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ABSTRACT

A clinical artificial intelligence (AI) system is often validated on a held-out set of data which it has not been exposed to before

(e.g., data from a different hospital with a distinct electronic health record system). This evaluation process is meant to mimic

the deployment of an AI system on data in the wild; those which are currently unseen by the system yet are expected to be

encountered in a clinical setting. However, when data in the wild differ from the held-out set of data, a phenomenon referred

to as distribution shift, and lack ground-truth annotations, it becomes unclear the extent to which AI-based findings can be

trusted on data in the wild. Here, we introduce SUDO, a framework for evaluating AI systems without ground-truth annotations.

SUDO assigns temporary labels to data points in the wild and directly uses them to train distinct models, with the highest

performing model indicative of the most likely label. Through experiments with AI systems developed for dermatology images,

histopathology patches, and clinical reports, we show that SUDO can be a reliable proxy for model performance and thus

identify unreliable predictions. We also demonstrate that SUDO informs the selection of models and allows for the previously

out-of-reach assessment of algorithmic bias for data in the wild without ground-truth annotations. The ability to triage unreliable

predictions for further inspection and assess the algorithmic bias of AI systems can improve the integrity of research findings

and contribute to the deployment of ethical AI systems in medicine.

Introduction

The competence of a clinical artificial intelligence (AI) system

in achieving some task (e.g., diagnosing prostate cancer1) is

assessed by first exposing it to training data and subsequently

evaluating it on a held-out set of data which it has not been

exposed to before. This widely-adopted evaluation process

makes the assumption that the held-out set of data is represen-

tative of data points in the wild2; those which are currently

unseen by the AI system yet are expected to be encountered in

a clinical setting. For example, an AI system may be trained

on data from one electronic health record (EHR) system and

subsequently deployed on data from another EHR system.

However, data points in the wild often (a) follow a distribution

which is different from that of the held-out set of data, oth-

erwise known as distribution shift and (b) lack ground-truth

labels for the task at hand (Fig. 1a).

While distribution shift can adversely affect the behaviour

of an AI system3, the absence of ground-truth labels makes

it difficult to confirm the quality of AI predictions. As such,

it becomes challenging to identify AI predictions to rely on,

select a favourable AI system for achieving some task, and

even perform additional checks such as assessing algorithmic

bias4. Incorrect AI predictions, stemming from data distribu-

tion shift, can lead to inaccurate decisions, decreased trust,

and potential issues of bias. As such, there is a pressing need

for a framework that enables more reliable decisions in the

face of AI predictions on data in the wild.

Previous work assumes highly-confident predictions are

reliable5, 6, even though AI systems can generate highly-

confident incorrect predictions7. Recognizing these limita-

tions, others have demonstrated the value of modifying AI-

based confidence scores through explicit calibration methods

such as Platt scaling8 or through ensemble models9. Such cal-

ibration methods, however, can be ineffective when deployed

on data in the wild that exhibit distribution shift10. Regardless,

quantifying the effectiveness of calibration methods would

still require ground-truth labels, a missing element of data

in the wild. Another line of research focuses on estimating

the overall performance of models with unlabelled data11, 12.

However, it tends to be model-centric, overlooking the data-

centric decisions (e.g., identifying unreliable predictions) that

would need to be made upon deployment of these models, and

makes the oft fallible assumption that the held-out set of data

is representative of data in the wild, and therefore erroneously

extends findings in the former setting to those in the latter.

In this study, we propose pseudo-label discrepancy (SUDO),

a framework for evaluating an AI system deployed on data

exhibiting distribution shift and without ground-truth labels.

Through experiments on two diverse clinical datasets (derma-

tology images and clinical reports), we show that SUDO can

act as a reliable proxy for model performance and can thus be

used to identify unreliable AI predictions. This ability holds

even when used with overconfident models. We also show
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Figure 1. SUDO is a framework to evaluate AI systems without ground-truth labels. (a) an AI system is often deployed

on data in the wild, which can vary significantly from those in the held-out set (distribution shift), and which can also lack

ground-truth labels. (b) SUDO is a 5-step framework that circumvents the challenges posed by data in the wild. First, deploy

an AI system on data in the wild to obtain probability values. Second, discretize those values into quantiles. Third, sample data

points from each quantile and pseudo-label (temporarily label) them with a possible class (SUDO Class 0). Sample data points

with ground-truth labels from the opposite class to form a classification task. Fourth, train a classifier to distinguish between

these data points. Repeat the process with a different pseudo-label (SUDO Class 1). Finally, evaluate and compare the

performance of the classifiers on the same held-out set of data with ground-truth labels, deriving the pseudo-label discrepancy.

This discrepancy and the relative classifier performance indicate whether the sampled data points are more likely to belong to

one class than another.
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that SUDO informs the selection of models upon deployment

on data in the wild. By stratifying the value of SUDO across

various groups of patients, we demonstrate that it also allows

for the previously out-of-reach assessment of algorithmic bias

for data without ground-truth annotations.

Results

Overview of the SUDO framework
SUDO is a framework that helps identify unreliable AI pre-

dictions, select favourable AI systems, and assess algorithmic

bias for data in the wild without ground-truth labels. We

outline the mechanics of SUDO through a series of steps

(Fig. 1b).

Step 1 Deploy probabilistic AI system on data points in

the wild to produce output p ∈ [0,1] reflecting probability of

positive class for each data point.

Step 2 Generate distribution of output probabilities and

discretize them into several predefined intervals (e.g., deciles).

Step 3 Sample data points in the wild from each interval and

assign them a temporary class label (pseudo label). Retrieve

an equal number of data points in the training set from the

opposite class.

Step 4 Train a classifier to distinguish between the newly

pseudo-labelled data points and those with a ground-truth

label.

Step 5 Evaluate classifier on held-out set of data with

ground-truth labels (e.g., using any metric such as AUC).

A performant classifier provides evidence in support of the

pseudo-label. However, data points in each interval may be-

long to multiple classes, exhibiting class contamination. To

detect this contamination, we repeat these steps yet cycle

through the different pseudo-labels.

Pseudo-label discrepancy Calculate the discrepancy be-

tween the performance of the classifiers with different pseudo

labels. The greater the discrepancy between classifiers, the

less class contamination there is, and the more likely that the

data points belong to one class. We refer to this discrepancy

as the pseudo-label discrepancy or SUDO.

SUDO correlates with model performance on Stan-

ford diverse dermatology images dataset

We used SUDO to evaluate predictions made on the Stan-

ford diverse dermatology image (DDI) data13 (n : 656) (see

Description of datasets). We purposefully chose two AI mod-

els (DeepDerm14 and HAM1000015) that were performant

on their respective data (AUC = 0.88 and 0.92) and whose

performance degraded drastically when deployed on the DDI

data (AUC = 0.56 and 0.67), suggesting the presence of dis-

tribution shift.

Confirming previous findings, we found that these models

struggle to distinguish between benign (negative) and malig-

nant (positive) lesions in images. This is evident by the lack

of separability of the AI-based probabilities corresponding to

the ground-truth negative and positive classes (Fig. 2a and b).

We set out to determine whether SUDO can quantify this class

contamination (without ground-truth labels). By following the

steps of SUDO (see Overview of the SUDO framework), we

found that it correlates (ρ =−0.84 and −0.76 for DeepDerm

and HAM10000, respectively) with the proportion of positive

instances in each of the chosen probability intervals (Fig. 2c

and d). Such a finding, which holds even if we use a different

evaluation metric for SUDO (Supplementary Fig. 5), suggests

that SUDO can act as a reliable proxy for the accuracy of

predictions. Notably, this ability holds irrespective of the

underlying performance of the AI model being evaluated, as

evidenced by the high correlation values for the two models

with different performance metrics (AUC = 0.56 and 0.67).

