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Abstract
The implication of inflammation in the pathophysiology of several types of cancers has been under
intense investigation. Conjugated fatty acids can modulate inflammation and present anticancer effects,
promoting cancer cell death. In this paper, we evaluated the efficacy of new conjugated fatty acids
isolated from marine Opisthopterus tardoore (Tapra fish) in human breast cancer cell lines MCF7.
Linoelaidic acid, a marine fish (O. tardoore) derived unsaturated fatty acids, showed effective anticancer
activity against MCF-7. MTT assay revealed a dose-dependent decline in cancer cell viability. It was
noteworthy that 5 µM linoelaidic acid decreased the MCF-7 cell viability by 81.82%. Besides that,
linoelaidic acid significantly (p < 0.05) increased the level of TNF-α and IL-1ra studied by ELISA. Not only
that, linoelaidic acid significantly decreased the reduced glutathione level and increased the oxidized
glutathione level in MCF-7 cells indicating the oxidative stress inside the cell. Two different cell staining
methods with acridine orange-ethidium bromide and DAPI confirmed that the linoelaidic acid rendered
their detrimental effect on cancer cells. To decipher the mode of apoptosis Western blotting was
performed in which the expression pattern of several proteins (p53, IL 10, and IL 1ra) established the
apoptosis in the studied cell lines after linoelaidic acid exposure.

Hence it may be conferred that linoelaidic acid has prompt anticancer activity. So, this drug can be used
further for the treatment of cancer.

Introduction
Breast cancer, a heterogeneous disease with diversity in morphological features and histological
characteristics, is a major global health problem in women [1]. Breast cancer is the second leading cause
of cancer-related deaths occurs in female between the ages of 40 and 50 years in industrialized nations.
The lifetime risk of breast cancer prognosis in women is higher than for any other malignancy. Although
the predominant driving force of breast carcinogenesis is thought to be hormonal, cytokine production
and inflammation are also being recognized as important crucial factor for cancer progression and
development. Breast cancer claimed the lives of 2.08 million people out of 18.08 million new cancer
cases (an 11.6 percent incidence rate) and 626,679 people out of 9.55 million cancer-related deaths (6.6
percent of all cancer-related fatalities) worldwide in 2018 (WHO, 2021). Breast cancer was detected in
162,468 new cases in 2018, accounting for 27.7% of all new malignancies among Indian women and
11.1 percent of all cancer fatalities [2]. The incidence of breast cancer in the Indian population was
significantly differed in comparison to the western population. The frequency of this incidence is highly
proportional to the Indian patients at the premenopausal stage and the maximum age between 40 to 50
years [3, 4]. Most of the chemotherapeutic agents used to treat this life-threatening disease are highly
toxic with long-term side effects. Therefore, novel establishment of anti-cancer drugs with higher
efficiency and specificity are urgently needed. Marine fishes are becoming well-known sources of fatty
acids as described in our previous report as well as several other reports [5, 6]. Marine fishes are
reservoirs of essential nutrient elements such as amino acids (lysine, S-containing amino acids), and
long-chain omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, docosahexaenoic acid),
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vitamins (A, D) and trace elements which are required for human health. Several investigations had
already proved that omega 3 and 6 fatty acids such as DHA, EPA, and AA exert anticancer activities by
inducing apoptosis, inhibiting cell proliferation, suppressing of neoplastic transformation, and anti-
angiogenicity [7]. Typically, fish oil inhibited the growth of cancer cells by suppressing integrin-linked
kinases [8]. The anti-inflammatory activity of fish oil was demonstrated by significantly reduced
expression of pro-inflammatory genes or related products, such as LTB4, PI3Kα, IL-1β, IL-10, and IL-23 in
the peripheral blood mononuclear cells (PBMC) of a healthy population given fish oil-derived EPA (775
mg/day) for 5 weeks [9]. Up to date, no established chemopreventive drugs found in the market without
side effects and these are not cost effective. Studies of the effect of linoelaidic acid derived from marine
Tapra fish (Opisthopterus tardoore) have not been reported yet for induction of apoptosis in various
cancer cell lines. Early studies already reported omega-3 FAs shown anticancer activity by inhibiting cell
growth as well as executing cell death [10]. Zheng et al. conducted a comprehensive meta-analysis of 21
independent prospective cohort studies and proved that dietary intake of marine n-3 PUFA was
associated with a 14% risk reduction of breast cancer [11]. Another reports also confirmed that n-3 PUFA
intake is linked with a reduced risk of breast cancer cell as shown in vivo studies with breast cancer cell
lines (MCF-7, KPL-1, MDA-MB-231) or in a case-control study [12, 13]. Further exploration of new
connections of linoelaidic acid with other chemotherapy or targeted agents could be considered. In this
study, we applied the linoelaidic acid on MCF-7 cell line to evaluate the anticancer activities. Moreover, we
proved that linoelaidic acid induced MCF-7 cell death via P53 and caspase activation.

Materials And Methods
Materials. The heat-inactivated fetal bovine serum (FBS), Phosphate Buffered Saline (PBS) solution
(10X), Doxorubicin, and Trypsin-EDTA 10X solution were purchased from HiMedia, and the human breast
cancer cell line (MCF-7) was acquired from the National Centre for Cell Science (NCCS).

Both the Cytotoxicity Detection Kit (LDH) and the 3-(4–5 dimethyl thiazol-2yl)-2, 5 diphenyl tetrazolium
bromide (MTT) assay were bought from Hi-Media Cell Culture. We bought linoelaidic acid from Sigma
Aldrich (cat. No # 56769-1ML). The main antibodies were obtained from Abcam and were designated as
p53 mouse monoclonal IgG (Sc-126), Caspase 3 (Sc-), Caspase 8 (Sc-), Caspase 9 (Sc-) IL-10 rabbit
monoclonal IgG (Sc-), and IL-1ra rabbit monoclonal IgG (Sc-) (MA, USA). Abcam provided the goat anti-
rabbit IgG-HRP (Lot No# ABG152203) and goat anti-mouse IgG-HRP (Lot No# ABG421153005)
secondary antibodies.

