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Abstract
Global climate changes can dramatically impact wheat production in Brazil's Cerrado biome, considered a new wheat
farming frontier. Therefore, new approaches are needed to better understand the G×E interaction in environments with high
climate variations. Here, we integrate envirotyping, adaptability, and stability techniques to better understand the G×E
interaction and provide new insights for the recommendation of tropical wheat genotypes that can perform well in hotter
and drier environments. Thirty-six wheat genotypes were evaluated for grain yield in eight �eld trials in 2018, 2019, and
2020 in the Brazilian Cerrado region. There is strong evidence that even in irrigated conditions, temperatures > 30 ºC during
the booting and heading/�owering stages dramatically reduce the grain yield. Two lines, VI14774 (GY = 3800 kg ha-1), and
VI14980 (GY = 4093 kg ha-1) had better performance in the hotter environment (~ 22% and ~ 32% higher than the grand
mean) and are potential germplasm sources for warmer environments at the boosting and heading/�owering stages.
Overall, this study provides new insights on how the environment typing can be useful to better understand the genotype-by-
environment interaction and help to breed new climate-resilient wheat cultivars for the cerrado region. In this study, the
REML/BLUP and GGE Biplot methods highly correlate in terms of genotype classi�cation for selection and recommendation
purposes. The genotypes VI 14127, VI 14197, VI 14026, and BRS 264 are the closest to a hypothetical ideal genotype.

Introduction
The per capita consumption of wheat �our in Brazil is 40.62 kg inhabitant− 1 year− 1 (USDA 2021). This �gure is higher than
that of traditional staple foods such as rice and beans, with 35.2 kg inhabitant− 1 year− 1 and 15.2 kg inhabitant− 1 year− 1,
respectively (EMBRAPA 2020). Although Brazil is a major consumer of wheat, with an approximate consumption of
12 million tons (CONAB 2021), it is not self-su�cient and produces only 50% of the demand. Of the six million tons of
wheat produced in Brazil, 86% are produced in the southern States of Brazil, such as Paraná and Rio Grande do Sul.
However, Brazil has a high potential for expanding the cultivation of wheat, especially into regions of lower latitude, such as
the Brazilian Cerrado (Casagrande et al. 2020; Mezzomo et al. 2021a; Pasinato et al. 2018).

Bornhofen et al. (2018) studied the genetic progress of wheat breeding programs in Brazil between 2004 and 2013 and
found that the coldest and wettest regions of Brazil resulted in a genetic gain for grain yield of 115.53 kg ha− 1 year− 1

(3.14% year− 1), while in tropical, hot and dry regions the genetic gain was considerably lower: 61.59 kg ha− 1 year− 1 (1.68%
year− 1). The lower performance in the Cerrado region can be explained by the presence of acidic soils with toxic aluminum
(Boff et al. 2019), lower water availability (Pereira et al. 2019), high incidence of rice blast fungus (Goddard et al. 2020), and
high temperatures that result in heat stress (Mezzomo et al. 2021b; Thungo et al. 2021). However, wheat production in this
region has some economic advantages, such as greater proximity to the largest wheat consuming center in Brazil (the
Southeast region), cultivation in the off-season, low relative humidity and low incidence of fungal diseases common to
producing areas in the South region, which together lead to a high production potential and make it an alternative to
produce high-tech wheat for the bakery industry (Pasinato et al. 2018; Oliveira et al. 2021).

The potential area for wheat production in Brazil is 7.27 million ha (Mingoti et al. 2014). As a result, the expansion and
development of the national wheat chain, currently estimated at 2.6 million ha, could triple. However, this requires the
development of new cultivars to increase productivity and contribute to a sustainable production (Johansson et al. 2020). It
is necessary not only to develop new cultivars adapted to these environments, but also to identify already developed lines
that are stable and adapted to this growing region. This task is not simple since there is an interaction between genotypes ×
environments (G × E), a complicating factor for breeders, especially of a complex nature, constituting a di�culty in the
selection and recommendation of genotypes (Jarquin et al. 2017).

Several studies have reported a signi�cant G × E interaction for grain yield of wheat (Beche et al., 2018; Mohammadi et al.
2018; Nehe et al. 2019; Rapp et al. 2018). This mainly occurs due to the differential response of a given genotype to a given
environment in stimulated by both biotic, abiotic, or an interaction between them (Nardino et al. 2022a). For example, wheat



Page 3/30

plants exposed to very high temperature, have accelerated senescence, decreased chlorophyll of leaves, lower CO2

assimilation, and increased photorespiration (Nuttall et al. 2018). High temperatures (> 32°C) around anthesis can induce a
non-recoverable reduction in yield by adversely affecting ovary development as well as pollen and �oret viability (Pradhan et
al. 2012). Therefore, even if the two environments are strictly similar (eg., in terms of soil fertility, average temperatures, and
rainfall), extreme values can affect the plants differently, mainly depending on the crop stage they occur.

Reduced precipitation and increases in the maximum and minimum temperatures between 1961 and 2019 were recorded in
the Cerrado (Hofmann et al. 2021), creating a cascade effect with a delay in the onset of the wet season and changes in
important atmospheric parameters such as the reduction in relative humidity and evaporation and increase in the vapor
pressure de�cit (Marengo et al. 2022). The observational evidence of increasing climatic pressure in this area and
unencouraging climate change projections (Reboita et al. 2022) put at risk the breeding efforts that generated wheat
cultivars for this area and increase the challenges of breeding programs that aim to release new cultivars. Therefore, there is
an urgent need to better understand the GxE interaction in this region, identifying climate-resilient genotypes that can
perform well under warmer conditions. This can be one of the most effective ways for increasing wheat production in Brazil
under new challenges from climate change.

Numerous methodologies are used with the objective of estimating the nature of G × E interactions, including parametric
and non-parametric ones. These differ in terms of estimation concepts and procedures (Rad et al. 2013; Silva et al. 2012).
However, a robust methodology is to use REML/BLUP mixed models (Restricted Maximum Likelihood/Best Unbiased Linear
Predictor). The method proposed by Resende and Duarte (2007), which uses the harmonic mean of genotypic values
(HMGV), allows selecting simultaneously for productivity and stability, in addition to adaptability, through the relative
performance of the genotypic values of genotypes in environments. In other words, the model is based on the premise that
the higher the HMGV of genotypic values in different environments, the lower the standard deviation of the genotypic
behavior of genotypes in environments, crops, locations, or years of cultivation. This allows the expression of predicted
genotypic values in proportion of a general mean of each environment in order to later obtain the mean value of this
proportion in environments (Carvalho et al. 2016). Studies on wheat using this methodology are found in the literature, but
there is a small number of environments considered (Machado e Silva et al. 2021).