SUDO informs model selection with Stanford diverse

dermatology images dataset
As a proxy for the accuracy of AI predictions, SUDO can

identify two tiers of predictions: those which are sufficiently

reliable for downstream analyses and others which are unre-

liable and might require further inspection by a human ex-

pert. This creates a trade-off between the completeness of AI

predictions (i.e., are all predictions included in downstream

analyses?) and the reliability of such predictions. Ideally, both

of these elements are maximized for AI predictions. We lever-

age this intuition and introduce the reliability-completeness

curve as a way of rank ordering models when ground-truth

annotations are unavailable (Fig. 2e, see Producing reliability-

completeness curve for details).

We found that the ordering of the performance of the mod-

els is consistent with that presented in previous studies13.

Specifically, HAM10000 and DeepDerm achieve an area un-

der the reliability-completeness curve (AURCC = 0.864 and

0.621, respectively) and, with ground-truth annotations, these

models achieve (AUC = 0.67 and 0.56). We note that the

emphasis here is on the relative ordering of models and not on

their absolute performance. These consistent findings suggest

that SUDO can help inform model selection on data in the

wild without annotations.

SUDO helps assess algorithmic bias without ground-
truth annotations

Algorithmic bias often manifests as a discrepancy in model

performance across two protected groups (e.g., male and fe-

male patients). Traditionally, this would involve comparing

AI predictions to ground-truth labels. Viewing SUDO as a

proxy for model performance, we hypothesized that it can help

assess such bias even without ground-truth labels. We tested

this hypothesis on the Stanford DDI dataset by stratifying

the AI predictions according to the skin tone of the patients

(Fitzpatrick scale I-II vs. V-VI) and implementing SUDO for

each of these stratified groups. A difference in the resultant

SUDO values would indicate a higher degree of class contam-

ination (and therefore poorer performance) for one group over

another. Having found that SUDOAUC = 0.60 and 0.58 for
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Figure 2. SUDO can be a reliable proxy for model performance on the Stanford diverse dermatology image dataset.

Two models (left column: DeepDerm, right column: HAM10000) are pre-trained on the HAM10000 dataset and deployed on

the entire Stanford DDI dataset. (a-b) Distribution of the prediction probability values produced by the two models

colour-coded based on the ground-truth label (negative vs. positive) of the data points. (c-d) Correlation of SUDO with the

proportion of positive data points in each probability interval. Results are shown for ten mutually-exclusive probability

intervals that span the range [0,1]. A strong correlation indicates that SUDO can be used to identify unreliable predictions. (e)

Reliability-completeness curves of the two models, where the area under the reliability-completeness curve (AURCC) can

inform the selection of an AI system without ground-truth annotations.

the two groups, respectively, we supported the validity of this

bias by using the ground-truth labels to calculate the negative

predictive value of the predictions (NPV). With NPV = 0.83

and 0.78, respectively, we found that both SUDO and the tra-

ditional approach (with ground-truth labels) identified a bias

in favour of patients with a Fitzpatrick scale of I-II; the main

distinction is that SUDO did not require ground-truth labels

for the dataset being evaluated. Moreover, these bias findings

are consistent with those reported in a previous study13.

SUDO correlates with model performance on

Camelyon17-WILDS histopathology dataset

We provide further evidence that SUDO can identify unre-

liable predictions on datasets that exhibit distribution shift.

Here, we trained a model on the Camelyon17-WILDS dataset

to perform binary tumour classification (presence vs. absence)

based on a single histopathological image, and evaluated the

predictions on the corresponding test set (n : 85,054) (see De-

scription of datasets). This dataset has been constructed such
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that the test set contains data from a hospital unseen during

training, and is thus considered in the wild.

We found that the trained model achieved an average ac-

curacy ≈ 0.85 despite being presented with images from an

unseen hospital. This is supported by the relative separability

of the class-specific distributions of the AI-based probabilities

(Fig. 3a). We then used SUDO to quantify the class contami-

nation at various probability intervals (Fig. 3b), finding that

it continues to correlate (ρ =−0.79) with the proportion of

positive instances in each of the chosen probability intervals.

SUDO can even be used with overconfident models

AI systems are prone to producing erroneous overconfident

predictions, and thereby making it difficult to rely on their

confidence scores alone to identify unreliable predictions. It

is in these settings where SUDO would add most value. To

demonstrate this, we first trained a natural language process-

ing (NLP) model to distinguish between negative (n : 1000)

and positive (n : 1000) sentiment in product reviews with dis-

tribution shift as part of the Multi-Domain Sentiment dataset16

(see Description of datasets). We showed that SUDO con-

tinues to correlate with model performance, pointing to the

applicability of the framework across data modalities. To

simulate an overconfident model, we then overtrained (i.e., ex-

tended training for an additional number of epochs) the same

NLP model, as confirmed by the more extreme distribution

of the prediction probability values (Supplementary Fig. 1b).

Notably, we found that SUDO continues to correlate well

with model performance despite the presence of overconfident

predictions (Supplementary Fig. 1h). This is because SUDO

leverages pseudo-labels to quantify class contamination and

is not exclusively dependent on confidence scores.

Exploring the limits of SUDO with simulated data
To shed light on the scenarios in which SUDO remains useful,

we conducted experiments on simulated data that we can

finely control (see Description of datasets). Specifically, we

varied the data in the wild to encompass distribution shift

(a) with the same two classes observed during training, (b)

with a severe imbalance (8 : 1) in the number of data points

from each class, and (c) alongside data points from a third

and never-seen-before class. As SUDO is dependent on the

evaluation of classifiers on held-out data (see Fig. 1, Step 5),

we also experimented with injecting label noise into such data.

We found that SUDO continues to strongly correlate with

model performance, even in the presence of a third class (|ρ|>
0.87, Supplementary Fig. 2). This is not surprising as SUDO

is designed to simpy quantify class contamination in each

probability interval, regardless of the data points contributing

to that contamination. However, we did find that SUDO

requires held-out data to exhibit minimal label noise, where

ρ = 0.99 → 0.33 upon randomly flipping 50% of the labels

in the held-out data to the opposite class. We also found that

drastically changing the relationship between class-specific

distributions of data points in the wild can disrupt the utility

of SUDO (Supplementary Fig. 3).

SUDO correlates with model performance on Flat-

iron Health ECOG Performance Status dataset

To demonstrate the applicability of SUDO to a range of

datasets, we investigated whether it also acts as a reliable

proxy for model performance on the Flatiron Health Eastern

Cooperative Oncology Group Performance Status (ECOG PS)

dataset. Building on previous work17, we developed an NLP

model to infer the ECOG PS, a value reflecting a patient’s

health status, from clinical notes of oncology patient visits

(see Methods for description of data and model).

In this section, we exclusively deal with data which (a)

do not exhibit distribution shift and (b) are associated with a

ground-truth label. The motivation behind these experiments

was to first demonstrate that we can learn an NLP model that

accurately classifies ECOG PS as a prerequisite for applying

SUDO to the target setting in which distribution shift exists

and ground-truth labels do not.

We found that the NLP model performs well in classify-

ing ECOG PS from clinical notes of oncology patient visits

(precision = 0.97), recall = 0.92, and AUC = 0.93). We hy-

pothesize that these results are driven by the discriminative

pairs of words that appear in clinical notes associated with

low and high ECOG PS. For example, typical phrases found

in low ECOG PS clinical notes include “normal activity” and

“feeling good” whereas those found in high ECOG PS clinical

notes include “bedridden” and “cannot carry”. This strong

discriminative behaviour can be seen by the high separabil-

ity of the two prediction probability distributions (Fig. 4a).

