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Abstract

We consider the evolution of the global air transportation network during
the COVID-19 pandemic, using publicly available data from the OpenSky
Network.

Keywords: Open source data, network analysis, air transportation.

1. Introduction

The COVID-19 pandemic, caused by infection with the SARS-CoV-2
virus, has become one of the most severe and deadly pandemics in recent
history. By December 2022, three years after its first known outbreak in
December 2019, the World Health Organisation (WHO) reported over 6.6
million COVID-19 deaths and 649 million confirmed COVID-19 cases [39],
while the total number of people infected with and having died from COVID-
19 is believed to be much greater. It may take many years to fully ascertain
the health burden and socioeconomic impact of the pandemic. The COVID-
19 pandemic has involved multiple waves (see Figure [1]). These waves were
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mainly due to the emergence of new variants of concern (VOCs) and the
implementation and relaxation of non-pharmaceutical interventions.

An important teaching of the COVID-19 pandemic is twofold. Firstly,
warnings by public health authorities worldwide, in particular since the be-
ginning of the 21st Century, about the inevitability of a pandemic were
founded. Several events of lesser importance such as the SARS-CoV-1 epi-
demic of 2003, the HIN1 influenza pandemic of 2009 or resurgent but lo-
calised outbreaks of Ebola or MERS somewhat dulled the public and polit-
ical perception of these risks, but COVID-19 has proved that they are real.
Secondly, such events are bound to repeat because of two main factors: the
ever increasing interactions between animal reservoirs of pathogens due to
encroaching human settlements and range changes due to climate change;
and the unprecedented level of human movement at all ranges.

In view of these considerations, quantifying and understanding the impact
that the COVID-19 pandemic had on different industries plays an important
role in refining containment measures. Across all industries, the aviation
sector was probably among the hardest hit, at least during the first year and
a half of the pandemic. As a major contributor to the globalised spread, the
aviation industry also had a major role to play in efforts to curtail the spread
of infection.

Unprecedented country-wide flight bans led to a dramatic change in travel
numbers, destinations and flight patterns. While air mobility has allowed
more passengers to fly to more and remote destinations within a few hours
at affordable prices and cargo shipments to more and more destinations, the
aviation sector plays an important role in the spread of diseases, by helping
local epidemics to turn into global epidemics [I§]. This phenomenon has been
observed already for several infectious diseases, such as, Ebola [17], Severe
Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome
(MERS) [40] and influenza [27]. For earlier diseases their impact could mostly
be reduced to the regional level and public health authorities were able to cut
transmissions of the disease at early stages, which prevented a full pandemic.
COVID-19, on the other hand, had a different outcome. Many countries
imposed border control measures aimed at reducing the risk of COVID-19
importation. A variety of approaches have been used globally to contain the
importation of COVID-19.

As mentioned, COVID-19 has driven home, if that was needed, the point
that the issue is not whether a pandemic will happen in the future but to
understand when it will occur and what form it will take. As a consequence,
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Figure 1: COVID-19 waves in Canada.

planning for the next pandemic is an extremely high priority for any gov-
ernment. Less obvious is the fact that, in the well-connected world of the
21st century, no country is isolated from the potential spread of infection.
Thus, there is a pressing need to study the global spread of COVID-19 to
understand the impact of a global epidemic. Even though travel restrictions
do little to directly reduce the burden of the pandemic, they can buy time
to develop a public health response to the pandemic. Travel restrictions can
directly decrease the influx of new infected persons into an area. More im-
portantly, restrictions reduce the probability of an infected individual leaving
the area in which an outbreak is developing.

Aims and organisation of the paper

Our first aim is to develop a methodology for dealing with an open source
dataset of flight information. The type of problems we consider here have
typically been addressed using costly datasets such as those obtained from
IATA, OAG or other commercial companies such as Flight Aware or Fligh-
tradar24. While these datasets are more exhaustive, they have the inconve-
nient that they are expensive and closed, in that they can be used in research
under restrictive conditions. By opposition, the dataset used here is openly
accessible, but requires a certain amount of preprocessing and provides data
that is incomplete and is made available monthly (and can even be obtained
in quasi-real time). This provides an alternative to the work carried out by
[15] using OAG data.

In this context, we provide a methodology for preprocessing this data in
the perspective of obtaining network level information, and investigate the
shortcomings of the resulting data compared to more extensive paying closed
dataset.

