
these studies however were based on a small number of participants and only a few large cohort studies
have been conducted. While meta-analyses have attempted to pool evidence across individual studies
and indicate a sensitivity of around 85% and a specificity of 99% for saliva with NP swabs as reference
[12, 17], the large heterogeneity between individual studies makes a comparison of saliva sampling
methods or the analysis of potential confounding factors challenging. Our large prospective cohort study
addressed this limitation and enabled a detailed statistical analysis of the performance of saliva-based
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gPCR testing for SARS-Cov-2 gPCR. Importantly, we inspected potential relationships of Cq values with
other factors and adjusted detection performance for confounding variables such as viral concentrations.
These are crucially important aspects that have been frequently neglected in previous analyses.

Based on CTN swab as reference, the overall sensitivity was higher for DS than for ES. However, after
taking variation in viral concentration into account, no significant difference in the probability to detect
SARS-Cov-2 was found between the two saliva sample types. This highlights the importance of our study,
as adjustments for difference in underlying viral concentrations have generally not been carried out and
may not even be possible in the meta-analysis comparing different saliva testing approaches. Given the
evidence of our study, DS might be considered as a preferrable sampling strategy over ES as it may
reduce aerosolisation risk without compromising test performance. Assuming that gPCR testing for
SARS-Cov-2 does not produce false positives, an unbiased estimate of sensitivity further indicated equal
diagnostic performance of DS samples and self-sampled CTN swabs in the community testing setting.

While we detected a significant correlation between Cq values for saliva and swab samples from the
same individual, higher Cq values for saliva samples compared to swab samples were recorded. This
finding agrees with previous studies [8]. However, caution in the interpretation of the difference in Cq
values is warranted, since the recorded viral concentration are directly affected by the applied protocols
such as the used volume of viral transport medium for swabs or the volume of added saline to the saliva
samples. More importantly, Cq values for saliva and swabs do not appear to be impacted by other factors
such as age, sex or behaviour prior to testing. This indicates the potential strength of saliva-based testing
in the presence of potentially confounding factors. In particular, we did not detect significant differences
in Cq values between individuals who avoided eating, drinking or smoking/vaping in the 30 minutes prior
to providing a sample and those that did not. This observation could support the saliva sampling without
a food or drink free period, which may open opportunities for its use, for example, in social care and
healthcare settings where medications and drinking are more difficult to restrict. However, further study is
needed to clarify whether there exist specific contaminants which individuals need to avoid consuming
prior to saliva sampling.

The overall concordance rate of saliva- and swab-based test was high (98%). Most of the discordant
cases were associated with low viral concentration of less than 1000 dCopies per mL. For viral
concentrations over 10,000 dCopies per mL, which have separately been associated with up to 85% of the
infection events [20], we rarely found a swab gqPCR positive that was missed by saliva testing. We
detected only three saliva qPCR negative samples out of 178 that had with a paired swab positive
samples equivalent to a sensitivity of 98.3%. Remarkably, our multivariable regression model indicated a
higher probability of obtaining true positive result for male compared female participants. This difference
is especially noticeable for low viral concentration. For a viral concentration of 100 dCopies/mL, the
predicted probability of a true positive DS sample is 86% (95% Cl: 72—93%) for a male while only 62% %
(41-80%) for a female individuum. In contrast, the difference is minimal for high viral concentration. For
100,000 dCopies/mL, male participants would have a probability of 99% (97-100%), while female would
have a probability of 98% (93-99%) to receive a true positive result. The reason for this difference
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remains to be determined. Sex difference in the immune response of Covid patients have been reported
previously [21]. Studies have also indicated sex-related differences in the propensities of saliva e.g. pH
and protein content of healthy subjects [22] but the implications for gPCR testing is unclear. Thus, further
confirmation and analysis of sex-specific differences in saliva gPCR testing are warranted.

A limitation of this study was the non-randomised sampling strategy. While this does not impact on the
derived performance measure of saliva-based testing with respect to CTN swab-based testing as
reference, it limited the comparability of the performances for ES and DS. Only after adjustment for
differences in viral concentrations, a similar sensitivity for ES and DS was obtained. Furthermore, our
study was conducted in an ambulatory setting, which may not be directly comparable to other diagnostic
testing cohorts, as it required mobility by participants and thus less mobile, more vulnerable people were
less likely to participate. Notably, this study was not designed to assess the user acceptability of saliva as
a collection material. There may be specific population groups where saliva can be an easier and more
suitable collection material than MT/NP/OP swabbing. For example, some studies indicated that saliva-
based testing were the preferred option for children, particularly in younger age ranges [9, 23]. In contrast,
there can be challenges to producing the appropriate volumes of saliva required, particularly in certain
sub-populations including those in long-term care facilities[10]. Future studies might investigate the
feasibility of saliva-based tests as an alternative to CTN swabbing within specific populations.

Conclusion

Our large prospective cohort study demonstrated that saliva-based SARS-CoV-2 RNA gPCR testing
showed similar diagnostic performance compared with self-sampled CTN swabbing in community
testing settings. Moreover, it indicates that a deep cough is not necessary for effective performance.
Thus, our study can provide direct evidence for operational and policy decision-making. In practice,
operational aspects such as compatibility with laboratory workflows (include automation, where the
viscosity of saliva can pose problems), cultural acceptability, and other factors need to be considered in
the decisions to use saliva as a specimen for SARS-CoV-2 RNA testing.
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Figure 1

CONSORT flow diagram. For DS excluded samples, 1 unpaired sample was also a drop out.
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Distribution of Cq values of saliva and CTN swab samples. Display are box-and-whiskers plots for A)
averaged Cq values, B) Cq values of Orf1ab gene, C) N gene and D) S gene. The lower and upper hinges
correspond to the first and third quartiles. Significance (p-values) for pairwise difference between
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sampling types are based on Wilcoxon test. Additionally, the result of the Kruskal-Wallis rank sum test
comparing Cq values for the three sample types are shown.
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Cq values were set to 40 in cases where SARS-COVID2 was undetectable by gPCR in the sample. Thus,
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dots on the Cq = 40 horizontal or vertical lines represent samples which were positive either for the saliva
(vertical line) or swab (horizontal line) only. These values were not included for calculation of the
Spearman correlation coefficient R and its significance.
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Figure 4

Predicted probabilities of TP by saliva specimen type (A) and by sex (B) based on multivariable logistic
regression for a 40-year-old non-smoker. Swab logq viral concentration (Log10 VC) was varied from 0 to
8 (i.e. viral concentration ranges from 1 to 10M dCopies/mL). For (A), the sex was set to “Male”. For (B),
the saliva sample type was set to “DS”.
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