Although it was possible to colour-code these distributions

and glean insight into the degree of class contamination, this

is not possible in the absence of ground-truth labels. SUDO

attempts to provide this insight despite the absence of ground-

truth labels.

We found that data points with p ≈ 0 are more likely to

belong to the low ECOG PS label than to the high ECOG

PS label, and vice versa for data points with p ≈ 1. This is

evident by the large absolute SUDOAUC values at either end

of the probability spectrum (Fig. 4c). This is not surprising

and is in line with expectations. Consistent with findings pre-

sented earlier, SUDO also correlates with model performance

on this dataset. This can be seen by the strong correlation

(|ρ|= 0.95) between SUDO and the proportion of positive in-

stances in each of the chosen probability intervals. This bodes

well for when we ultimately use SUDO to identify unreliable

predictions without ground-truth annotations.

Sensitivity analysis of SUDO’s hyperparameters

To encourage the adoption of SUDO, we conducted several

experiments on the Flatiron Health ECOG PS dataset to mea-

sure SUDO’s sensitivity to hyperparameters. Specifically, we

varied the number of data points sampled from each proba-

bility interval (Fig. 1b, Step 3), the type of classifier used to

distinguish between pseudo- and ground-truth labelled data

points (Fig. 1b, Step 4), and the amount of label noise in the

held-out data being evaluated on (Fig. 1b, Step 5). We found
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Figure 3. SUDO can be a reliable proxy for model performance on the Camelyon17-WILDS histopathology dataset. (a)

Distribution of the prediction probability values produced by a model colour-coded based on the ground-truth label (negative vs.

positive) of the data points. (b) SUDO values colour-coded according to the most likely label of the predictions in each

probability interval.

that reducing the number of sampled data points (from 200

to just 50) and using different classifiers (logistic regression

and random forest) continued to produce a strong correlation

between SUDO and model performance (|ρ| > 0.94) (Sup-

plementary Fig. 4). Such variations, however, altered the

directionality (net positive or negative) of the SUDO values

(from one experiment to the next) in the probability intervals

with a high degree of class contamination. For example, in

the interval 0.20 < p < 0.25 (Fig. 4a), SUDOAUC = 0.05 and

SUDOAUC = −0.05 when sampling 50 and 200 data points,

respectively. We argue that such an outcome does not practi-

cally affect the interpretation of SUDO, as it is the absolute

value of SUDO that matters most when it comes to identifying

unreliable predictions. We offer guidelines on how to deal

with this scenario in a later section.

Using SUDO to identify unreliable predictions on
Flatiron Health ECOG Performance Status dataset

To further illustrate the utility of SUDO, we deployed the

NLP model on the Flatiron Health ECOG PS data in the wild

without ground-truth annotations. It is likely that such data

(clinical notes without ECOG PS labels) follow a distribution

that is distinct from that of the training data (clinical notes

with ground-truth ECOG PS labels). This is supported by

the distinct distributions of the prediction probability values

across these datasets (see Fig 4a and b). Such a shift can

make it ambiguous to identify unreliable predictions based

exclusively on confidence scores. To resolve this ambiguity,

we implemented SUDO for ten distinct probability intervals,

choosing more granular intervals in the range 0 < p < 0.40

to account for the higher number of predictions (Fig. 4d).

These results suggest that predictions with 0 < p < 0.20 are

more likely to belong to the low ECOG PS class than to the

high ECOG PS class. The opposite holds for predictions with

0.30 < p < 1. Such insight, which otherwise would have been

impossible without ground-truth annotations, can now better

inform the identification of unreliable predictions.

Validating SUDO-guided predictions with a survival
analysis
To gain further confidence in SUDO’s ability to identify un-

reliable predictions, we leveraged the known relationship be-

tween ECOG PS and mortality: patients with a higher ECOG

PS are at higher risk of mortality18. As such, we can compare

the overall survival estimates of patients for whom the AI sys-

tem’s output probabilities fell in particular quantiles to those

of patients with known ECOG PS values (e.g., patients in the

training set). The intuition is that if such overall survival esti-

mates are similar to one another, then we can become more

confident in the ECOG PS labels that were newly assigned

to clinical notes from oncology patient visits. While this ap-

proach makes the assumption that the ECOG PS label is the

primary determinant of overall survival, we acknowledge that

additional confounding factors, beyond the ECOG PS label,

may also play a role19.

For patients in the training set of the Flatiron Health ECOG

Performance Status dataset, we present their survival curves

stratified according to whether they have a low or high ECOG

PS (Fig. 4e). For patients in the data in the wild, for whom we

do not have a ground-truth ECOG PS label, we first split them

into three distinct groups based on the SUDO value (Fig. 4d),

employing the intuition that a higher absolute value is reflec-

tive of more reliable predictions (e.g., |SUDOAUC| > 0.05).

We refer to these groups based on their corresponding predic-

tions: low ECOG PS group (0 < p ≤ 0.2, n : 12,603), high

ECOG PS group (0.5 ≤ p < 1.0, n : 552), and an uncertain

ECOG PS group (0.2< p< 0.5, n : 3729). As demonstrated in

an earlier section, the chosen SUDO threshold creates a trade-

off between the reliability and completeness of the predictions.

We present the group-specific survival curves (Fig. 4f). To

control for confounding factors, we only considered data sam-

ples associated with the first line of therapy where patients are
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Figure 4. SUDO correlates with model performance and can identify unreliable predictions on the Flatiron Health

ECOG Performance Status data without ground-truth annotations. Results are shown for the (left column) test set with

ground-truth annotations and (right column) data in the wild without ground-truth annotations. (a-b) Distribution of the

prediction probability values produced by an NLP model. (c-d) SUDO values colour-coded according to the most likely label

of the predictions in each probability interval. (e-f) Survival curves for patient groups identified via (e) ground-truth

annotations and (f) SUDO values: we identify reliable low ECOG PS predictions (0 < p < 0.2) and high ECOG PS predictions

(0.5 < p < 1.0), and unreliable predictions (0.2 < p < 0.5). (g-h) Correlation between SUDO and proportion of positive

instances in each probability interval (using ground-truth annotations) and the median survival time of patients in each

probability interval (without ground-truth annotations).
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provided their first medication in their treatment pathway (see

Methods for more details).

There are two main takeaways. First, and in alignment

with our expectations and established clinical observations,

we found that patients in the low ECOG PS group do indeed

exhibit a longer median survival time than patients in the high

ECOG PS group (1.87 vs. 0.68 years, respectively) (Fig. 4f).

Second, the chosen probability intervals based on which the

survival analysis was stratified reasonably identified distinct

patient cohorts. This is evident by the distinct survival curves

of the patient cohorts with 0 < p ≤ 0.2 and 0.5 ≤ p < 1 and

their similarity to the survival curves of patients with a ground-

truth ECOG PS label (Fig. 4e). For example, the median

survival estimates of these two patient cohorts are 2.07 (vs.

1.87) and 0.95 (vs. 0.68) years, respectively. Although we do

not expect such values to be perfectly similar, due to potential

hidden confounding factors we cannot control for, they are

similar enough to suggest that these newly-identified patient

cohorts correspond to low and high ECOG PS patient cohorts.

Demonstrating that SUDO correlates with a meaningful

variable can engender trust in its design. When ground-truth

annotations are available, we chose this variable to be the pro-

portion of positive instances in each probability interval (i.e.,

accuracy of predictions). Without ground-truth annotations,

we chose the median survival time of patients in each interval.