The second aim of this paper is to develop a methodology for dealing
with temporality in networks, in order to make use of the resulting data to



evaluate the real effect of measures like flight bans. This methodology could,
with minimal adaptation, be used on other datasets of the same nature. In
the well-connected world of the 21st century, no country is isolated from the
potential spread of infection. Travel restrictions can directly decrease the
influx of new infected persons into an area. More importantly, they reduce
the probability of an infected individual leaving the area in which an outbreak
is developing. However, quantifying the precise effect of these measures is
complicated. Motivated by this observation, we investigated what impact
travel restrictions in US, Canada and Europe had on the spread of COVID-19
in these regions. We collected data about travel restrictions, flights between
US, Canada and Europe and COVID-19 cases. Using this data we studied
the changes in the flight network and tried to infer the potential effect travel
restrictions had on the spread of the disease.

2. Description of the data

The flight data comes from Automatic Dependent Surveillance-Broadcast
(ADS-B) data. ADS-B data is transmitted automatically by aircrafts and
contains information about their position and identification. The data can
be received by simple ground-based receivers and has led to the development
of a community, including many members of the general public, who receive
and share the data they receive through instances like the OpenSky Network
[36].

As well as more subtle limitations to the data, which we address later,
there are structural limitations to the data that are worth mentioning at
this point. ADS-B, as a system, is being progressively mandated by law in
different national and transnational jurisdictions. As a consequence, data
coverage is good in jurisdictions that require or will soon require aircrafts to
be equiped, e.g., Canada [26] and the USA [11], Europe[21], but is much more
patchy in other locations. If an aircraft only flies between countries where
ADS-B equipment is not mandatory, for instance, it will most likely not be
equiped with the equipment and is therefore absent from the database.

The datasets we use were generated from the OpenSky Network data by
the authors of [32]. That data is updated monthly and made available on
Zenodo; it covers flight information starting in January 2019 and ongoing at
the time of writing (December 2022). Note that there are two versions of the
data distributed by the authors: a version under Creative Common license
that has some fields anonymised as well as one covered by the OpenSky


https://opensky-network.org/
https://zenodo.org/

Network license, usable freely for research purposes but otherwise limited. It
is the latter version we use here.

For this study we concentrated on flight data covering 2019, 2020 and
2021. For each month, the data consists in a csv file; see Table [2] for a
sample. The file has the columns in Table [T}

Variable Meaning

callsign Flight identifier

number* Commercial number of the flight
icao24 Transponder unique identification number
registration* Aircraft tail number

typecode*  Aircraft type
origin* ICAO code for the origin airport
destination* ICAQO code for the destination airport
firstseen UTC timestamp of the first message received by OSN
lastseen UTC timestamp of the last message received by OSN
day UTC day of the last message received by OSN
latitude_.1  First detected position of the aircraft
longitude_1  First detected position of the aircraft
altitude_1  First detected position of the aircraft
latitude_2  Last detected position of the aircraft
longitude 2  Last detected position of the aircraft
altitude_2  Last detected position of the aircraft

Table 1: Variables in the data and their meaning. Starred variables, e.g., origin*, can be
empty. OSN: OpenSky Network.

The dataset has some limitation, because the origin and destination are
computed using ADS-B (Automatic Dependent Surveillance-Broadcast) tra-
jectories (see for a [14]) on approach and takeoff and they are empty when no
airport can be found. Furthermore, no crosschecking with external sources
of data has been conducted. The aircraft information comes from OpenSky
dataset and the fields typecode and registration are empty when the air-
craft is not present in the OpenSky dataset. Because not every flight has an
aircraft type, we can only get lower and upper bounds for volume.



callsign icao24  registration typecode origin destination
HVN19 888152 YMML LFPG
CES219 780b7e  B-5936 A332 YSSY EDDF
TGWT700 T76bcca 9V-OFJ B788 RJBB
CSN609 781364 KLAX
SVA840 710411 WMKK WMKK
LAN600  e8027b CC-BBG B788 SKBO  KLAX
HVNb55 8880f8  VN-A868 B789 YSSY EGLL
AARbH51 71bf94  HL7794 A333 LTBA
CPA343 789202 B-LRU A359 YMML EGKK
AAL126P a999d2 NT718AN B7TTW KLAX  KDFW
LAN706  e80450 CC-BGJ B789 KJFK LEMD
CCA985  780ch8 B-2487 B748 KSFO

Table 2: Sample rows in the dataset. Flight number (usually a very small variation on the
callsign), location information (latitude, longitude and altitude) as well as date and time

are omitted.