Another tool is the model genotype main effects + genotype environment interaction, known as GGE Biplot (Yan et al. 2000).
This model considers the additive effect of genotype with the multiplicative effect of the G × E interaction. This method, as
well as the additive main effects and multiplicative interaction (AMMI), uses a biplot graphic representation of a data
matrix. However, the AMMI compiles separately the main effects of G and E of the G × E interaction. According to Silva et al.
(2012), the GGE Biplot model more effectively explores the G × E interaction, enabling a greater accuracy in the identi�cation
of mega-environments and the selection of stable genotypes adapted to speci�c environments and mega-environments.
This becomes more evident in situations with a high number of genotypes and in highly contrasting environmental
conditions, as that of this study.

Studies on adaptability and stability of wheat often combines different strategies such as harmonic mean of genotypic
values (HMGV), Additive Main effects and Multiplicative Interaction (AMMI), and Genotype plus Genotype-Environment
interaction (GGE) to identify stable genotypes and delineate mega-environments (Machado e Silva et al., 2021; Woyann et
al. 2019; Verma and Singh 2021). Most of them, however, seem to not explore the climatic information in each environment.
As previous studies have shown (Costa-Neto 2021a), environmental typing analysis (e.g., environmental covariables) can be
an alternative to better understand the G×E interaction, mainly in a region/environment with high variations among the
locations/seasons.

In this sense, the main goal of this study is to integrate envirotyping, adaptability, and stability techniques to better
understand the G×E interaction and provide new insights for the recommendation of spring wheat genotypes in the new
frontier of production in Brazil.
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Material And Methods

Environments, Genotypes, and Experimental Design
From 2018 to 2020, eight �eld experiments were conducted in four different locations in the State of Minas Gerais, Brazil
(Table 01). The trials were made from a partnership between the Federal University of Viçosa (UFV) and the Cooperativa
Agropecuária do Alto Paranaíba (COOPADAP). In environment 6, there was inoculation with the fungus Magnaporthe oryzae
pat. Triticum, which causes blast. This procedure was performed as described by Gomes et al. (2019).

Table 01
List of eight environments in the study and climatological and experimental variables during the trial

period.
Environment Year Condition Köppen Sowing date Trial period

1 Rio Paranaíba 2018 Irrigated Aw 02/05/2018 May - August

2 Rio Paranaíba 2019 Irrigated Aw 09/05/2019 May - August

3 Viçosa 2019 Irrigated Cwa 10/06/2019 June - September

4 Viçosa 2020 Irrigated Cwa 10/06/2020 June - September

5 Viçosa 2020 Dry Cwa 16/06/2020 June - September

6 São Gotardo* 2020 Dry Cwa 30/03/2020 April - July

7 São Gotardo 2020 Irrigated Cwa 06/05/2020 May - August

8 Sete Lagoas 2020 Irrigated Aw 16/07/2020 July - October

Environment Altitude Latitude Longitude Temp med (ºC) Relative humidity (%)

1 Rio Paranaíba 1,150 m 19°21’31”S 46°07’22”W 18.1 81.7

2 Rio Paranaíba 1,150 m 19°21’31”S 46°07’22”W 17.8 85.5

3 Viçosa 648 m 20°45’14”S 42°52’55”W 18.6 76.5

4 Viçosa 648 m 20°45’14”S 42°52’55”W 18.2 79.2

5 Viçosa 648 m 20°45’14”S 42°52’55”W 18.2 79.2

6 São Gotardo* 1,083 m 19°13’21”S 46°05’28”W 18.4 80.2

7 São Gotardo 1,083 m 19°13’21”S 46°05’28”W 18.7 82.3

8 Sete Lagoas 796 m 19°28’34”S 44°11’42”W 21.8 58.9

* Genotypes used in this environment were inoculated with blast.

 

The treatments consisted of 31 lines from the UFV Wheat Improvement Program and �ve commercial cultivars from
different breeders (Table 2). The treatments were arranged in a completely randomized blocks design with three
replications. The plots consisted of �ve lines, �ve meters in length, spaced at 17 cm, in the trials of Rio Paranaíba and São
Gotardo and 20 cm in the other environments. The population density was 350 seeds m− 2. For evaluation purposes, the
three central lines were considered as the useful plot. The experimental management was carried out according to the
technical recommendations for wheat cultivation in the Brazilian Cerrado (Technical information for wheat cultivation:
EMBRAPA, 2020). Grain yield (GY) was determined in kg ha− 1, with correction for 13% moisture.
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Table 02
Genealogy, breeding institution, and year of release of the commercial genotype or year of crossing

for recombinant inbred lines (RILs) of the genotypes used in the trials.

  Class Genotype Genealogy Developer Year

G1 Cultivar BRS 264 Buck Buck/Chiroca//Tui Embrapa Trigo 2005

G2 Cultivar CD 151 BRS 120/ORL 95282 Coodetec 2011

G3 Cultivar ORS 1403 Inia Tijereta/Alcover//Abalone OR Sementes 2014

G4 Cultivar TBIO ATON TBIO Mestre/Fuste//TBIO Mestre Biotrigo Genética 2018

G5 Cultivar TBIO DUQUE Toruk#3/Celebra//Noble Biotrigo Genética 2018

G6 RILs VI 09004 Unknown UFV 2009

G7 RILs VI 09007 Unknown UFV 2009

G8 RILs VI 09031 Unknown UFV 2009

G9 RILs VI 09037 Unknown UFV 2009

G10 RILs VI 130679 Unknown UFV 2013

G11 RILs VI 130755 Unknown UFV 2013

G12 RILs VI 130758 Unknown UFV 2013

G13 RILs VI 131313 Unknown UFV 2013

G14 RILs VI 14001 Embrapa 42/ Pioneiro UFV 2014

G15 RILs VI 14022 BRS254/Aliança UFV 2014

G16 RILs VI 14026 BRS254/Aliança UFV 2014

G17 RILs VI 14050 IAC364/BRS207 UFV 2014

G18 RILs VI 14055 IAC364/BRS207 UFV 2014

G19 RILs VI 14088 IAC364/BRS207 UFV 2014

G20 RILs VI 14118 IAC364/BRS207 UFV 2014

G21 RILs VI 14127 BRS264/VI98053 UFV 2014

G22 RILs VI 14194 BRS264/VI98053 UFV 2014

G23 RILs VI 14197 BRS264/VI98053 UFV 2014

G24 RILs VI 14204 BRS264/VI98053 UFV 2014

G25 RILs VI 14208 BRS264/VI98053 UFV 2014

G26 RILs VI 14214 BRS264/VI98053 UFV 2014

G27 RILs VI 14239 IAC364/VI98053 UFV 2014

G28 RILs VI 14327 Sel. Rec. 9–16 UFV 2014

G29 RILs VI 14426 BRS264/BRS207 UFV 2014

G30 RILs VI 14668 Unknown UFV 2014

G31 RILs VI 14708 Unknown UFV 2014
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  Class Genotype Genealogy Developer Year