Specifically, we quantified the correlation between SUDO

and the median survival time of patient cohorts in each of the

ten chosen probability intervals (Fig. 4h). We found that that

these two variables are indeed strongly correlated (|ρ|= 0.97).

Such a finding suggests that SUDO can provide useful insight

into the clinical characteristics of patient cohorts in datasets

without ground-truth labels (see Discussion for benefits and

drawbacks of such an approach).

Practical guidelines for using SUDO

We have made the case and presented evidence that SUDO

can evaluate AI systems without ground-truth annotations.

We now take stock of our findings to offer practical guide-

lines around SUDO. First, we demonstrated that SUDO works

well across multiple data modalities (images, text, simulation).

We therefore recommend using SUDO irrespective of the

modality of data a model is evaluated on. Second, we showed

that SUDO is agnostic to the neural network architecture

of the AI system being evaluated (convolutional for images,

feed-forward for text). The only requirement is that the neu-

ral network returns a probabilistic value. Third, we showed

that SUDO can deal with as few as 50 data points sampled

from each probability interval (on the Stanford DDI dataset).

Although sampling too few data points did not change the

absolute value of SUDO, and thereby reliably quantifying

class contamination, it did alter its directionality (negative or

positive), affecting the perceived proportion of the majority

class in a set of predictions. To avoid being misled by this

behaviour, we recommend sampling at least 50% of the data

points in each probability interval in order to capture a rep-

resentative set of predictions. We also note that the absolute

value of SUDO should take precedent for determining unreli-

able predictions. Only if that value is large enough (i.e., low

class contamination) should its directionality be considered.

Fourth, we showed that SUDO is unperturbed by an imbal-

ance in the number of data points from each class or by the

presence of a third-and-unseen class (on the simulated dataset).

If data in the wild are suspected to exhibit these features, then

SUDO can still be used. Fifth, we showed that SUDO is

sensitive to the quality of the labels in the held-out set of

data. As such, we recommend curating a dataset with minimal

label noise when using SUDO. Furthermore, we showed that

SUDO produces consistent results irrespective of the classifier

used to distinguish between pseudo-labelled and ground-truth

data points and of the metric used to evaluate these classifiers.

We therefore recommend using a lightweight classifier (to

speed up computation) and the metric most suitable for the

task at hand.

Discussion

The competence of a trained AI system has long been assessed

on a held-out set of data, with the assumption that such data

are representative of data in the wild. When this assumption

is violated, as is often the case with clinical data, it becomes

difficult to trust the predictions made by an AI system. The ab-

sence of ground-truth annotations further hampers the ability

to confirm the reliability of such predictions.

We have shown that SUDO can comfortably assess the

reliability of predictions of AI systems deployed on data with-

out ground-truth annotations. Notably, we demonstrated that

SUDO can supplement confidence scores to identify unre-

liable predictions, help in the selection of AI systems, and

assess the algorithmic bias of such systems despite the ab-

sence of ground-truth annotations. Although we have pre-

sented SUDO primarily for clinical AI systems and datasets,

we believe its principles can be applied to almost any other

discipline involving a probabilistic model.

Compared with previous studies, our study offers a wider

range of applications for predictions on data without ground-

truth annotations. These applications include identifying unre-

liable predictions, selecting favourable models, and assessing

algorithmic bias. Previous work tends to be more model-

centric than SUDO, focusing on estimating model perfor-

mance11, 12, 20, 21 and assessing algorithmic bias22 using both

labelled and unlabelled data. It therefore overlooks the myr-

iad data-centric decisions that would need to be made upon

deployment of an AI system, such as identifying unreliable

predictions. The same limitation holds for other studies that

attempt to account for verification bias23, 24, a form of distribu-

tion shift brought about by only focusing on labelled data. In

contrast, SUDO provides the optionality of guiding decisions

at the model level (e.g., relative model performance) and at

the data level (e.g., identifying unreliable predictions).

Most similar to our work is the concept of reverse testing25

and reverse validation26, 27 where the performance of a pair
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of trained AI systems is assessed by deploying them on data

without annotations, pseudo-labelling these data points, and

training a separate classifier to distinguish between these data

points. The classifier that performs better on a held-out set of

labelled data is indicative of higher quality pseudo-labels and,

by extension, a favourable AI system. SUDO differs from this

line of work in two main ways. First, reverse testing assigns

a single AI-based pseudo-label to each data point in the wild

whereas we assign all possible pseudo-labels to that data point

(through distinct experiments) in order to determine the most

likely ground-truth label. Second, given the probabilistic out-

put of an AI system, reverse testing performs pseudo-labelling

for data points that span the entire probability spectrum for the

exclusive purpose of model selection. As such, it cannot be

used for identifying unreliable predictions. Notably, previous

work heavily depends on the assumption that the held-out

set of data is representative of data in the wild. SUDO cir-

cumvents this assumption by operating directly on data in the

wild.

SUDO’s ability to identify unreliable predictions has far-

reaching implications. From a clinical standpoint, data points

whose predictions are flagged as unreliable can be sent for

manual review by a human expert. By extension, and from a

scientific standpoint, this layer of human inspection can im-

prove the integrity of research findings. We note that SUDO

can be extended to the multi-class setting (e.g., c > 2 classes)

by cycling through all of the pseudo-labels and retrieving data

points from the mutually-exclusive classes (Fig. 1b, Step 3)

to train a total of c classifiers (Fig. 1b, Step 4). The main

difference to the binary setting is that SUDO would now be

calculated as the maximum difference in performance across

all classifiers (Fig. 1b, Step 5). SUDO’s ability to select

favourable (i.e., more performant) AI systems implies the

deployment of more accurate systems that contribute to im-

proved patient care. SUDO’s ability to assess algorithmic bias,

which was not previously possible for data without ground-

truth labels, can contribute to the ethical deployment of AI

systems. This ensures that AI systems perform as expected

when deployed on data in the wild. We note that SUDO

can also be used to assess algorithmic bias across multiple

groups by simply implementing SUDO for data points from

each group. Bias would still manifest as a discrepancy in the

SUDO value across the groups. Overall, our study offers a

first step towards a framework of inferring clinical variables

which suffer from low completeness in the EHR (such as

ECOG PS) in the absence of explicit documentation in their

charts and ground-truth labels.

There are several challenges that our work has yet to ad-

dress. First, SUDO cannot identify the reliability of a predic-

tion for an individual data points. This is because we often

calculated SUDO as a function of prediction probability in-

tervals. This is in contrast to previous work on uncertainty

quantification and selective classification. While SUDO can

be applied to individual data points, this is not practical as it

depends on the learning of predictive classifiers, which typi-

cally necessitate a reasonable number of training data points.

We do note, though, that SUDO was purposefully designed

to assess the relative reliability of of predictions across prob-

ability intervals. It is also worth noting that SUDO may be

considered excessive if the amount of data in the wild is small

and can be annotated by a team of experts with reasonable

effort. However, when presented with large-scale data in

the wild, SUDO can yield value by acting as a data triage

mechanism, funneling the most unreliable predictions for fur-

ther inspection by human annotators. In doing so, it stands

to reduce the annotation burden placed on such annotators.

Furthermore, despite having presented evidence of SUDO’s

utility on multiple real-world datasets with distribution shift,

we have not explored how SUDO would behave for the entire

space of possible distribution shifts. It therefore remains an

open question whether a particular type of distribution shift

will render SUDO less meaningful. On some simulated data,

for example, we found that SUDO is less meaningful upon

introducing drastic label noise or changing the class-specific

distributions of the data points in the wild. More generally,

we view SUDO merely as one of the first steps in informing

decision-making processes. Subsequent analyses, such as

statistical significance tests, would be needed to gain further

confidence in the resulting conclusions.