The primers: GAPDH (sense: GGTGAAGGTCGGAGTCAACG, antisense: GTGAAGACGCCAGTGGACTC),
TNF-α primer set (sense: TTCTGTCTACTGAACTTCGGGGTGATCGGTCC antisense:
GTATGAGATAGCAAATCGGCTGACGGTGTGG), IL-1Ra primer set (sense: GCAGCACAGGCTGGTGAATGAC
antisense: TGCCCCCGTGGATGCCCAAG), IL1R1 primer set (sense: GGTGCCTCTGCTGTCGCTGG
antisense: CGCTGTGGGAAGGTGGCCTG), IL-1β primer set (sense: ATGGCAACTGTTCCTGAACTCAACT
antisense: CAGCACAGGTATAGATTCTTTCCTTT), INOS primer set (sense:
CCCTTCCGAAGTTTCTGGCAGCAGC antisense: GGCTGTCAGAGCCTCGTGGCTTTGG), SOCS3 primer set
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was designed (sense: CGCCTCAAGACCTTCAGCTC antisense: CTGATCCAGGAACTCCCGAA) were
purchased from Bioserve, India.

Methods:
Thin Layer chromatography. TLC was carried out on the 20 x 20 cm microcrystalline cellulose-coated
plates (Camag, Muttanez, Switzerland). On the plate, a spot of 1 µl of O. tardoore fish oil was observed
next to the linoelaidic acid. The mobile phase for the one-dimensional TLC analysis was a mixture of
methanol, chloroform, and hexane (7:2:1 v/v/v). After spraying the H2DCFDA reagent, spots were seen
[14].

Cell Treatment. In order to determine the viability of cell, LDH release, and reactive oxygen species (ROS)
formation in a dose- and time-dependent manner, cells were seeded in 96-well plates at a density of 104

cells/well/100 µl medium. Following this, cells were treated for 24 h with linoelaidic acid at final
concentrations of 2 µM or 5 µM and doxorubicin at the concentration of 5 µM treated for 24 h in a
humidified (5%) CO2 incubator at 37°C. Cells were plated in 6-well plates at a density of 1×l06 cells/ml of
medium for western blotting and incubated for 24 hours at 37°C in a humidified (5%) CO2 incubator
before being exposed to doxorubicin and linoelaidic acid at various doses for 24 h. MCF-7 cells
underwent 25–30 passages, whereas p53 overexpressing MCF-7 cells underwent 10–12 passages.

MCF-7 cells were divided into the following 4 groups: Group I where only culture media was applied on
MCF-7 cell; Group II where MCF-7 cell was treated with 5 µM doxorubicin in culture media; Group III where
MCF-7 cell was treated with 2 µM linoelaidic acid in culture media; Group IV where MCF-7 cell was treated
with 5 µM linoelaidic acid in culture media.

Cell Viability and Cytotoxicity Assays. MTT Assay. The MTT test kit was used according to the
manufacturer's instructions to assess the impact of linoelaidic acid on the viability of MCF-7 cells.
Comparing cells treated with linoelaidic acid to control cells, the absorbance of the generated colour (595
nm) was assessed using an ELISA microplate reader. The control's absorbance was regarded as having
100% viability. The ratio of absorbance obtained from treated cells to those in the control group
multiplied by 100 was used to calculate the percentage viability. The percentage of proliferation was
calculated by using the following equation, % of viable cell= (ODsample–ODblank)/ (ODtreated – ODblank)
×100 [15].

LDH Release. According to the manufacturer's instructions, LDH released in MCF-7 cells treated with
doxorubicin and linoelaidic acid was measured using the Cytotoxicity Detection Kit. Released LDH was
combined with an enzyme assay in the culture media to produce a red colour, the intensity of which was
assessed at 490 nm using an ELISA microplate reader. According to the manufacturer's instructions, the
manufacturer determined the percentage cytotoxicity indicated as a percent release of LDH in relation to
controls [16].
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Cytokine analysis. According to the instructions in the manual, the release of TNF-α and IL-1ra were
estimated using an ELISA kit from Wuhan Fine Biotech.

Determination of reduced glutathione (GSH). The standard approach was used to quantify the GSH
estimate in cell lysate (1x 106 cells/ml). Each sample's cell lysate was generated following the
application of linoelaidic acid at various doses. It was then mixed with 25% TCA and centrifuged at 2000
g for 15 min to remove any precipitated proteins. The supernatant was aspirated and diluted to 1 ml with
0.2 M sodium phosphate buffer (pH 8.0). Then, 2 ml of DTNB (0.6 mmol) was added. The optical density
of the yellow complex produced by the reaction of GSH and DTNB (Ellman's reagent) was measured at
405 nm after 10 min of mixing. Utilizing regularly reduced glutathione, a standard curve was produced.
The amounts of GSH were expressed as µg of GSH/mg protein [17].

Determination of oxidized glutathione (GSSG). After derivatizing GSH using 2-vinyl pyridine, the GSSG
level was assessed using the prescribed methodology. MCF-7 cells were treated with linoelaidic acid at
various doses, and then they underwent three rounds of washing before cell lysate was created. Briefly,
0.5 ml of the test sample was added to 2 µl of 2-vinylpyidine, and the mixture was then incubated at 37°C
for 1 h. After deproteinizing the reaction mixture with 4% sulfosalicylic acid, the precipitated proteins were
settled by centrifuging the mixture at 1000× g for 10 min. The solution's supernatant was collected, and
the GSSG level was determined using the DTNB reaction at 412 nm absorption and calculated using a
standard GSSG curve. The standard GSSG curve was used to determine the level of GSSG. The levels of
GSSG were expressed as µg of GSSG/mg protein [18].

Total Nitric Oxide Assay (NO). MCF-7 cells were plated in 96-well plates at a density of 1 × 106 cells/mL
and incubated for 24 h at 37°C with 5% CO2. Linoelaidic acid was then applied to the cells for 24 h. The
EZAssay TM Nitric Oxide Estimation Kit (CCK061-200) was used to measure the nitric oxide (NO) assay
after 24 h of treatment [19].