G32 RILs VI 14774 Unknown UFV 2014

G33 RILs VI 14867 Unknown UFV 2014

G34 RILs VI 14881 Unknown UFV 2014

G35 RILs VI 14950 Unknown UFV 2014

G36 RILs VI 14980 Unknown UFV 2014

 

Environmental typing
For each location/season, we collected weather data on a daily basis using the R package EnvRtype (Costa-Neto et al.
2021a). EnvRtype is a very practical package to acquire and process weather data. Based on geographical coordinates
(WGS84), plant date, and harvest date, the package collects and processes remote weather data from “NASA’s Prediction of
Worldwide Energy Resources” (NASA POWER, https://power.larc.nasa.gov/). The following variables were gathered using
the get_wheater() function: average air temperature (TMED, ºC d− 1), minimum air temperature (TMIN, ºC d− 1), and
maximum air temperature (TMAX, ºC d− 1), 2 m above the surface of the earth, rainfalls (RAINFALL, mm), wind speed at 2
meters (WS, km h− 1), and relative humidity (RH, %). Using the function parm_temperature(), parm_atmospheric(), and
parm_radiation(), the following parameters were computed: thermal parameters: Growing Degree Day (GDD, ºC d− 1,
considering a base temperature of 5ºC), daily temperature range (TRANGE, ºC d− 1), effect of temperature on radiation use
e�ciency (FRUE, from 0 to 1); atmospheric parameters: potential evapotranspiration (ETP, mm d− 1), slope of saturation
vapor pressure curve (SPV, Kpa ºC d− 1), vapor-pressure de�cit (VPD, kPa), and dewpoint temperature (TDEW, °C); and
radiation parameter: extraterrestrial radiation (RTA, MJ m− 2 day− 1).

We used the function W_matrix() of the EnvRtype package (Costa-Neto et al., 2021a) to create a covariate matrix (W), as
proposed by (Costa-Neto et al., 2021b). To better capture the temporal variation of the environmental information across
crop development, the crop cycles were divided into �ve-time intervals: from 0 to 30 DAE (tillering); from 31 to 55 DAE
(boosting); from 56 to 70 DAE (heading/�owering); from 71 to 94 DAE (kernel milk stage); and from 95 to 130 DAE
(physiological maturity). These time intervals were de�ned based on agronomic knowledge of how wheat grows in the
Brazilian Cerrado. For each variable–phenology combination, we calculated the �rst quartile (25%), median (50%), and third
quartile (75%) of each combination of environmental variable × time interval across different environments. Therefore, each
one of the 210 combinations of environmental variable × time interval × quantile has become an envirotype descriptor of
the environmental relatedness.

Using the W matrix, we calculated an enviromic kernel (equivalent to a genomic relationship), using the function
env_kernel() of the EnvRtype package (Costa-Neto et al., 2021a). In order to identify mega-environments, a hierarchical
clustering (average method) was applied to W, producing a heat map.

Statistical analysis

Deviance analysis and genetic parameters
The REML/BLUP methodology was used to estimate variance components and predict the effects of genotypic values and
the G × E interaction. The model used was

y = Xr + Zg + Wge + e
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where is the vector of phenotypic data,  is the vector of repetition effects (assumed as a �xed effect), which includes all
repetitions of all environments and encompasses the effect of environment and repetitions within environments plus the
general average,  is the vector of genotypic effects (assumed to be random) (  ~ N (0, ), where  represents genotypic
variance,  is the vector of effects of the G × E interaction (assumed to be random) (  ~ N (0, ), where  is the
variance of the G × E interaction and  is the vector of errors or residuals (assumed to be random) (  ~ N (0, ), where 
is the matrix of residual variance. The letters X, Z, and W mean the incidence matrices for the described effects.

The likelihood ratio test (LRT) was performed in order to test the random effects of the model through deviance analysis
considering the complete model without the effect of genotype and G × E interaction. Using the REML methodology, the
variance components and genetic parameters were obtained: genetic variance ( , variance of the G × E interaction ( ,

residual variance ( , phenotypic variance ( , heritability of the mean of genotypes ( selective accuracy (

coe�cient of determination of the G × E interaction ( , genotypic correlation of genotype performance across the
evaluated environments ( , genetic variation coe�cient ( ), and environmental variation coe�cient ( ), as
follows:

a)

 , where E is the number of environments evaluated.

b)

c)

d)

 , where is the overall average (3,739.17 kg ha-1)

e)

f)

The genotypic values free of the genotype × environment interaction were obtained and given by the formula ,
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individual environment, the genotypic values were predicted using the formula , where  is the mean of the

environment ,  is the genotypic effect of the genotype  in the environment , and is the effect of the G × E
interaction relative to the genotype . For the eight environments considered in the study, an environmental strati�cation
analysis was performed via least squares in order to identify groups of environments in which the G × E interaction is not
signi�cant. Furthermore, the G × E interaction was decomposed into its simple and complex parts using two methodologies:
Robertson (1959) and Cruz and Castoldi (1991).

Stability analysis
For the stability and adaptability analysis, the model 54 (Stability, Adaptability and Productivity) of the Selegen software
(Resende 2016) was used, which corresponds to the design of complete blocks in various environments with one
information per plot. The concept of stability is based on the harmonic mean of genotypic values (HMGV). The concept of
adaptability refers to the relative performance of genotypic values (RPGV). Thus, the conception of the analysis by stable,
adaptable, and productive genotypes occurs through the analysis of the harmonic mean of the relative performance of
genotypic values (HMRPGV), which considers both information together.

 , where E is the number of environments ( ), where the genotype  was evaluated,  is

the genotypic value of genotype  in the environment , expressed in relation to the mean of that environment.

a) 

 , where  is the mean grain yield of the wheat genotypes in the environment .

b)

c)

The genotypic adaptability (PRGV) and the simultaneous stability and adaptability (HMRPGV) are multiplied by the general
mean of the environments, PRVG*  and HMRPVG* , respectively.

To account for the mean performance and stability of genotypes, we also computed the WAASBY index, which allows
weighting between the mean performance Y and stability (WAASB). This index was computed considering an weight of 65
for mean performance and 35 for stability (Olivoto et al. 2019).

Graphical approach
The GGE Biplot method was constructed using the information on the genotypic values of each genotype. This method is
based on a graphical visualization of the data matrix, which considers the main effect of each genotype together with the
effect of the G × E interaction. This methodology was described by Yan et al. (2000) and consists of:

where  is the predicted genotypic value for the GY of genotype  in the environment ,  is the overall mean,  is the
effect of the environment .  and  are Eigenvalues associated with PC1 and PC2, and  are the scores for the PC1
and PC2 axes for the genotype ,  and  are the scores for the PC1 and PC2 axes for genotype the .  is the error
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associated with the two-dimensional model, that is, the percentage of  effects not explained by the �rst two
PCs. These analyses were processed using the Metan package in the R software (Olivoto and Lúcio, 2020).