To validate SUDO without ground-truth annotations, we

measured its correlation with median survival time, a clinical

outcome with a known relationship to ECOG PS. This ap-

proach was made possible by leveraging domain knowledge.

In settings where such a relationship is unknown, we recom-

mend identifying clinical features in the labelled data that are

unique to patient cohorts. These features can include the type

and dosage of medication patients receive and whether or not

they were enrolled in a clinical trial. A continuous feature

(e.g., medication dosage) may be preferable to a discrete one

(e.g., on or off medication) in order to observe a graded re-

sponse with the prediction probability intervals. If identifying

one such feature is difficult and time-consuming, a data-driven

alternative could involve clustering patients in the labelled

data according to their clinical characteristics. Distinct clus-

ters may encompass a set of features unique to patient cohorts.

Prediction on data in the wild can then be assessed based on

the degree to which they share these features. On the other

hand, the more severe the distribution shift, the less likely it is

that features will be shared across the labelled and unlabelled

data.

There are also important practical and ethical considera-

tions when it comes to using SUDO. Without SUDO, human

experts would have to painstakingly annotate all of the data

points in the wild. Such an approach does not scale as datasets

grow in size. Moreover, the ambiguity of certain data points

can preclude their annotation by human experts. SUDO offers

a way to scale the annotation process while simultaneously

flagging unreliable predictions for further human inspection.

However, as with any AI-based framework, over-reliance

on SUDO’s findings can pose risks particularly related to
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mislabelling data points. This can be mitigated, in some re-

spects, by choosing a more conservative operating point on

the reliability-completeness curve.

Moving forward, we aim to expand the application areas of

SUDO to account for the myriad decisions that AI predictions

inform. This could include using SUDO to detect distribution

shift in datasets, thereby informing whether, for example, an

AI system needs to be retrained on updated data. Another line

of research includes improving the robustness of SUDO to

label noise, expanding its applicability to scientific domains in

which label noise is rampant. We look forward to seeing how

the community leverages SUDO for their own applications.

Methods

Description of datasets

Stanford diverse dermatology images

The Stanford diverse dermatology images (DDI) dataset con-

sists of dermatology images collected in the Stanford Clinics

between 2010 and 2020. These images (n : 656) reflect either

a benign or malignant skin lesion from patients with three

distinct skin tones (Fitzpatrick I-II, III-IV, V-VI). For further

details, we refer interested readers to the original publica-

tion13. We chose this as the data in the wild due to a recent

study reporting the degradation of several models’ perfor-

mance when deployed on the DDI dataset. These models

(see Description of models) were trained on the HAM10000

dataset, which we treated as the source dataset.

HAM10000 dataset

The HAM10000 dataset consists of dermatology images col-

lected over 20 years from the Medical University of Vi-

enna and the practice of Cliff Rosendahl15. These images

(n : 10015) reflect a wide range of skin conditions ranging

from Bowen’s disease and basal cell carcinoma to melanoma.

In line with a recent study13, and to remain consistent with the

labels of the Stanford DDI dataset, we map these skin condi-

tions to a binary benign or malignant condition. We randomly

split this model into a training and held-out set using a 80 : 20

ratio. We did not use a validation set as publicly-available

models were already available and therefore did not need to

be trained from scratch.

Camelyon17-WILDS dataset

The Camelyon17-WILDS dataset consists of histopathology

patches from 50 whole slide images collected from 5 different

hospitals28. These images (n : 450,000) depict lymph node

tissue with or without the presence of a tumour. We use the

exact same training (n : 302,436), validation (n : 33,560),
and test (n : 85,054) splits constructed by the original au-

thors3. Notably, the test set contains patches from a hospital

whose data was not present in the training set. This setup is

therefore meant to reflect the real-world scenario in which

models are trained on data from one hospital and deployed on

those from another. We chose this dataset as it was purpose-

fully constructed to evaluate the performance of models when

presented with data distribution shift.

Simulated dataset

We generated a dataset to include a training and held-out set,

and data in the wild. To do so, we sampled data from a two-

dimensional Gaussian distribution (one for each of the two

classes) with diagonal covariance matrices. Specifically, data

points from class 1 (x1) and class 2 (x2) were sampled as

follows: x1 ∼ N ([1,1], [0.8,0.8]), x2 ∼ N ([2,2], [0.1,0.1]).
We assigned 500 and 200 data points to the training and held-

out sets. As with the DDI dataset, we did not create a valida-

tion set because there was no need to optimize the model’s

hyperparameters. As for the data in the wild (xW ), these

were sampled from different distributions based on the experi-

ment we were conducting. In the out-of-domain setting with

and without an imbalance in the number of data points from

each class, xW
1 ∼N ([2,−1], [1,1]) and xW

2 ∼N ([3,0], [1,1]).
Data points from a third class were sampled as follows:

xW
3 ∼ N ([3,−1], [1,1]). We assigned 1000 data points to

each class for the data in the wild, except for in the label

imbalance experiment where we assigned 4000 data points

to class 1 and 500 data points to class 2, reflecting an 8 : 1

ratio. For the scenario in which we inject label noise into the

held-out dataset, we randomly flip 50% of the labels to the

opposite class.

Multi-Domain Sentiment

The multi-domain sentiment dataset consists of reviews of

products on Amazon. These products span four different

domains from books and electronics to kitchen and DVDs.

Each review is associated with either a negative or positive

label reflecting the sentiment of the review. In each domain,

there are n = 1000 reviews reflecting positive and negative

sentiment (n = 2000 total). When conducting experiments

with this dataset, we split the reviews in each domain into

training, validation, and test sets using a 60 : 20 : 20 split.

Flatiron Health ECOG Performance Status (PS)

The nationwide electronic health record (EHR)-derived lon-

gitudinal Flatiron Health Research database, comprises de-

identified patient-level structured and unstructured data cu-

rated via technology-enabled abstraction, with de-identified

data originating from ~280 US cancer clinics (~800 sites of

care)29. The majority of patients in the database originate from

community oncology settings; relative community/academic

proportions may vary depending on study cohort. Our dataset,

which we term the Flatiron Health ECOG Performance Sta-

tus database, included 20 disease specific databases avail-

able at Flatiron Health as of October 2021 including acute

myeloid leukemia (AML), metastatic breast cancer (mBC),

chronic lymphocytic leukemia (CLL), metastatic colorectal

cancer (mCRC), diffuse large B-cell lymphoma (DLBCL),

early breast cancer (eBC), endometrial cancer, follicular lym-

phoma (FL), advanced gastro-esophageal cancer (aGE), hepa-

tocellular carcinoma (HCC), advanced head and neck cancer

(aHNC), mantle cell lymphoma (MCL), advanced melanoma

(aMel), multiple myeloma (MM), advanced non-small cell

lung cancer (aNSCLC), ovarian cancer, metastatic pancre-
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atic cancer, metastatic prostate cancer, metastatic renal-cell

carcinoma (mRCC), small cell lung cancer (SCLC), and ad-

vanced urothelial cancer. For these patients, the database

contains dates of line of therapy (LOT) which is a sequence of

anti-neoplastic therapies that a patient receives following the

disease cohort inclusion date. The start and end dates of the

distinct lines of therapy were captured from both structured

and unstructured data sources in the EHR via previously-

developed and clinically-informed algorithms. Furthermore,

our dataset also contains unstructured clinical notes generated

by clinicians that are time-stamped with the visit date (e.g.,

June 1st, 2017).