Determination of lipid peroxidation (MDA). Malondialdehyde (MDA) level measurements were used to
estimate lipid peroxidation. In short, cell lysate (1×106 cells/ml) of MCF-7 was produced following the
treatment schedule with linoelaidic acid at various doses and DOX. This cell lysate served as the sample
for estimating the MDA level. The lipid peroxidation values were reported as nmol/mg protein [20].

RNA isolation. MCF-7 cells were seeded at a density of 5×104 cells per well of a 6-well plate. After being
incubated overnight for cell attachment, the cells were treated with 2 µm and 5 µm of linoelaidic acid for
24 h after being added with serum-free media. Untreated control cells were included. After 24 h the cells
were trypsinized and collected by centrifugation at 3000 rpm for 15 min. RNA extraction was carried out
following the protocol of the HiPurA Total RNA Miniprep purification kit (HiMedia). Briefly wash the cell
with PBS, centrifuge it at 3000 rpm for 5 min, and discard the PBS. 350 µl of a lysis solution with β-
Mercaptoethanol at (1000:10) were added into the pellet to lyse the cell and collect the cells by
centrifugation at 14,000 rpm for 2 min. Then 1 volume of 70% ethanol was added to the cell lysate and
mix vigorously by pipetting. RNA binding was performed by transferring the mixture to HiElute Miniperp
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Spin Column and centrifuged at > 10000 rpm for 15 sec. Then this column was washed once with 700 µl
pre-wash solution and centrifuged at > 10000 rpm for 1 minute, again 500 µl wash solution was added
and centrifuged at > 10000 rpm for 1 min. Dry the membrane and transfer the HiElute Column to a 2 ml
collection tube. Next 30–50 µl elution solution was added to the tube and centrifuged at > 10000 rpm for
1 min to obtain a purified RNA sample. The concentration and quality of RNA were quantified by using a
nanophotometer (Eppendorf).

Reverse Transcription and polymerase chain reaction. The Hi-cDNA synthesis kit's instructions were
followed to prepare the reverse transcription reaction mixture (HiMedia, HiGenoMB, Maharashtra, India).
Briefly 1 µl oligo (dT) was added with RNA template (5 ng to 5 µg) and up to 10 µl molecular biology
grade water for PCR. Then incubate for 5 min at 650c then cool immediately on ice. For preparing the
reaction mixture in a total volume of 20 µl, 10 µl of RNA primer mixture was added with 4 µl RT buffer for
MMuLV, 2 µl 10x solution for MMuLV, 1 µl M-MuLV Reverse Transcriptase, 2 µl 10 mM dNTP mix, and
volume up to 20 µl with molecular biology grade water for PCR. The reverse transcription reaction was
performed as follows- reverse transcription at 420c for 60 min 1 cycle and denaturation at 70°C for 5 min
1 cycle. Subsequently, the cDNA product was amplified by PCR reaction. The PCR reaction mixture, which
consists of 9 µl DPEC water, 9 µl 2X PCR TaqMixture, and 0.5 µl each forward and reverse primer with 1 µl
cDNA was prepared. A published housekeeping primer set was used for GAPDH (sense:
GGTGAAGGTCGGAGTCAACG, antisense: GTGAAGACGCCAGTGGACTC), TNF-α primer set (sense:
TTCTGTCTACTGAACTTCGGGGTGATCGGTCC antisense: GTATGAGATAGCAAATCGGCTGACGGTGTGG),
IL-1ra primer set (sense: GCAGCACAGGCTGGTGAATGAC antisense: TGCCCCCGTGGATGCCCAAG), IL1R1
primer set (sense: GGTGCCTCTGCTGTCGCTGG antisense: CGCTGTGGGAAGGTGGCCTG), IL-1β primer
set (sense: ATGGCAACTGTTCCTGAACTCAACT antisense: CAGCACAGGTATAGATTCTTTCCTTT), INOS
primer set (sense: CCCTTCCGAAGTTTCTGGCAGCAGC antisense: GGCTGTCAGAGCCTCGTGGCTTTGG),
SOCS3 primer set was designed (sense: CGCCTCAAGACCTTCAGCTC antisense:
CTGATCCAGGAACTCCCGAA). Next, PCR was performed as follows: initial denaturation of DNA at 950c
for 1min, denaturation at 950c for 30 sec, DNA annealing at 650c for 45 sec, and extension of DNA at
720C for 2 min, final extension of DNA at 720c for 10 min. the second and third steps were repeated for a
total of 40 thermal cycles. Lastly, the PCR tube with the sample was held at 4°C.

Gene expression analysis. The GeNeiTMmini-submarine gel system was used to investigate the multiplex
of gene expression in linoelaidic acid-treated MCF-7 cells. The primers of all genes were supplied by
Bioserve (Telangana, India). Briefly, 5 µl of PCR product was mixed with 1 µl sample loading dye and 5 µl
of DNA size standard 3000. Run using GeNeiTMmini-submarine gel system (co. name). The amplified
fragments were separated according to their respective size by a mini-submarine gel system. Results
were analyzed using the Gel Documentation Imaging System (Bio-Rad, Model No. 1708275).

Immunoblotting analysis of p53, Caspase 3, 9, IL-10, IL-1ra and Bax. The MCF-7 cells treated with the
linoelaidic acid were lysed with RIPA buffer, and the protein content was quantified by the Lowry method.
50 µg protein samples was placed in loading buffer and boiled for 5 min, then electrophoresed by SDS-
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PAGE and transferred to a nitrocellulose membrane (Bio-Rad, Model No. 165.8033FC). The membrane
was then blocked with 4% BSA and incubated with primary antibody overnight at 4°C. The primary
antibody used in this study included β-actin, p53, IL-10, IL1Ra, caspase 3, 9, and Bax at a 1:1000 ratio
(Affinity). The membrane was then washed three times with PBST and incubated with HRP labelled anti-
mouse secondary antibody 1:7500 (Abgenex) for 1h at 4°C. Specific protein bands were detected using
DAB. When inhibitors were employed, cells were pre-treated for 8h with inhibitors before the addition of
linoelaidic acid [21].