Relationships between mean performance, stability, and climate
variables
We used the WAASB index (Olivoto et al. 2019) for each environment to quantify the genotypic variation within each
environment. Environments with higher WAASB are considered more discriminative, i.e., the variation among genotypes is
assumed to be higher in such an environment. To study the relationships between environmental variables and how they
could be related to mean performance and stability, we conducted a Principal Component Analysis with a two-way table
containing the environmental variables, the WAASB index, and the average grain yield for each environment. The biplot was
produced using the function fviz_pca_biplot() of the R package factoextra (Kassambara and Mundt 2020) in order to show
the relationships between studied traits.

Finally, to better understand the distribution of the maximum temperature across the crop cycle in each environment, we
used the function env_typing() of the EnvRtype package (Costa-Neto et al. 2021a) to create a plot with the relative frequency
of occurrence. Therefore, it was possible to compare how environments (and mega-environments) are similar or not related
to this environmental covariable.

Results And Discussion

Envirotyping
From the environmental covariates we performed the similarity analysis considering 14 enviromic kernels (Fig. 01), where
we can visualize the formation of four groups (mega-environments), which we worked on individually. In the similarity
analysis, we visualize that environments E6 (São Gotardo* - dry) and E8 (Sete Lagoas) are contrasting in relation to the
other environments that did not group with any other environment, where such environments represent a mega-environment.
On the other hand, environments E3 (Viçosa irrigated 2019), E4 (Viçosa irrigated 2020) and E5 (Viçosa dry 2020) have
greater similarity for the environmental covariates analyzed, indicating that the relative performance of genotypes in a same
city did not change as a function of the water regime. This indicates that the variance components of the G × E interaction
between these environments are not signi�cant.

The environment E1 (Rio Paranaíba - irrigated 2018), E2 (Rio Paranaíba - Irrigated 2019) and E7 (São Gotardo irrigated
2020) have greater similarity, these environments formed another subgroup, possibly explained by the proximity between
the three environments.

Figure 02 shows the biplot for the Principal Component Analysis between environmental variables, grain yield, and
genotypic variation in the environments. The two principal component axes explained 88.6% of the total variation. There
was a positive correlation between TMED, TMAX, SPV, and ETP, and a negative correlation of these climate variables with
RH.

The PCA scores suggest that E3, E4, E5, and E8 were mainly characterized as having a higher TMD, TMAX, TMIN, a lower
RH, and consequently a higher VPD, which is the difference (de�cit) between the volume of moisture in the air and how
much moisture the air can hold when it is saturated. The VPD can be then used as an accurate indicator of current air
evaporative capacity. The combination of higher temperatures with high VPD resulted in higher rates of ETP observed for
E4, E5, and E8. Therefore, it can be concluded that in warmer environments, the loss of water by evapotranspiration is
greater than in cooler environments. This is supported by the positive association between ETP and environment
temperatures (mean, minimum, and maximum).

G + G + E
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The positive association of TMAX, TRANGE, and VPD and the negative association of RH with WAASB suggest that these
environmental variables play a key role in the manifestation of genotypic variation in each environment. Therefore, good
prospects for the selection of climate-resilient wheat genotypes for the Cerrado are expected.

Figure 03 shows the distribution of the maximum air temperature within each mega environment. It is observed that
maximum temperature (TMAX ºC d− 1) showed a variable distribution, especially in mega environment four, which showed
low average grain yield values (see the distribution for other variables in Supplementary material S1).

Investigating the maximum air temperature in each of the �ve development stages (tillering, boosting, �nal �owering, kernel
milk stage and physiological maturity) it was observed that the higher temperatures of the E8 (Fig. 03) were mainly
observed during boosting, heading/�owering, and kernel milk stage with temperatures between 29 and 39ºC during more
than 75% of the days in these stages. On the other hand, environment E1 (Rio Paranaíba -irrigated), in which the wheat
genotypes showed the highest BLUP for grain yield, we were able to analyze in the work�ow that the relative frequency of
maximum air temperature in the development stages was reduced, which contributed to the excellent results obtained in
this environment. Similar results for grain yield and maximum air temperature, we can observe for environments E3 (Viçosa
irrigated 2019), E4 (Viçosa irrigated 2020) and E7 (São Gotardo irrigated).

Wheat is cereal of the most important food crops worldwide in terms of production and human nutrition. Brazil is a major
consumer of wheat, with an approximate consumption of 12 million tons (Conab 2021), it is not self-su�cient and
produces only 50% of the demand. Brazil has a high potential for expanding the cultivation of wheat, especially into regions
of lower latitude, such as the Brazilian Cerrado (Casagrande et al. 2020). However, in the Brazilian Cerrado we need to
develop and release cultivars with tolerance to heat, once those high temperatures same that for short periods have the
potential to signi�cantly reduce grain production (Nuttal et al. 2018). In the research by Hofmann et al. (2021) the
importance and potential of the Brazilian Cerrado is highlighted with a prediction of maximum air temperature for 2050.
The authors highlighted an increase in maximum temperature of 4.0, 3.4, 4.4, and 6.0 ºC in the months of July, August,
September and October, respectively. During these months, the wheat crop will be in full development in the �eld in this
region. In parallel, the increase in maximum air temperature, the study also indicates a ~ 15% decrease in relative humidity.

Of the eight environments evaluated, in three (E6, E8 and E5) the wheat genotypes showed grain yields below the general
average of the other environments, where E8 and E5 were environments with maximum air temperatures greater than 29°C
at critical development stages, such as heading/�owering. The high temperature at anthesis or after anthesis decreased
chlorophyll content, individual grain weight and grain yield of wheat (Pradham et al. 2012). High temperature stress
decreases chlorophyll content as a result of damaged thylakoid membranes or lipid peroxidation of chloroplast membranes
(Ristic et al. 2007; Djanaguiraman et al. 2010).

With these data, we understand that the development cycle of the genotypes was accelerated in this environment, which
reduces the time for the accumulation of photo-assimilated reserves in the stalk and leaves that would be translocated to
the grain later. High temperature, especially above 34°C at �owering, as we observed, increases �ower sterility in the
spikelets, reducing the number of grains per spike and thus grain yield. Once, that reduced grain number may only be
partially compensated by increased grain �lling due to proportionally greater allocation of assimilate to the remaining
kernels (Jenner et al. 1991; Nuttall et al. 2018). At growth stage (double ridge), high temperature adversely affects spikelet
formation (Shpiler and Blum 1986), at meiosis decreases grain number per spike by inducing ovule and pollen sterility and
anther indehiscence (Prasad et al 2008a), at anthesis, stress decreases the grain number by adversely affecting ovarian
development, pollen germination and pollen tube growth (Prasad et al. 2008b) At grain �lling period, high temperature
decreases leaf chlorophyll content and accelerates senescence (Zhao et al. 2007), leading to a shorter grain �lling duration
with an ultimate decrease in individual grain weight and yield (Pradhan et al 2012).