ECOG PS labels ECOG PS is a clinical variable that re-

flects the performance status of an oncology patient. It ranges

from 0 (patient has no limitations in mobility) to 5 (patient

deceased)30 and has been largely used within the context of

clinical trials but is also often used by physicians in clinical

practice as they make treatment decisions for patients31, 32.

Additionally, in the context of real world evidence, ECOG

PS can be used to identify study cohorts of interest (typically

those with ECOG PS < 233).

In the Flatiron Health ECOG Performance Status database,

the ECOG PS is captured as part of the EHR in either a

structured or unstructured form, as outlined next (see Table 1).

Structured ECOG PS refers to ECOG values captured in the

structured fields of the EHR, such as from drop down lists.

In contrast, extracted and abstracted ECOG PS both refer to

ECOG values that are captured in unstructured oncologist-

generated clinical notes in the EHR. Extracted ECOG PS

implies that an NLP symbol-matching (regular expressions)

algorithm was used to extract it from clinical notes. This

regular expression algorithm was previously developed by

researchers at Flatiron Health. Finally, abstracted ECOG PS

implies that a human abstractor was able to extract it through

manual inspection of clinical notes.

ECOG task description We developed a model which lever-

ages oncology clinical notes to infer a patient’s ECOG PS

within a window of time (e.g., 30 days) prior to the start of

distinct lines of therapy. In oncology research, it is often im-

portant to know a patient’s ECOG PS at treatment initiation.

This allows researchers to investigate the interplay between

ECOG PS and different lines of therapy. To achieve this, we

consolidated clinical notes within a window of time prior to

distinct line of therapy start dates, and combined ECOG PS

values (where applicable) using the following strategies.

Combining clinical notes across time. We hypothesized

that clinical notes up to one month (30 days) before the start

date of a line of therapy would contain sufficient information

about the performance status of the patient to facilitate the

inference of ECOG PS. Given that a patient’s ECOG PS can

fluctuate over time, retrieving clinical notes further back be-

yond a month would have potentially introduced superfluous,

or even contradictory, information that exacerbated an NLP

model’s ability to accurately infer ECOG PS. Conversely, ex-

Source of ECOG PS

Scenario
Structured

Unstructured

Extracted Abstracted

A list ✗ human

B ✗ regex human

C ✗ ✗ human

D ✗ ✗ ✗

Table 1. Examples of potential sources of the ECOG PS

label. The ECOG PS clinical variable can be structured;

derived from a drop-down list, extracted; through the use of a

Flatiron-specific regular expression (regex) algorithm, or

abstracted; through the manual inspection of clinical notes by

human abstractors. ✗indicates the absence of an ECOG PS

value from a particular source. The development of an NLP

model to infer the ECOG PS is therefore most valuable when

none of the the aforementioned sources can produce an

ECOG PS value (Scenario D).

clusively retrieving clinical notes too close to the start date of

the LOT might avoid picking up on valuable information fur-

ther back in time. Based on this intuition, we concatenated all

of a patient’s clinical notes time-stamped up to and including

30 days before the start date of each of their lines of therapy.

Combining ECOG PS from multiple sources. A particu-

lar line of therapy for a patient may sometimes be associated

with a single ECOG PS (e.g., in structured form) or multiple

ECOG PS values (e.g., in extracted and an abstracted form).

When multiple sources of ECOG PS scores were available, we

consolidated them by only considering the largest value (e.g.,

assign ECOG PS 1 if structured ECOG PS = 0 and abstracted

ECOG PS = 1).

Moreover, and without loss of generality, we combined

ECOG PS such that [0,1] map to low ECOG PS and [2,3,4]
map to high ECOG PS. We chose this binary bucketing since

clinical trials in medical oncology typically only include pa-

tients with an ECOG PS < 2. The distribution of low and high

ECOG PS scores in our study cohort was 82 : 18.

Description of data sample. Given the above two consol-

idation strategies, each sample of data our NLP model was

exposed to consisted of (a) concatenated clinical notes for a

patient up to 30 days before an LOT and, where available, (b)

an ECOG PS label associated with that LOT. Such samples

are referred to as labelled. We refer to samples of concate-

nated clinical notes without an associated ECOG PS label (for

details on why, see next section on missingness of ECOG PS)

as unlabelled. It is in this scenario where inferring a patient’s

ECOG PS is most valuable. (see Table 1).

Missingness of ECOG PS There exist a myriad of reasons

behind the missingness of the ECOG PS score. For example,

in some cases, documenting an ECOG PS score may simply

not be a part of a clinician’s workflow or may be difficult

to document. Alternatively, not documenting an ECOG PS
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score could be directly related to the qualitative assessment

of a patient’s health status where its absence could suggest an

underlying low ECOG PS value. These reasons, in a majority

of settings, imply that the unlabelled clinical notes might

follow a distribution that is different from that followed by

labelled clinical notes. This discrepancy is also known as

covariate shift. As such, we are faced with unlabelled data that

exhibit distribution shift. Although our framework’s design

was motivated by these characteristics, quantifying its utility

exclusively on this dataset is challenging due to the absence

of ground-truth ECOG PS labels.

Samples with and without ECOG PS labels Our first

study cohort consists of n = 117,529 samples associated

with ECOG PS labels. As outlined above, each sample con-

sists of concatenated clinical notes before a particular line

of therapy for a patient. When conducting experiments with

this cohort, we split the data into training, validation, and test

sets using a 70 : 10 : 20 split. This amounted to n = 81,909,

n = 11,806, n = 23,814 samples, respectively. Our second

study cohort consists of n = 33,618 samples not associated

with ECOG PS labels.

Description of models

Models for image-based datasets

For the image-based datasets (Stanford DDI and HAM10000),

we used two publicly-available models (DeepDerm14 and

HAM1000015) that had already been trained on the

HAM10000 dataset. We refer readers to the respective studies

for details on how these models were trained. In this study,

we directly used these models (without retraining) as part

of the SUDO experiments. As for the Camelyon17-WILDS

dataset, we trained a DenseNet121 model using the default

hyperparameters recommended by the original authors3.

Models for language-based datasets

For language-based datasets (Multi-Domain Sentiment and

Flatiron Health ECOG PS), we developed a neural network

composed of three linear layers which received text as input

and returned the probability of it belonging to the positive

class, which is positive sentiment for the Multi-Domain Sen-

timent dataset, and high ECOG PS for the Flatiron Health

ECOG Performance Status dataset. An in-depth description

of how we pre-processed the input text can be found in the

Methods section.

Pre-processing of text We represented text via a bag of

words (BoW). This first involved identifying a fixed vocabu-

lary of pairs of words (also known as bigram tokens) present in

the training set. After experimenting with a different number

of tokens (e.g., 500, 1000, 5000, 10000), we decided to focus

on the 1000 most common tokens as we found that number

to provide enough information to learn a generalizable NLP

model while not being computationally intensive. The remain-

ing experiments did not result in improved performance. Each

document was thus converted into a 1000-dimensional repre-

sentation (1 dimension for each token) where each dimension

reflected the frequency of a particular token in the document.

The token mean and standard deviation was calculated across

training samples in order to standardize each bigram represen-

tation. We found this to result in slightly better performance

than settings without input scaling.

Details of SUDO framework

SUDO is a framework that helps identify unreliable predic-

tions, select favourable AI models, and assess the algorithmic

bias of such systems on data without ground-truth labels. To

implement SUDO, we recommend following the steps out-

lined in the Results (Fig.1b). Here, we provide additional

details and intuition about SUDO, mentioning how they align

with the previously-outlined steps.