Detection of apoptotic morphological changes by Immunohistochemical staining using Acridine
orange‑ethidium bromide staining. Breast cancer cell lines were cultured at 4 × 104 cells/well in six-well
plates and treated with 2 µM and 5 µM of linoelaidic acid for 24 h. Further, Cells were harvested and
stained with AO-EtBr dye mix (1:1 v/v) from 100 µg/mL − 1 in PBS and studied using a fluorescent
microscope (Olympus, Model No. BX43F) according to the standard protocol [22].

ROS levels in linoelaidic acid treated MCF − 7 cells. The intracellular ROS concentration was determined
using active oxygen sensing. Using a fluorescence microscope, H2DCFDA was deacetylated
intracellularly by a non-specific esterase to produce the fluorescent compound 2,7-dichlorofluorescein.
Linoelaidic acid was administered to cells for 24 h at the appropriate concentrations (2 µM/ml and 5
µM/ml). PBS was used to clean the cells before 1mg/mL of H2DCFDA was applied for 30 min at 37°C [7].
DCF presence was determined using a fluorescence microscope (Olympus, Model No. BX43F).
Quantitative result was obtained by Multimode microplate reader at 480 and 530 nm.

Nuclear morphological assessment by DAPI staining. In vitro apoptosis was recognized by DAPI staining.
Breast cancer cell lines were cultivated at a density of 4×104 cells per well in six-well plates and subjected
to 24 h of treatment with 2 µM and 5 µM linoelaidic acid and DOX. Cells were harvested, dyed with the
300 nM DNA-binding dye DAPI and observed under a fluorescence microscope [23].

Results
Presence of linoelaidic acid on extracted Opisthopterus tardoore fish oil using Thin Layer
Chromatography. The current investigation revealed that linoelaidic acid was present
in Opisthopterus tardoore fish oil. Our results indicated that the same Rf value compared with standard
linoelaidic acid confirming the presence of linoelaidic acid in the O. Tardoore fish oil (Supplementary
figure). Linoelaidic acid was present in this fish oil, which were easily identified by its distinctive
blue/green fluorescence in ultraviolet light.

Effect of linoelaidic acid on the viability of MCF-7 cells. Preliminary screening of the viability of MCF-7
cells using linoelaidic acid at different doses (2 and 5 μM/ml) compared to doxorubicin (DOX) treatment
at 5 μM concentration. The reduction in cell viability of MCF-7 cells after linoelaidic acid treatment was
observed in a time and dose-dependent manner (Fig. 1A & 1B). The time-dependent study depicted that
100% of the viable cell at starting point of treatment which were significantly (p < 0.05) reduced with the
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continued treatment up to 24 h. Our results indicated that 68.28%, 33.9%, and 21.25% viability of MCF-7
cells after 6 h,12 h, and 24 h of linoelaidic acid (5 μM) treatment respectively (Fig. 1A). Hence, linoelaidic
acid with 5 µM concentration for 24 h showed a promising effect on the reduction of cell viability of MCF-
7 cells.

It was noteworthy that 41.28% and 78.13% of cell deaths were observed after 2 µM and 5 µM of
linoelaidic acid treatment respectively. There was remarkable (by more than 50%) decreased in cell
viability after treatment with a 5 μM concentration of linoelaidic acid (Fig. 1B). Based on the obtained
result, cell differentiation of the treated groups was reduced in a concentration and time dependent
manner in comparison to untreated group.

We therefore, assessed the LDH level which could be used as a diagnostic indicator of tumour
metastasis. LDH levels are frequently utilised as markers of tissue injury. Linoelaidic acid caused a dose
dependent decreased in LDH levels of 68.35% and 88.28% at 2 and 5 μM/ml concentration, respectively,
indicating inhibition of cell proliferation in MCF-7 cells (Fig. 1C).

Linoelaidic acid regulates inflammation in MCF-7 cells. Next, we confirmed the effects of linoelaidic acid
on MCF-7 cells by pro-inflammatory cytokine (TNF-α) and anti-inflammatory cytokine (IL-1ra).
Inflammation was examined by linoelaidic acid treatment in different doses (2 and 5 μM/ml) on MCF-7
cells in comparison to control cells (without treatment) and DOX treatment (5 μM). A marker of
inflammation in cancer cells is the level of TNF-α released into the media. Based on these findings, the
levels of TNF-α secreted into cell culture media were enhanced by the treatment of linoelaidic acid in
MCF-7 cells (Fig. 2A) and the levels of IL-1Ra secretion were also enhanced by the treatment of linoelaidic
acid in MCF-7 cells (Fig. 2B). Linoelaidic acid at the dose of 5 μM, can markedly rise in TNF-α and IL-1Ra
level in breast cancer cells. Our results confirmed a substantial amount of MCF-7 cells were necrosed by
the treatment of linoelaidic acid as well as it has an anti-inflammatory role.   

Examination of cellular redox status (GSH, GSSG, NO and MDA level). To evaluate oxidative stress, we
also investigated nitric oxide, GSH and GSSG levels in linoelaidic acid-treated MCF-7 cells. Nitric oxide
(NO) is a well-known regulator of vascular smooth muscle tone; it suppresses platelet activation, modifies
apoptosis, and regulates inflammatory cell aggregation and activation at low concentrations. In contrast,
peroxynitrite (ONOO), which is extremely cytotoxic, can be created when NO reacts with superoxide anion
(O2). NO level was extremely increased in oxidative stress. Nitric oxide was markedly increased in the
MCF-7 cells with the treatment of linoelaidic acid up to 82.16 and 98.35% respectively (Fig. 3A). There
was a significant (p < 0.05), dose-dependent increased in NO levels with increasing linoelaidic acid
concentrations. High level of NO can enhance stress in cancer cells indicating inhibition of the
progression of cancer through suppressing tumor growth, angiogenesis, migration, and metastasis
processes in breast carcinoma. 