Based on these results we can also highlight the huge importance of considering the application of envirotyping in
understanding the GxE interaction (Heinemann et al. 2022), for deciphering environmental impacts of covariable climates
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on wheat genotypes. Wheat genotypes vary signi�cantly in their sensitivity to high temperature, where many studies have
showed signi�cant differences in the response in heat tolerance (Pradhan et al. 2012; Farooq et al. 2011; Stone and Nicolas
1998). Thus, considering the impact that maximum air temperature has on the wheat crop and that the expansion area in
Brazil will have an increase in maximum temperature, we need to select wheat genotypes that are resilient to these
environmental conditions. Currently, a �rst step can be taken by analyzing the genetic variability of germplasm and
recommending wheat genotypes that are more resilient to higher temperature environments.

Deviance analysis
According to the restricted maximum likelihood test (LRT) shown in Table 03, there is a signi�cant effect of genotype and G
× E interaction for the character GY (p < 0.01). The genetic variability of the conjoint analysis is the arithmetic mean of
genotypic variance components of individual analyses minus the interaction (Cruz et al. 2012). In view of this, the practice
of selection based on an average of the environments is not effective and appropriate. Therefore, it is necessary to use
methods that capitalize on the effects of the G × E interaction in order to maximize gains for a series of environments. Other
recent studies on wheat have also reported a signi�cant effect of the G × E interaction for GY (Lozada et al. 2020; Sehgal et
al. 2020; Szareski et al. 2021).
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Table 03
Likelihood ratio test, variance components, and genetic parameters of 36 tropical wheat

genotypes as for grain yield (GY) in eight environments evaluated in the 2018, 2019,
and 2020 crop seasons in the Brazilian Cerrado.

Effect Deviance LRT Variance Component

Genotype 11,973.71 8.56 ** 33,357.93

G × E interaction 12,015.05 49.90 ** 140,613.16

Residue - -   387,595.02

Complete model 11,965.15 -   561,566.11

Genetic Parameters

Heritability of mean genotype ( )

0.50

Selective accuracy (SA) 0.71

Coe�cient of determination of interaction G × E ( )
0.25

Genotypic correlation of performance in environments ( )
0.19

Genetic variation coe�cient (VCg, %) 4.88

Experimental variation coe�cient VCe, %) 16.65

Mean (kg ha− 1) 3,739.17

** = 6.63 * = 3.84

 
The variance component  presented a greater contribution of components due to the effects of the G × E interaction ( )

and the environment (  in relation to the genotypic component ( . This situation is quite common for complex
characters, such as GY, as it has a strong environmental in�uence and is governed by many genes. The genetic parameters 

 and the selective accuracy were 0.50 and 0.71, respectively. Casagrande et al. (2020) reported estimates similar as
these for GY upon studying the diversity of a panel of wheat genotypes using REML/BLUP. According to Resende and
Duarte (2007), selective accuracy estimates greater than 0.70 indicate a high experimental precision in the selection of
genotypes. The CVe estimate was 16.65%, corroborating the parameter of accuracy and study of Nardino et al. (2022b)
considering the variable GY in wheat.
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ĥ
2

mg



Page 13/30

The CVg/CVe ratio was lower than the unit, suggesting di�culties in multi-environment selection. The  and , which
Table 03 shows, were low: 0.25 and 0.19, respectively. Low estimates for these parameters derive from the presence of a
complex G × E interaction, which indicates an inconsistency in genotype superiority with variation across environments
(Cruz et al. 2012).

Nature of genotype-environment interaction
Figure 04 shows the percentage of G × E interaction of the complex part. A high predominance of the complex part over the
simple part is attested by estimates higher than 50% in both methodologies. In the comparison between the pairs of
environments, there is a lack of correlation between the best genotypes of each environment. The lowest estimates are from
the E1 × E6 environments in both methodologies. These environments are those with the highest and lowest means,
respectively. These results indicate that there is a trend towards less change in the ranking of genotypes between these
environments.

Genotypic mean performance
The BLUPs represented in Table 04 refer to the mean genotypic value in the various environments and capitalizes the
average interaction with all evaluated environments. There is a high environmental variability according to the estimates of
the genotypes evaluated. The environment with the highest average was E1, in Rio Paranaíba 2018, followed by the
environments E3 and E7, Viçosa 2019 and São Gotardo 2020, with mean yields per environment of 5,029.03, 4,292.80, and
4,265.80 kg ha− 1, respectively. These environments, classi�ed as favorable environments or with high technology, if
compared to the national average of wheat productivity in Brazil in 2020 (2,663 kg ha− 1), are 1.89 (E1), 1.61 (E3), and 1.60
(E7) times superior. It is important to point out that the Brazilian average of wheat productivity mainly re�ects the South
region, which historically cultivates wheat. In view of this, it is possible to verify a high potential of these cultivation
environments for the cultivation of wheat in warmer regions.

R2
ge σ̂ge
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Table 04
Best linear unbiased predictor (BLUP) for 36 tropical wheat genotypes in eight environments considering G x E interaction

as evaluated in the 2018, 2019, and 2020 crop seasons in the Brazilian Cerrado.
Genotypes Mean