Let us assume we have a probabilistic model that returns a

single value reflecting the probability, p, that an input belongs

to the positive class (e.g., high ECOG PS in the Flatiron

Health ECOG PS dataset). We can generate a distribution of

such probability values for all data points and discretize the

distribution in probability intervals (Fig. 1b, Step 1 and Step

2).

Sample data points

From each probability interval p ∈ (p1, p2] where p1 < p2,

we sampled a subset of the data points (Fig. 1b, Step 3). To

avoid sampling more data points from one probability interval

than from another, and potentially affecting the reliability of

estimates across intervals, we fixed the number of data points,

m, to sample from each interval. Specifically, m was chosen

based on the lowest number of data points within an interval,

across all probability intervals. For example, if the interval p∈
(0.4,0.5] contains the lowest number of data points (e.g., 50),

then we sample m = 50 data points from each interval. This

also ensures that we sample data points without replacement

to avoid a single data point from appearing multiple times in

our experiments and biasing our results. Next, we assigned

these sampled data points a temporary label, also known as a

pseudo-label, hypothesizing that they belong to a certain class

(e.g., class 0).

Train classifier

We then trained a classifier, gφ , to distinguish between such

newly-labelled data points and data points with a ground-truth

label from the opposite class (e.g., class 1) (Fig. 1b, Step 4).

It is worthwhile to mention that this classifier need not be

the exact same model as the one originally used to perform

inference (i.e., gφ ̸= fθ ). The prime desiderata of the classifier

are that it (i) is sufficiently expressive such that it can discrim-

inate between positive and negative examples and (ii) can

ingest the input data. Such a modular approach, where one

model is used for the original inference (Fig. 1b, Step 1) and

another is used to distinguish between positive and negative

examples ((Fig. 1b, Step 4) is less restrictive for researchers

and can obviate the need to (re)train potentially computation-

ally expensive inference models. This line of argument also

extends to settings with different data modalities (e.g., im-
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ages, time-series, etc.), and, as such, makes SUDO agnostic

to the modality of the data used for training and evaluating

the model.

Evaluate classifier

After training gφ , we evaluated it on a held-out set of data

comprising data points with ground-truth labels (from both

class 0 and class 1) (Fig. 1b, Step 5). The intuition here is that

a classifier which can successfully distinguish between these

two classes, by performing well on the held-out set of data, is

indicative that the training data and the corresponding ground-

truth labels are relatively reliable. Since the data points from

class 1 are known to be correct (due to our use of ground-truth

labels), then a highly-performing classifier would suggest that

the class 0 pseudo-labels of the remaining data points are

likely to be correct. In short, this step quantifies how plausible

it is that the sampled unlabelled data points belong to class 0.

As presented, this approach determines how plausible it

is that the sampled set of data points in some probability

interval, p ∈ (p1, p2], belongs to class 0. It is entirely possible,

however, that a fraction of these sampled data points belong

to the opposite class (e.g., class 1). We refer to this mixture

of data points from each class as class contamination. We

hypothesized (and indeed showed) that the degree of this class

contamination increases as the probability output, p, by an AI

system steers away from the extremes (p ≈ 0 and p ≈ 1). To

quantify the extent of this contamination, however, we also

had to determine how plausible it was that the sampled set of

data points belong to class 1, as we outline next.

Cycle through the pseudo-labels

We repeated the above approach (Fig. 1b, Steps 3, 4, and 5)

however with two distinct changes. First, we pseudo-labelled

the sampled data points with class 1 (instead of class 0). In

doing so, we are hypothesizing that these data points belong to

class 1. Second, we trained a classifier to distinguish between

such newly-labelled data points and data points with ground-

truth labels from class 0.

When experimenting with the distinct pseudo-labels, we

always sample the same set of data points, as enforced by

a random seed. Doing so ensures that any difference in the

predictive performance of the learned classifiers, gφ , is less

attributable to differences in the sampled data points and, in-

stead, more attributable to the pseudo-labels that we have

assigned. Moreover, to ensure that our approach is not con-

strained by a particular subset of sampled data points, we

repeat this entire process multiple (k = 5) times, each time

sampling a different subset of data points from each prob-

ability interval, as enforced by a random seed (e.g., 0 to 4

inclusive).

Deriving the pseudo-label discrepancy

The discrepancy between, and ranking of, the classifier per-

formances above is indicative of data points that are more

likely to belong to one class than another. Concretely, if the

classifier, gφ , achieves higher performance when presented

with sampled data points that are pseudo-labelled as class 0

than as class 1, then the set of pseudo-labelled data points are

more likely to belong to class 0. We refer to this discrepancy

in performance under different scenarios of pseudo-labels as

the pseudo-label discrepancy, or SUDO.

Implementation details of SUDO experiments

SUDO involves selecting several hyperparameters. These can

include the granularity and number of probability intervals,

the number of data points to sample from each probability

interval, the number of times to repeat the experiment, and

the type of classifier to use. We offer guidelines on how to

select these hyperparameters in the Results.

Stanford DDI dataset For the DeepDerm model (Fig 2a),

we selected ten mutually-exclusive and equally-sized probabil-

ity intervals in the range 0< p< 1, and sampled 10 data points

from each probability interval. For the HAM10000 model

(Fig 2b), we selected ten mutually-exclusive and equally-sized

probability intervals in the range 0 < p < 0.5, and sampled

50 data points from each probability interval. In the latter set-

ting, we chose a smaller probability range and more granular

probability intervals to account for the high concentration of

data points as p → 0.

To amortize the cost of training classifiers as part of the

SUDO experiments, we extracted image representations of-

fline (before the start of the experiments) and stored them for

later retrieval. To capture a more representative subset of the

data points and obtain a better estimate of the performance

of these classifiers, we repeated these experiments 5 times

for each probability interval and pseudo-label. To accelerate

the experiments, we used a lightweight classifier such as a

logistic regression, discovering that more complex models

simply increased the training overhead without altering the

findings. Unless otherwise noted, we adopted this strategy for

all experiments.

Camelyon17-WILDS dataset We selected eleven mutually-

exclusive and equally-sized probability intervals in the range

0.10 < p < 0.75 which was chosen based on where the AI-

based probability values were concentrated. We sampled 1000

data points from each probability interval. To remain consis-

tent with the other experiments in this study, we used the pro-

vided in-distribution validation set as the held-out set (Fig. 1,

Step 5). As with the Stanford DDI dataset, to minimize the

cost of conducting the SUDO experiments, we first extracted

and stored the image representations of the histopathology

patches using the trained DenseNet121 model. We otherwise

followed the same approach as that mentioned above.

Multi-Domain Sentiment dataset We also selected ten

mutually-exclusive and equally-sized probability intervals in

the range 0 < p < 1, and sampled 50 and 10 data points from

each probability interval when dealing with a network that

was not overconfident and one that was trained to be over-

confident. We sampled fewer data points in the latter setting

because prediction probability values were concentrated at
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the extreme ends of the probability range (p → 0 and p → 1),

leaving fewer data points in the remaining probability inter-

vals. As demonstrated in the Results, SUDO can deal with

such data-scarce settings.

Simulated dataset We selected ten mutually-exclusive and

equally-sized probability intervals in the range 0 < p < 1, and

sampled 50 data points from each probability interval.

Flatiron Health ECOG PS dataset On the Flatiron Health

ECOG Performance Status dataset with ECOG PS labels, we

sampled 200 data points from each probability interval. This

value was chosen to capture a sufficient number of predic-

tions from each probability interval without having to sample

with replacement. On the Flatiron Health ECOG Performance

Status dataset without ECOG PS labels (data in the wild),

we sampled 500 data points from each interval in the range

(0,0.45] and 100 data points from each interval in the range

(0.45,1]. This was due to the skewed distribution of the prob-

ability values generated in such a setting (see Fig. 4b).