The total GSH content was significantly higher in untreated MCF-7 cells. Linoelaidic acid treatment
caused the GSH level in MCF-7 cells to drop by 11.06 and 29.35 % considerably (p ˂ 0.05) in comparison
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to the control (Fig. 3B). On the other hand, Doxorubicin also remarkably reduced the GSH levels in MCF-7
cells. Similar to the earlier experiments, the effect of a higher dose (5 μM/ml) of linoelaidic acid was
found to be better than the lower dose (2 µM/ml) of linoelaidic acid.

When compared to the control group of MCF-7 cells, the linoelaidic acid-treated MCF-7 group's GSSG level
was 33.25 and 79.6% higher, which was elevated considerably (p ˂ 0.05) (Fig. 3C). At a dose of 5 μM, the
level of GSSG in DOX-treated MCF-7 cells was raised more than 50% in comparison to the control. After
treating MCF-7 cells with 5 μM dose of linoelaidic acid, we noticed significant increase in the GSSG level,
which shows an active GSH redox cycle.

Linoelaidic acid affects not only oxidative stress but lipid peroxidation as well. Malondialdehyde (MDA) is
one of many low molecular weight end-products of lipid hydroperoxide breakdown and is frequently
evaluated as an indication of lipid peroxidation. MDA has a strong correlation with a decline in
antioxidant properties. Malondialdehyde levels were found to be significantly higher in MCF-7 cells
treated with DOX and linoelaidic acid in comparison to control cells. The level of MDA was significantly
enhanced after treatment of linoelaidic acid at the dose of 2 and 5 μM/ml up to 26.39 and 44.57%
respectively (Fig. 3D). The level of MDA increased significantly (p < 0.05) with increasing linoelaidic acid
concentration indicate oxidation of lipids by free radicals and it is one of the main manifestations of
oxidative damage in tissues and cells. 

Effect of linoelaidic acid treatment on gene expression of inflammatory and apoptotic markers. The
protective effect of genes in linoelaidic acid treated MCF-7 cells was tested. To determine the ability of
linoelaidic acid to influence the expression levels of genes associated with inflammation, MCF-7 cells
were subjected with two doses of linoelaidic acid 2 and 5 μM, respectively for 24 h. Subsequently,
expressions of mRNA levels of inflammatory genes were determined by PCR followed by agarose gel
electrophoresis. All expression levels are normalized to GAPDH expression levels. Fig. 4A showed that
incubation of MCF-7 with 2 μM linoelaidic acid considerably rise the expression levels of TNF-α by 1.66-
fold whereas 5 μM remarkably increased it by 1.88-fold in comparison to untreated cells. More MCF-7
cells were necrosed by the treatment of 5 μM linoelaidic acid. Fig. 4B indicated that linoelaidic acid at the
dose of 2 and 5 μM markedly increase the expression levels of IL-1ra in MCF-7 by 1.5 and 1.6-fold,
respectively, contrasted to control MCF-7 cells. Likewise, incubation of MCF-7 with 2 and 5 μM linoelaidic
acid increased the expression levels of IL-1r1 by 1.38 and 2.28-fold compared with control breast cancer
cells (Fig. 4C). Figure 4D indicated that linoelaidic acid dose of 2 and 5 μM significantly decreased the
mRNA expression levels of IL-1β in MCF-7 by 1.31 and 1.47-fold, respectively, compared to control MCF-7
cells.  According to Fig. 4E, 2 μM and 5 μM linoelaidic acid slightly enhanced iNOS expression levels in
MCF-7 cells by 1.06 and 1.2-fold, correspondingly, in respect to untreated cells. Similarly, MCF-7 treated
with 2 and 5 μM linoelaidic acid exhibits inconsiderable changes in SOCS3 expression levels (Fig. 4F).
Our result illustrated that linoelaidic acid can induced cell death by upregulating the expression of TNF-α,
IL-1R1, iNOS, SOCS3, but it can reduce the risk of inflammation by diminishing the mRNA expression
levels of IL-1β in treated MCF-7 cells. 
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Linoelaidic acid induced death in MCF-7 cells is mediated via p53 and caspase activation. To further
investigate the mechanism regarding apoptosis Immunoblotting of p53, IL-10, IL-1ra, caspase 3, caspase
9, and Bax were assessed. Western blot findings revealed that the expression of the p53 protein, Bax,
caspase 3, caspase 9 considerably enhanced as well as the increased expression of IL-10 and IL-1ra,
following linoelaidic acid treatments (Fig. 5). To investigate whether the changes in p53, IL-10, IL-1ra,
caspase 3, caspase 9 and Bax mRNA levels are associated with alteration of protein levels, MCF-7 cells
were incubated for 48 h with linoelaidic acid at 2 and 5 μM/ml. As shown in Fig. 5A linoelaidic acid
significantly increased the protein levels of p53 in treated MCF-7 by approximately 1.34 and 1.79-folds in
contrast to control cells, after adjusted to β-actin expression levels. However, the expression of p53
slightly increased in 2 μM linoelaidic acid group. Treatment with linoelaidic acid to MCF-7 cells resulted
increased in IL-10 protein levels in comparison to control group (Fig. 5B). Similar to mRNA results, Fig. 5C
shows that 2 and 5 μM/ml linoelaidic acid considerably increased the protein levels of IL-1ra in MCF-7 by
approximately 1.67 and 2.93-folds, respectively compared to untreated MCF-7 cells after normalization to
β-actin levels.  In MCF-7 cells, linoelaidic acid significantly increased the expression of caspase 3 by 1.11
and 1.27-fold at the dose of 2 and 5 μM in comparison to untreated MCF-7 cells (Fig. 5D). This figure
illustrated that caspase 3 protein expression increased by 1.14-fold at the dose of 5 μM compared to 2
μM treatment of linoelaidic acid. Caspase 9 Similar to this, MCF-7 cells treated with 2 and 5 μM
linoelaidic acid exhibited considerably higher levels of caspase 9 expressions by 1.24 and 1.34-fold than
untreated cells (Fig. 5E). Caspase 9 protein expression increased by 1.07-fold at the dose of 5 μM
compared to 2 μM treatment of linoelaidic acid. Fig. 5D & Fig. 5E demonstrate how linoelaidic acid
caused caspase 3 and caspase 9 to cleave, resulting in a marked increase in their active forms. We also
investigated the effect of linoelaidic acid treatment on gene expression of apoptotic marker. Bax is a pro-
apoptotic member of Bcl-2 family. Our data proved that linoelaidic acid promotes Bax overexpression in
MCF-7 cell lines (Fig. 5F). Overexpression of Bax is frequently associated to cytotoxicity by inducing the
opening of the mitochondrial voltage-dependent anion channel. Treatment with linoelaidic acid at the
dose of 5 μM/ml, led to the overexpression of p53 protein and anti-inflammatory cytokines (IL-1ra and IL-
10) on MCF-7 cells compared to untreated breast cancer cells. Our finding confirmed that MCF-7 cells
treated with linoelaidic acid can induce apoptosis process as well as it protects our body from
inflammation which can prevent cell proliferation. Linoelaidic acid dramatically raised the levels of
caspase 3 and caspase 9 protein expression, demonstrating that it can induce apoptosis in MCF-7 breast
cancer cells. The maximum activation rates of caspase 3 and caspase 9 were noticed in highest
concentration of linoelaidic acid treated MCF-7 cells i.e., 5 μM/ml. 