Environments

E1a* E2bd E3b E4b E5b E6c E7cd E8e

BRS 264 5282.23 4375.40 4594.23 4309.59 4281.84 1388.56 4780.20 3097.16 3918.94

CD 151 5133.16 3981.86 3926.71 3794.05 3484.88 1319.71 4620.75 2623.31 3654.93

ORS 1403 4766.96 3736.36 4220.72 3889.71 3180.30 1257.97 4654.84 2338.53 3586.24

TBIO
ATON

5245.11 4194.03 4931.53 4342.03 3907.79 1403.87 4381.30 3334.58 3888.73

TBIO
DUQUE

4721.24 4002.78 4320.12 4029.86 3515.71 1194.67 4173.36 2472.32 3617.74

VI 09004 5405.13 3823.78 4219.48 4673.11 3945.29 1567.34 4064.07 4068.09 3890.86

VI 09007 5306.46 4077.72 4036.95 4251.37 3699.00 1348.74 3712.14 2862.33 3688.52

VI 09031 5113.06 3957.37 4254.31 4028.08 3583.42 1515.56 3624.16 2929.14 3664.81

VI 09037 5349.56 4144.17 3984.18 3818.95 3395.13 1322.17 4082.31 3068.60 3677.91

VI 130679 4898.96 3482.30 4240.45 4341.23 3503.98 1290.43 4090.40 2681.78 3625.88

VI 130755 4621.50 3607.51 4299.76 3979.09 3228.69 1536.86 4279.23 2956.01 3624.17

VI 130758 4420.23 3883.09 4110.79 3996.55 3162.77 1465.33 4025.40 2914.98 3580.82

VI 131313 4638.85 3365.61 4406.71 3928.31 3836.29 1027.85 4130.87 3607.03 3659.61

VI 14001 4767.34 3882.66 4113.74 4005.18 3987.86 1274.39 4414.19 3260.62 3722.19

VI 14022 5795.32 3893.18 3657.15 3906.81 3444.77 1409.05 4351.73 2821.19 3687.25

VI 14026 5587.80 4356.68 4478.56 4073.46 3590.93 1644.69 4746.96 3500.30 3908.31

VI 14050 5138.20 3740.85 4237.25 4146.22 3727.61 1120.71 3846.74 2737.49 3639.43

VI 14055 5317.19 3807.28 4461.51 4550.30 3900.65 1305.89 4654.96 3781.99 3891.97

VI 14088 4424.98 3853.66 4527.73 4318.06 3484.28 1447.72 4055.07 3289.19 3697.20

VI 14118 5104.55 4268.61 4110.80 4387.65 3901.30 1460.54 4242.79 3212.28 3802.63

VI 14127 5706.27 4364.26 4603.74 4747.49 3915.44 1740.92 4482.76 3393.77 3988.15

VI 14194 5676.27 4162.07 4961.24 4398.18 3427.17 1629.55 4427.03 2851.64 3871.78

VI 14197 5884.07 4282.66 4379.20 4424.87 3995.84 1551.62 4602.84 3402.94 3952.90

VI 14204 5459.91 3703.28 4151.58 4351.95 3572.02 1646.64 4380.79 2555.84 3731.69

VI 14208 5005.01 3947.98 4307.44 4315.33 3684.80 1439.66 4344.18 2242.44 3687.88

VI 14214 5060.30 4182.44 4368.34 4813.63 3932.94 1467.10 4521.61 2750.58 3836.07

* Environments followed by the same letter show non-signi�cant G x E interaction components at 5% probability by F
test.

μ + gi + (ge)ij
μ + gi
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Genotypes Mean

Environments

E1a* E2bd E3b E4b E5b E6c E7cd E8e

VI 14239 4509.86 3706.07 3816.21 3738.57 3646.55 1090.03 3869.91 2648.90 3502.80

VI 14327 5206.94 3838.80 4342.12 4467.27 3680.39 1304.04 4322.40 3075.91 3765.74

VI 14426 4814.14 3970.33 3994.47 3881.57 3657.52 1469.28 4270.01 2844.01 3656.32

VI 14668 5227.38 3898.25 4148.27 4154.12 3817.16 1671.45 4182.97 3525.37 3797.43

VI 14708 4962.56 3870.11 4414.74 4199.28 3464.51 1191.21 4292.40 3077.76 3703.08

VI 14774 4384.20 4211.41 4495.34 4339.31 3882.48 1745.95 4368.15 3800.89 3846.77

VI 14867 4420.44 4165.90 4756.99 4198.06 3345.16 1515.56 4374.17 3551.35 3773.08

VI 14881 4626.01 3964.26 4359.08 4332.43 3526.44 1232.24 3906.15 2712.93 3636.52

VI 14950 4482.00 3748.62 3625.09 3651.65 3269.52 1178.56 3753.46 3359.90 3506.29

VI 14980 4581.94 4252.46 4684.44 4616.68 3972.25 1448.69 4538.37 4093.31 3925.40

Mean 5029.03 3964.00 4292.80 4205.56 3654.24 1406.24 4265.80 3095.68 3739.17

* Environments followed by the same letter show non-signi�cant G x E interaction components at 5% probability by F
test.

 
The least productive environment was the E6, São Gotardo 2020, a rainfed environment with sowing before the end of the
rainy season and with pressure by disease (blast inoculation). Grain yield in this environment was 1,406.24 kg ha− 1. The
second lowest productive average was in Sete Lagoas 2020 (E8), followed by Viçosa 2020 (E5). Among the three most
unfavorable environments, two are environments with rainfed cultivation (E5 and E6). These results corroborate those
Pereira et al. (2019) described. The authors concluded that there is a need for a greater drought tolerance in wheat to unlock
the production potential of the Brazilian Cerrado.

Another unfavorable environment was E8, characterized as the environment with the highest average temperature during
the cultivation period (21.8 ºC) and the lowest relative humidity (58.9%) among all environments evaluated (Table 01). Leaf
respiration is highly associated with higher air temperature in wheat and inversely proportional to yield, especially during the
grain �lling phase, with negative correlation estimates between 0.50 and 0.85 (Pinto et al., 2017). Heat tolerance in wheat is
a polygenic trait di�cult to quantify, and there are still no effective methods for selecting parents that are heat-tolerant and
few molecular markers are used for the selection of this trait (Ni et al., 2018; Zhongfu et al. 2018). However, this
characteristic, coupled with tolerance to water de�cit, are essential factors for the advancement of wheat in Brazil,
especially for lower regions in the Southeast and Midwest regions and in the North and Northeast States in general.

The environmental strati�cation grouped the environments E2, E3, E4, and E5. This indicates that the variance components
of the G × E interaction between these environments are not signi�cant. The three environments in Viçosa, together with the
Rio Paranaíba 2019 environment, established a mega-environment (b). The environments E6 and E7, rainfed and irrigated,
of São Gotardo established another subgroup (c), indicating that the relative performance of genotypes in a same city did
not change as a function of the water regime. The environments irrigated Rio Paranaíba (2020) and irrigated São Gotardo
(2019) formed another subgroup, possibly explained by the proximity between the two environments. The environments E1

μ + gi + (ge)ij
μ + gi
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and E8, with lower and higher average air temperature, did not group with any other with non-signi�cant G × E interaction.
They are thus independent environments.

Among the ten most productive genotypes in the E1 environment, the most favorable environment in this study, six are
among the group of the ten most productive genotypes in the E8, with arti�cial inoculation of blast, namely: VI 14127, VI
14204, VI 14026, VI 14194, VI 09004, and VI 14197. These results suggest the classi�cation of these strains as an ideal
genotype due to the high performance of these materials in favorable as well as in unfavorable environments. The VI 14127
genotype was present in the selection of the ten most productive genotypes in all evaluated environments. Other published
studies have also reported a high performance of this genotype (Machado e Silva et al. 2021). Figure 02 shows the
relationship between climate variables, environments, and grain yield.