Implementation details of algorithmic bias experi-

ment

To demonstrate that SUDO can help assess algorithmic bias

on data without ground-truth annotations, we conducted ex-

periments on the Stanford DDI dataset because those images

could be categorized based on a patient’s skin tone (Fitzpatrick

I-II, III-IV, V-VI). As such, we would be able to assess the bias

of the pre-trained AI systems against particular skin tones.

We followed the same steps to implement SUDO (see

Fig. 1b). The main difference is that we first stratified the

data points according to skin tone. Based on the bias reported

in a recent study13, we focused on skin tone I-II and V-VI. Al-

though such stratification can be done within each probability

interval, after having observed the the HAM10000 model’s

prediction probability values (Fig. 2b), we considered a single

probability interval 0 < p < 0.20 where data points would be

classified as negative (benign lesions). We sampled 200 data

points from this probability interval for each group (I-II and

V-VI) to conduct the SUDO experiments and calculated the

AUC of the subsequently-learned classifiers.

Applications of SUDO

SUDO can help with identifying unreliable clinical predic-

tions, selecting favourable AI systems, and assessing the bias

of such systems, as outlined next.

Identifying unreliable AI-based predictions Identifying

unreliable AI-based predictions, those whose assigned label

may be incorrect, is critical for avoiding the propagation of

error through downstream research analyses. SUDO allows

for this as it provides an estimate of the degree of class con-

tamination for data points whose corresponding AI-based

output probabilities are in some probability interval. Specifi-

cally, a ↓ |D| (small difference in classifier performance across

pseudo-label settings) implies ↑ class contamination. As such,

by focusing on probability intervals with |D|< τ where τ is

some predefined cutoff, one can now identify unreliable AI-

based predictions. As we will show, there is an even greater

need to identify such contamination when dealing with over-

confident AI systems.

Selecting AI systems An AI system is often chosen based

on its reported performance on a held-out set of data. We

define a favourable AI system as that which performs best on

a held-out set of data compared to a handful of models. The

ultimate goal is to deploy the favourable model on data in the

wild. However, with data in the wild exhibiting a distribution

shift and lacking ground-truth labels, it is unknown what the

performance of the chosen AI system would be on the data

in the wild, thereby making it difficult to assess whether it

actually is favourable for achieving its goal.

Assessing algorithmic bias Assessing algorithmic bias is

critical for ensuring the ethical deployment of AI systems.

A common approach to quantify such bias is through a dif-

ference in AI system performance across groups of patients

(e.g., those in different gender groups)34. The vast majority

of these approaches, however, requires ground-truth labels

which are absent from data points in the wild thereby mak-

ing an assessment of bias out-of-reach. However, SUDO, by

producing a reliable proxy for model performance, allows for

this capability.

Implementation details of survival analysis

We assessed real world overall survival defined as time from

the start of first line of therapy (LOT = 1) to death35. If

death was not observed by the study end date (October 2021),

patients were censored at the date of a patient’s latest clinical

visit. We estimated survival using the Kaplan Meier method

and used lifelines package to conduct our analysis36. To avoid

confounding due to lines of therapy, we conducted all survival

analyses for patients receiving their first line of therapy only

(i.e., LOT = 1). No other adjustments were made.

Steps to generate Fig. 4e We first filtered our data samples

with known ground-truth ECOG PS labels (n = 117,529)

to only consider those tagged with the first line of therapy

(LOT= 1). Using these samples, we conducted two survival

analyses: one with data samples for patients with a low ECOG

PS label and another for patients with a high ECOG PS label.

Steps to generate Fig. 4f We filtered our data samples

in the data in the wild (n = 33,618) to only consider those

tagged with the first line of therapy (LOT= 1). However, since

these data samples were not associated with a ground-truth

ECOG PS label, we split them into three groups based on a

chosen threshold on the pseudo-label discrepancy presented

in Fig. 4d. Using the intuition that a higher absolute pseudo-

label discrepancy is indicative of more reliable predictions,

we chose three probability intervals to reflect the three distinct

patient cohorts: low ECOG PS group (0 < p ≤ 0.2), high

ECOG PS group (0.5 ≤ p < 1.0), and an uncertain ECOG PS

group (0.2 < p < 0.5). We subsequently conducted a survival

analysis using the data samples in each group.
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Steps to generate Fig. 4h We conducted multiple survival

analyses. Each analysis was performed as described above

and for the subset of patients whose associated AI-based

predictions fell in a probability interval (e.g., 0 < p ≤ 0.05,

0.05 < p < 0.10, etc.). Since there were 14 probability inter-

vals in total, we performed 14 survival analyses and calculated

the median survival time in each analysis. This allowed us to

correlate the median survival time, per probability interval, to

the derived pseudo-label discrepancy.

Producing reliability-completeness curves

The completeness of a variable (the proportion of missing

values that are inferred) is equally important as the reliability

of the predictions that are being made by a model. However,

these two goals of data completeness and data reliability are

typically at odds with one another. Quantifying this trade-off

confers a twofold benefit. It allows researchers to identify

the level of reliability that would be expected when striving

for a certain level of data completeness. Moreover, it allows

for model selection, where preferred models are those that

achieve a higher degree of reliability for the same level of

completeness. To quantify this trade-off, we needed to quan-

tify the reliability of predictions without ground-truth labels

and their completeness. We outline how to do so next.

Quantify reliability SUDO reflects the degree of class con-

tamination within a probability interval. The higher the abso-

lute value of SUDO, the lower the degree of class contami-

nation. Given a set of low probability thresholds, α ∈ A, and

high probability thresholds, β ∈ B, we can make predictions

ŷ of the following form,

ŷ =

{

0, p ≤ α

1, p ≥ β
(1)

To calculate the reliability RA,B of such predictions, we could

average the absolute values of SUDO for the set of probability

thresholds (A, B),

RA,B =
1

2 · |A||B| ∑
α∈A,β∈B

|SUDO(α)|+ |SUDO(β )| (2)

Quantify completeness By identifying the maximum prob-

ability threshold in the set, A, and the minimum probability

threshold in the set, B, the completeness, CA,B ∈ [0,1], can be

defined as the fraction of data points that fall within this range

of probabilities,

CA,B =
M

∑
j=1

✶[p j ≤ max(A) or p j ≥ min(B)] (3)

Generate reliability-completeness curve After iterating

over K sets of A and B, we can populate the reliability-

completeness (RC) curve for a particular model of interest

(see Fig. 2e). From this curve, we derive the area under the

reliability-completeness curve, or the AURCC ∈ [0,1].

AURCC =
1

2K

K

∑
k=1

RA,B(k)+RA,B(k+1)

∆CA,B

(4)

Whereas the area under the receiver operating characteristic

curve (AUROC) summarizes the performance of a model

when deployed on labelled instances, the AURCC does so on

unlabelled data points. Given this capability, the AURCC can

also be used to compare the performance of different models.

Reporting summary

Further information on research design is available in the

Nature Research Reporting Summary linked to this article.

Data availability

The Stanford diverse dermatology images (DDI)

dataset is publicly available and can be accessed

here: https://ddi-dataset.github.io/

index.html#access. The Camelyon17-WILDS

dataset is publicly available and can be access here:

https://wilds.stanford.edu/get_started/.

The Multi-Domain Sentiment dataset is publicly available

and can be accessed here: https://www.cs.jhu.edu/

~mdredze/datasets/sentiment/index2.html.

The Flatiron Health ECOG PS dataset is not publicly

available.

Code availability

Our code is publicly available and can be accessed at https:

//github.com/flatironhealth/SUDO.
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