Morphological changes in MCF-7 cells treated with linoelaidic acid. To compare the morphological
alterations in cell membranes of treated and control cells dual acridine orange/ethidium bromide (AO/EB)
fluorescent staining can be used that are connected to apoptosis. The MCF-7 cells were subjected to
linoelaidic acid at doses of 2 and 5 μM to assess the induction of apoptosis, and after being stained with
AO/EB, fluorescence microscopy was used. As shown in Fig. 6 control group did not show any discernible
signs of apoptosis. The experimental group showed early-stage apoptotic cells, identified by crescent-
shaped or granular yellow-green AO nuclear staining. There were more early-stage apoptotic cells with 5
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μM linoelaidic acid treatments. Asymmetrically localised, dense late-stage apoptotic cells with orange
nuclear EB staining were also observed. Necrotic cells grew larger and exhibited patchy orange-red
fluorescence at their borders seen in linoelaidic acid treated MCF-7 cells. The outcomes demonstrated the
apoptotic properties of linoelaidic acid. 

Linoelaidic acid induces intracellular ROS generation in MCF-7 cells. Recent research has demonstrated
that chemotherapeutic drugs can cause cancer cells to undergo apoptosis by increasing ROS production
or decreasing ROS scavenging ability. In consideration of this, we analyzed the stress oxidative
components in the currently tested molecule i.e., linoelaidic acid. ROS formation was analyzed on the
basis of the study of DCF signals. Fluorescence intensity generated by H2DCFDA was increased in a
dose-dependent manner in linoelaidic acid treated MCF-7 cells and was much greater than that of the
untreated MCF-7 cells (Fig. 7A). At the dose of 5 μM/ml, linoelaidic acid triggered substantial generation
of ROS in cancer cells. These results demonstrated a dose-dependent increase in the degree of apoptosis.
Our research revealed that linoelaidic acid massively increased cellular ROS levels, which in turn caused
apoptosis. It appears that the situation of oxidative damage is connected to the rise in cell death. Based
on the results, we put forth the hypothesis that linoelaidic acid might cause the human breast cancer cell
line (MCF-7) to undergo oxidative stress-induced apoptosis. 

Numerous studies have demonstrated that excessive intracellular ROS generation had a propensity to
damage DNA and result in DNA strand breaks, which led to cell apoptosis. We attempted to clarify the
role of ROS in the development of linoelaidic acid-induced apoptosis in this investigation. Figure 7B
shows the differential effects of linoelaidic acid at the dose of 2 and 5 μM on ROS level in MCF-7 cells. In
MCF-7 cells, increases of levels of ROS-sensitive fluorescent probe (CM-H2DCFDA) were observed in
linoelaidic acid-treated cells compared to untreated cells. As an outcome, it was found that linoelaidic
acid seemed to induce apoptosis in MCF-7 cells.

Linoelaidic acid promotes apoptosis in MCF-7 cells. In the current study, MCF-7 cells were exposed to
various doses of linoelaidic acid (2 and 5 μM/ml) for 24 h in order to investigate its impact on the
apoptosis of breast cancer cells. We conducted morphological analysis of the breast cancer cells. Using
DAPI staining, nuclear morphological changes in MCF-7 cells were seen under a fluorescent microscope.
Condensed and fragmented chromatin, a sign of apoptotic cell death, was visible after staining. As
shown in Figure 8 at the dose of 5 μM, linoelaidic acid can decreased number of live cells by inducing
apoptosis. However, the MCF-7 cells that were treated with 2 μM linoelaidic acid showed negligible
alterations from the untreated group. The findings showed that when cells were treated with linoelaidic
acid (2 and 5 μM/ml) for 24 hours, in contrast to the untreated cells, the number of dead cells
significantly increased. 