Table 05 shows the results of stability (HMGV), adaptability (RPGV), stability, and adaptability. The HMGV results indicate
that the most productive and stable genotypes were VI 14127, VI 14774, VI 14026, VI 14197, and VI 09004. The HMGV
analysis simultaneously brings together a selection based on two concepts: productivity and stability. Productivity is the
result of an ordering of genotypes based on their genotypic values (BLUP), and stability is calculated through the standard
deviation of the genotype behavior in the environments evaluated. The smaller the standard deviation, the greater the
harmonic mean of genotypes. The genotypes VI 14980 and BRS 264, the 3rd and 4th most productive genotypes based on
environment means (Table 04), are not among the �ve genotypes with the highest estimate of HMGV. These results indicate
that, despite being productive when the average across environments is analyzed, they present little predictable behaviors.
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Table 05
Genotypic stability (HMGV), genotypic adaptability (RPGV), simultaneous genotypic adaptability and stability
(HMRPGV), genotypic value multiplying adaptability (RPGV*µ), and genotypic value penalized by instability
and multiplied by adaptability (HMRPGV*µ) for 36 tropical wheat genotypes as for grain yield (GY) in eight

environments evaluated in the 2018, 2019, and 2020 crop seasons in the Brazilian Cerrado.
Line HMGV Line RPGV RPGV*µ Line HMRPGV HMRPGV*µ

VI 14127 3670.10 VI 14127 1.1117 4156.81 VI 14127 1.1092 4147.30

VI 14774 3570.17 VI 14197 1.0872 4065.32 VI 14197 1.0857 4059.75

VI 14026 3539.64 VI 14980 1.0845 4055.24 VI 14980 1.0747 4018.48

VI 14197 3534.09 VI 14026 1.0772 4027.91 VI 14026 1.0729 4011.71

VI 09004 3507.41 VI 09004 1.0743 4017.05 VI 09004 1.0640 3978.65

VI 14980 3493.21 VI 14774 1.0711 4005.12 BRS 264 1.0629 3974.48

VI 14668 3459.32 BRS 264 1.0662 3986.57 VI 14774 1.0596 3961.97

VI 14194 3437.34 TBIO ATON 1.0568 3951.45 TBIO ATON 1.0552 3945.41

BRS 264 3399.40 VI 14055 1.0560 3948.58 VI 14055 1.0496 3924.61

TBIO ATON 3391.96 VI 14194 1.0545 3942.86 VI 14194 1.0474 3916.27

VI 14867 3356.20 VI 14668 1.0412 3893.19 VI 14668 1.0359 3873.43

VI 14118 3348.19 VI 14214 1.0364 3875.43 VI 14214 1.0317 3857.54

VI 14214 3341.72 VI 14118 1.0289 3847.26 VI 14118 1.0276 3842.32

VI 14055 3338.90 VI 14867 1.0253 3833.60 VI 14867 1.0177 3805.48

VI 14204 3291.34 VI 14204 1.0029 3749.85 VI 14327 1.0009 3742.40

VI 14088 3243.72 VI 14327 1.0024 3747.99 VI 14204 0.9933 3714.16

VI 09031 3215.70 VI 14088 0.9912 3706.27 VI 14088 0.9876 3692.79

VI 14327 3197.80 VI 14001 0.9905 3703.50 VI 14001 0.9870 3690.73

VI 14426 3190.58 VI 09031 0.9773 3654.11 VI 09031 0.9733 3639.15

VI 130755 3187.44 VI 09007 0.9752 3646.32 VI 09007 0.9716 3633.07

VI 14001 3163.61 VI 14208 0.9744 3643.62 VI 14426 0.9703 3628.11

VI 14022 3145.82 VI 14022 0.9739 3641.74 VI 14708 0.9701 3627.43

VI 09007 3140.78 VI 14708 0.9732 3638.97 VI 09037 0.9675 3617.54

VI 14208 3126.08 VI 14426 0.9722 3635.29 VI 14022 0.9670 3615.95

VI 09037 3121.60 VI 09037 0.9704 3628.36 VI 14208 0.9626 3599.26

VI 130758 3116.07 VI 130755 0.9639 3604.21 VI 130755 0.9600 3589.65

CD 151 3069.25 CD 151 0.9581 3582.51 CD 151 0.9530 3563.51

VI 14708 3064.48 VI 131313 0.9558 3573.88 VI 14881 0.9464 3538.71

VI 130679 3035.88 VI 14881 0.9499 3551.69 VI 130679 0.9439 3529.26

VI 14881 3020.73 VI 130679 0.9468 3540.24 VI 130758 0.9421 3522.56
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Line HMGV Line RPGV RPGV*µ Line HMRPGV HMRPGV*µ

TBIO DUQUE 2955.48 VI 130758 0.9449 3533.15 VI 131313 0.9392 3511.69

ORS 1403 2937.66 VI 14050 0.9427 3524.85 VI 14050 0.9367 3502.45

VI 14050 2935.84 TBIO DUQUE 0.9377 3506.30 TBIO DUQUE 0.9320 3484.96

VI 131313 2912.19 ORS 1403 0.9263 3463.43 ORS 1403 0.9173 3429.93

VI 14950 2900.67 VI 14950 0.9060 3387.55 VI 14950 0.9005 3367.07

VI 14239 2808.35 VI 14239 0.8932 3339.80 VI 14239 0.8891 3324.56

 
Genotypic adaptability (RPGV) is expressed as the mean value of the proportion of predicted genotypic values in relation to
the general mean of each environment. In this sense, the most adapted genotypes were those with the highest estimate of
HMGV, plus the genotype VI 14980. The genotype VI 14980 had previously the 6th highest value of HMGV. The HMRPGV,
which combines the concepts of productivity, stability and adaptability, classi�es the genotypes exactly in the same way as
the RPGV statistic informs. According to this method, the most productive, stable, and adapted genotypes are VI 14127,
followed by the genotypes VI 14197, VI 14980, VI 14026, and VI 09004. No commercial genotype was among the top �ve for
each parameter evaluated. The best commercial genotype was the BRS 264, with HMRPVG *µ 3,974.48 kg ha− 1. This
method is very similar to the classical method proposed by Linn and Binns (1988), but in a genotypic and not in a
phenotypic context.

Other authors have already reported the use of this method for soybean (Gonçalves et al. 2020), cotton (Peixoto et al. 2020),
and other oilseed species that produce biodiesel (Alves et al. 2018). For wheat, there is only one study in the literature
(Machado e Silva et al. 2021); however, only three environments were used in it.

The �rst two principal components (PC1 and PC2) in the GGE Biplot analysis encompassed approximately 70% of the total
variation (64.75%) present in the environments (Fig. 05A). Other authors, in a similar study with 50 wheat genotypes and
nine environments, observed an explanation between PC1 and PC2 of 50%. According to Yan et al. (2000), PC1 indicates the
degree of adaptability of the genotypes; it is correlated with the performance per se in each environment. PC2 indicates the
degree of stability of each genotype. In this type of analysis, the cosine of the angle between two environments corresponds
to the genetic correlation between them. There is a high negative genetic correlation between the environments E1 and E8.
The high discordance between the performance of genotypes in these environments can be explained by the agroclimatic
differences existing between them (Table 01).