Discussion
Therapeutic strategies applied in cancer treatment involve surgery, radio and chemotherapy which have
numerous side effects. In this scenario, natural compounds like flavonoids, isothiocyanates, sulfides,
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thiols, phenol- derived, alkaloids, marine fish oil derived omega-3, omega-6 fatty acids and other
substances extracted from plants as well as from different sea fish emerge as possible anticancer
agents [24]. The results of our present study showed that omega-6 trans fatty acids like linoelaidic acid
has a strong anticancer activities in a cultured human breast cancer cell line (MCF-7) through a list of
actions as suppression of cell viability, altering redox balance, inducing apoptosis via caspase activation.
Mechanistically linoelaidic acid induced cell death occurred via increased ROS generation and caspase
activation [25]. From the MTT/cell viability assay, we observed that the linoelaidic acid exhibited
promising anticancer effect with no or minimum toxicity on PBLs. MCF-7 cell killing activity was shown
higher after 24 h treatment of 2 and 5 µM/ml linoelaidic acid compared to untreated group. The reduction
in cell viability of MCF-7 cells after linoelaidic acid treatment was shown in a dose and time-dependent
manner (Fig. 1A & 1B). The time and concentration-dependent study illustrated that, linoelaidic acid with
5 µM/ml concentration for 24 h showed a promising (p<0.05) outcome on the reduction of viability of
MCF-7 cells. The MTT assay, which is based on the enzymatic conversion of MTT to insoluble formazan
in live cells, was used in the current investigation to assess the cytotoxic effect of linoelaidic acid against
MCF-7 cells. MTT results revealed that linoelaidic acid had a substantial inhibitory effect on MCF-7 cells
following a 24-hour treatment with 5 µM/ml, indicating that these cells might be more sensitive to this
molecule. This result is in good agreement with the findings of the other investigations, where clearly
linoelaidic acid effectively inhibits the proliferation of breast cancer cells [26].

TNF-α is a well-known inflammatory marker and has a crucial role in MCF-7 cell death [27]. In contrast, IL-
1ra being the anti-inflammatory cellular marker [28]. IL‐1ra possesses a tumor‐suppressing effect by
preventing IL1 from attaching to its target receptor [29]. Linoelaidic acid treatment significantly (p<0.05)
increased TNF-α and IL-1ra level in MCF-7 cells (Fig. 2A & 2B). These reinstated the inflammatory
environment followed by inducing the cancer cell death after treatment. Several reports proved that TNF-α
promoted nitric oxide production via iNOS-2 activation [30]. Our results also indicated the enhanced NO
production in linoelaidic acid-treated MCF-7 cells (Fig. 3A). Hence, linoelaidic acid-induced TNF-α may
promote the nitrite generation in MCF-7 that played a crucial role in cancer cell growth arrest. GSH levels
were decreased significantly (p˂0.05) in MCF-7 cells after treatment with two different doses of linoelaidic
acid which might help in protection against different cellular peroxides, free radicals, and toxic
compounds in the cell [31]. Out of these two doses, 5 µM of linoelaidic acid was found capable to reduce
the GSH level in MCF-7 cells (Fig. 3B). Besides that, GSSG levels were significantly (p<0.05) increased
after linoelaidic acid exposure to MCF-7 cancer cells (Fig. 3C). It is well established that GSSG is toxic to
the cell and is counter balanced by the GSH level. The decreased level of GSH and increased GSSG level
in MCF-7 confirmed the cellular stress after linoelaidic acid treatment. These results promptly indicated
that linoelaidic acid modulated the redox balance leading to cell death in MCF-7 and consequently
prevent cancer. As a consequence of the alteration in redox balance, MCF-7 cells were experienced with
lipid peroxidation (MDA level), the important cellular marker of an oxidative stress response leading to the
cell membrane damage [32]. Significantly elevated level of MDA in linoelaidic acid-treated MCF-7 cells
was supported this as well as an indicator of MCF-7 cell damage (Fig. 3D).
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Next the stability of reference genes was validated under different experimental series with the dose-
dependent exposure with linoelaidic acid (2 µM and 5 µM) on MCF-7 cells. The expression of TNF-α and
IL-1ra mRNA expressions were examined as inflammatory and anti-inflammatory markers since they were
expected to show the variation in expression. In well accordance to the ELISA results (Fig. 2), mRNA
expression of inflammatory markers (TNF-α and iNOS) was increased whereas IL-1β was decreased and
anti-inflammatory markers (IL-1r1, IL-1ra, and SOCS3) were positively expressed in linoelaidic acid-treated
MCF-7 cells (Fig. 4). These findings suggested that linoelaidic acid could suppress inflammation but
might upregulate cell death by inhibiting tumorigenesis. 

TP53/p53, a tumour suppressor gene, is mutated in around 50% of all human malignancies. In addition
to its role in tumour suppression, p53 also has a significant impact on how both malignant and non-
transformed cells react to various anticancer therapies, especially those that result in DNA damage. Cell
cycle arrest, cell senescence, DNA repair, metabolic adaptability, and cell death are just a few of the
biological activities that p53 reportedly controls by directly regulating about 500 target genes in a
homotetrameric transcription factor. [33].   The primary mechanism by which p53 suppresses tumour
formation was thought to be the triggering of apoptosis in nascent neoplastic cells. [34]. To examine the
effect of linoelaidic acid on p53 expression, we performed the Western blotting and the expression level
of p53 was found to be increased in a dose-dependent manner (Fig. 5). In this context, increased p53
after linoelaidic acid exposure restricted the MCF-7 cell proliferation via modulating genes related to the
cell cycle and apoptosis [35]. Our results evidenced that linoelaidic acid mediated apoptosis was initiated
via the expression of mitochondrial Bax and P53 among the different biological origins. Caspases are
synthesized as pro-caspases, an inactive form which cleaved into their active form during apoptosis.
Hence, determination of caspase activity is considered a gold standard for apoptosis detection [36, 37].
Several caspases, may be activated during apoptosis, however, activation of caspase-3 is crucial, being
considered a hall- mark of apoptosis [38]. The biochemical and morphological alterations connected to
apoptosis are brought about by activated caspase-9, which mobilises a series of effector caspases, such
as caspase-3. Our results indicated that linoelaidic acid exerted a cytotoxic effect on MCF-7 cells in a
dose dependent manner.

Duo AO/Et-Br fluorescent staining detects the basic morphological changes in apoptotic cells and
identifies the distinction between normal cells, early and late apoptotic cells, and necrotic cells. We
observed that AO penetrated normal and early apoptotic cells with intact membranes. It produced
fluorescing green illumination in MCF-7 cells without treatment. Et-Br only entered cells with damaged
membranes in late apoptotic and dead cells, emitting orange-red fluorescence when bound to
concentrated DNA fragments or apoptotic bodies [39], while, dual AO/Et-Br staining can detect mild DNA
injuries [40]. Linoelaidic acid exposure to MCF-7 cells with two different dosages, 2 μM and 5 μM, showed
apoptotic signature. In corroborating with previous experiments, 5 μM of linoelaidic acid-induced
apoptosis in a greater number of MCF-7 cells compared with 2 μM (Fig.6).

There are numerous cell signalling mechanisms in cancer cells, especially those associated with ROS
generation and scavenging. Although ROS are by products of regular metabolism, their effects on cells
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depend on their concentration. In intracellular signalling, ROS work as "redox messengers" at low
concentrations, but at high concentrations, they can trigger oxidative alteration of macromolecules, which
can impair cellular functions and hasten apoptosis. [41]. Cancer cells, in contrast to healthy cells, have
increased metabolic activity, which results in a persistently higher amount of ROS and supports a long-
lasting pro-oxidative atmosphere. However, cancer cells can endure high amounts of metabolic ROS by
modifying their anti-oxidative systems and up-regulating pro-survival processes in order to adapt to the
oxidative environment. [42]. By this way, active molecules that induce increasing in intracellular ROS can
assume an outstanding importance in cancer therapy. It was verified that the mechanisms by which
linoelaidic acid promotes apoptosis involve [43], at least in part, the ROS increase [44]. It was proved that
linoelaidic acid at (5 μM/ml) significantly increased ROS generation (7A & 7B). Thus, it was conferred
that excess production of ROS in cancer cell leads to cell death ultimately prevent abnormal cell
proliferation and differentiation. Furthermore, as evidenced by DAPI staining, cells treated with linoelaidic
acid exhibit typical apoptotic alterations with chromatin condensation and nuclear disintegration (Fig. 8).

Conclusion
In conclusion, linoelaidic acid treatment at its selected dose caused a decrease in the viability of MCF-7
cells accompanied by an increase in ROS levels. Treatment with linoelaidic acid caused a decrease in
intracellular ATP levels indicating impairment in the mitochondrial function as confirmed by dissipation
in the membrane potential and cyt-c release in culture media; disruption of plasma membrane integrity
was confirmed by LDH release with no change in cell motility or invasiveness. Additionally, linoelaidic
acid induced apoptosis in MCF-7 cells through activating the capacity to fragment DNA. Our findings
reveal that linoelaidic acid can give rise to cell death via apoptosis pathway in MCF-7 cells. Elucidation of
the key players underlying the sensitivity to linoelaidic acid and mechanistic differences between normal
and cancer cells to linoelaidic acid requires further investigations. Further in vivo study is needed before
clinical application.
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Figures

Figure 1

Effect of linoelaidic acid (extracted from Tapra fish) on MCF-7cancer cell line (1×104). Cell death rates
were measured by the MTT method as described in the materials and methods. Cell viability was
measured by the MTT method as described in materials and methods, cell cytotoxicity was measured by
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the LDH method as described in materials and methods; values are expressed as mean± SE (n=3);
superscripts indicate significant differences (P<0.05) compared with the control group.

Figure 2

Effect of linoelaidic acid (extracted from Tapra fish) onMCF-7cancer cell line (1×104). Cell inflammation
rates and anti-inflammation rates were measured by the ELISA method using TNF-α and IL-1ra as
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described in materials and methods. Measurement of TNF-α was expressed by pg.  TNF-α/ml values are
expressed as mean± SE (n=3); superscripts indicate significant differences (P<0.05) compared with the
control group.

Figure 3
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 A. Effect of linoelaidic acid (extracted from Tapra fish) on MCF-7cancer cell line (1×104). NO was
measured and values are expressed as mean ± SE (n=3); superscripts indicate significant differences
(P<0.05) compared with the control group. B. Intracellular reduced glutathione (GSH) level of linoelaidic
acid-treated, MCF-7 cancer cell line (1×104/ml). The level of GSH was expressed as µg of GSH/mg
protein. Values are expressed as mean± SE (n=3) of three experiments; superscripts indicate significant
differences (P<0.05) compared with the control group. C. Intracellular oxidized glutathione (GSSG) level
of linoelaidic acid-treated, MCF-7 cancer cell line (1×104/ml). The level of GSSG was expressed as µg of
GSH/mg protein. Values are expressed as mean ± SE (n=3) of three experiments; superscripts indicate
significant differences (P<0.05) compared with the control group. D. Intracellular reduced glutathione
(MDA) level of linoelaidic acid-treated, MCF-7 cancer cell line (1×104/ml). The level of MDA was
expressed as nmol of MDA/mg protein. Values are expressed as mean± SE (n=3) of three experiments;
superscripts indicate significant differences (P<0.05) compared with the control group.
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Figure 4

Different gene expression study through semi q-PCR of linoelaidic acid-treated, MCF-7 cancer cell line
(1×104/ml).
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Figure 5

Protein expression study was done on linoelaidic acid treated at two different doses on the MCF-7 cancer
cell line (1×104/ml) by using Western Blot. Values are expressed as mean ± SE (n=3) of three experiments
compared with the control group (MCF 7 cells).
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Figure 6

Detection of apoptosis by acridine orange and ethidium bromide (AO-EtBr) staining method in
MCF7study was done of linoelaidic acid-treated at two different doses on MCF-7 cancer cell line
(1×104/ml) by using a fluorescence microscope (Olympus). Values are expressed as mean ± SE (n=3) of
three experiments compared with the control group (MCF 7 cells).
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Figure 7

Intracellular reactive oxygen species measurement was done from linoelaidic acid treated MCF-7 cells.
The levels of ROS were considered as DCF fluorescence intensity and recorded by Fluorescence
microscopic images here. ROS generation was observed under a fluorescence microscope at 40×
magnification.
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Figure 8

Nuclear morphology of cancer cells was done from linoelaidic acid-treated MCF-7 cells and recorded by
Fluorescence microscopic images here at 40x magnification.
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