The comparison between mean and stability (Fig. 05B) considers the continuous green line with the arrow, called “average-
environment axis” (AEA), classifying the genotypes with the highest average performance across the environments; the line
perpendicular to the AEA indicates a greater environmental productivity variability (less stability) in any direction, such that
the longer the dotted green line, the less stable the genotype (Yan and Tinker 2006). Based on these concepts, the sister
lines G21 (VI 14127) and G23 (VI 14197) present genetic superiority in relation to the others. In addition, other genotypes
show high stability and productivity: G1 (BRS 264), G16 (VI 14026), G18 (VI 14055), and G4 (TBIO ATON). The closer to the
X axis (green line with arrow to the left), the greater the stability. In this case, the most stable genotypes are G27 (VI 14239),
G34 (VI 14881), and G31 (VI 14708). However, these genotypes have a low grain yield in most environments. In general, the
less productive a genotype is, the more stable it tends to be, as it consistently underperforms in many environments. The
G36 (VI 14980) presented the greatest distance, evidencing a low estimate of prediction of productive behavior, which is
different from the previous HMRPGV analysis.

The genotypes derived from cultivar BRS 264 (G21, G22 and G23) in its pedigree are among the best results for stability.
Other studies have already reported the high productivity, adaptability, and stability of this genotype under Brazilian Cerrado
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conditions (Albrecht et al., 2007). This cultivar occupies 70% of the cultivated area in the Cerrado of Brazil and the world
record for daily productivity: 9,630 kg ha− 1, that is, 80.9 kg ha− 1 day− 1. Based on this, it is suggested that stability and
adaptability are complex traits and are confused with grain yield. Their inheritance should be better investigated to optimize
the selection of this trait in wheat breeding programs.

Based on the graphic representation Which-won-Where (Fig. 05C), the genotypes G21, G23, G22, G15, G3, G27, G35, G32,
and G36 are the furthest from the Biplot origin and have a better performance in one or more environments. Therefore, these
genotypes delimit the area of the polygon. The blue dotted lines leaving the center of the Biplot (0,0) delimit the diagram in
nine different sectors, with the formation of three distinct mega-environments (ME). The �rst mega-environment (ME1) is
composed of only E1, the second mega-environment (ME2) is composed of the environments E2, E3, E4, E5, E6 and E7, and
the third mega-environment (ME3) is composed of the E8 environment. Each mega-environment can be de�ned as a group
of environments where one or more genotypes show a high adaptability, similar to what occurs in environmental
strati�cation analyses. The three mega environments formed by the GGE Biplot analysis corroborate the results obtained in
the environmental strati�cation analysis due to the formation of subgroups with a non-signi�cant G × E interaction. G22
showed high adaptability to ME1, G21 and G23 showed better performance in ME2, while the genotypes G36 and G32
showed high adaptability to ME3. The genotypes present in sectors where there is no environment were not responsive to
any environment studied.

ME1 and ME3 were more discriminative, while ME2 was more representative (Fig. 05D), especially the E6, a rainfed
environment with blast inoculation. Mushayi et al. (2020) report that ideal environments for selection must be
discriminatory and representative; however, no ME in this study was classi�ed as ideal (Fig. 05E). Discriminatory but not
representative environments can be used to select genotypes adapted to speci�c environments. Representative and
homogeneous environments are ideal for the selection of widely adapted lines (Bányai et al., 2020). A genotype is
considered ideal when high productive performance is linked to high stability. The genotypes closer to the center of the
concentric circles are the most desirable and present a behavior close to that of the ideal genotype ideotype (Fig. 05F). In
this study, the genotypes G21, G23, G16, G1, G4, and G22 are the closest to a hypothetical ideal genotype according to the
GGE Biplot methodology. These results corroborate those found through the WAASBY index (Fig. 06).

Conclusions
The genotypes VI 14127, VI14197, VI14026, and BRS 264 were selected simultaneously by the HMRPGV and GGE Biplot
method as highly productive, adaptable, and stable, being promising genotypes to be cultivated in the cerrado region. The
environmental typing contributed to a better understanding of genotypic performance across contrasting environments. The
grain yield was negatively correlated with the temperature at the dewpoint and relative humidity. The environment with a
lower yield had natural rainfall and mild temperatures. Surprisingly, the environment with higher natural rainfall precipitation
that received irrigation was the second less productive. There is strong evidence that the high temperatures (> 30 ºC) during
75% of the days during boosting stage and during the entire stage of heading/�owering were the main limiting climate
factor in this environment. Within that environment, VI14774 and VI14980 strains showed better performance (GY > 3800 kg
ha− 1) and are potential germplasm sources for high-temperature environments at the boosting and heading/�owering
stages. Overall, this study provides new insights on how the environment typing can be useful to better understand the
genotype-by-environment interaction and help to breed new climate-resilient wheat cultivars for the cerrado region. The joint
use of HMRPGV and GGE Biplot methodologies is highly promising in exploring the G × E interaction, especially in
situations with contrasting environments.
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Figure 1

Nonlinear enviromic kernels (Gaussian) based on 14 environmental covariates over eight tropical wheat environments (E1,
E2, E3, E4, E5, E6, E7 and E8) shown in Table 1.
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Figure 2

Principal Component Analysis with a two-way table containing the environmental variables, the WAASB index, and the
average grain yield for each environment/season for 36 tropical wheat genotypes in eight environments considering G x E
interaction as evaluated in the 2018, 2019, and 2020 crops seasons in the Brazilian Cerrado.
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Figure 3

Work�ow for a scale envirotyping analysis for maximum air temperature (TMAX, ºC d-1) effects variable at 8 environmental
level and 4 Mega Environment at 5 development stages (tillering, boosting, �owering �nal, kernel milk stage and
physiological maturity) in wheat (total 112 ECs).
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Figure 4

Percentage of G × E interaction of the complex part according to (A) Robertson (1959) and (B) Cruz and Castoldi (1991).
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Figure 5

GGE Biplot graph (A), stability (B), polygon (C), environment discrimination (D), ideal environment (E), and ideal genotype (F)
obtained by the GGE Biplot method considering the �rst two principal components (PC1 and PC2) for 36 tropical wheat
genotypes as for grain yield (GY) in eight environments evaluated in the 2018, 2019, and 2020 crop seasons in the Brazilian
Cerrado.
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Figure 6

Estimated values of weighted average of stability (WAASB) and mean performance (Y) (WAASBY) for 36 tropical wheat
genotypes as for grain yield (GY) in eight environments evaluated in the 2018, 2019, and 2020 crop seasons in the Brazilian
Cerrado.
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