3. Data cleaning and preprocessing

3.1. Data cleaning

The data as posted by the authors of [32] is already cleaned to a large

extent, so the cleaning steps are quite limited.

1. Select rows in which both origin and destination are non-empty. Cross-
linking with external sources should be possible in some instances, given
for instance the tail number or the callsign and flight number, but this

is an entirely different project and was not undertaken here.

2. Exclude rows in which the origin and destination airports are identi-
cal. These correspond often to leisure personal flights, mostly in the
USA. These flights have no consequence for the global spread of infec-
tious diseases and also have no impact on the overall dynamics of the

network, since they are not transport flights.

To illustrate the effect of these initial cleaning steps, let us illustrate with
the data from January 2019. The data initially had 2,660,901 rows. Of these,
1,341,646 rows were excluded in the cleaning steps because they had either
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unknown origin or destination or had same origin and destination. The rest
of the months are similar; see Table

3.2. Data preprocessing
Once the data has been cleaned, we submit it to preprocessing steps.

1. We add country, continent and country region information for each
flight for both the origin and destination, using the data in [33].

2. Using an aircraft capacity dataset [I], we add information about the
flight capacities. This provides upper bounds for the number of pas-
sengers on each flight. For flights that do not have an entry for the
aircraft type, we assign a volume of 2 passengers, the reasoning being
that many aircrafts in the database are small personal planes in the
USA.

3. To be able to perform pairwise comparisons between the networks, we
further process the data so that the list of airports is the same each
month. This means that we remove airports that do not appear in all
monthly datasets.

3.3. Specialising to the countries under consideration
Using the preprocessed data, we consider a subset of airports including
airports in Canada, the United States of America and Europe. For the
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exact list of countries used in Europe, see [Appendix Al Note that for USA

territories outside of territorial USA, only Puerto Rico is used; for European
countries, only territories close to the continent are included.

4. Evolution of the network

The techniques used are detailed in [Appendix C| We consider the evolu-
tion of the network from two different perspectives: changes to the character-

istics of individual nodes and changes to the global topology of the network.

4.1. Awrport-based evolution of the network

First, we consider nine major airports in Canada, the United States
of America and Europe: Amsterdam Airport Schiphol (ICAO: EHAM),
Hartsfield-Jackson Atlanta International (KATL), Chicago O’Hare Interna-
tional (KORD), Frankfurt (EDDF), Los Angeles International (KLAX), Lon-
don Heathrow (EGLL), Paris Charles de Gaulle (LFPG), Toronto Pearson
International (CYYZ) and Vancouver International (CYVR).

In Figure [3] we observe that the minimum travel volume was attained
at different times, where the travel volume is the sum of the inbound and
outbound volume. For European airports, April 2020 had the lowest number
of passengers while for the airports in the United States of America and
Canada, May 2020 had the smallest of volume. No airport had bounced back
to their pre-pandemic volumes in the period of study (2020-2022). Moreover,
Canadian airports had the slowest recovery out of the nine studied airports.

Hartsfield-Jackson Atlanta International airport is an airport which illus-
trates some of the limitations of the dataset. Because of the way the data
is collected, KATL appears to have a volume of virtually zero for January,
February and March 2019. Indeed, inspecting the data, KATL appears as
origin once in Jan 2019, three times in February 2019 and seven times in
March 2019. This is impossible since this airport is one of the biggest hubs
in the USA.

Figure [4] shows the evolution of the in-degree centrality, betwenness cen-
tality and in-closness centralities for Chicago O’Hare and Toronto Pearson
airports. The in-degree of centrality quantifies the number of non-stop path-
ways into a given airport from points of origin and is often interpreted as
an indication of the popularity of a location. Cities with higher values have
a greater number of pathways through which passengers and consequently
infectious diseases may arrive. Recall that because of the preprocessing and



» NS e RN
i’ AN /
~ w ‘I\", / \
! \ 1
! .o .o 1
éﬂ \ Z;‘ \I : ‘I ,\l\,:
: 1 . £ I f
H 3 ] 5 LI
: i 2N ) : F BAY !
‘| Ny \ . : Vi "
v o v, LY N K
1y \, o~ 7 11 \,
1 B 7 \ s 1
L" . K l_-
(a) EDDF (b) EGLL (c) EHAM
~ o )
o VA iy
./ P IR
J \ h, <l
£ | ! A1 '\,
H \ 1 \
8. \ 3 / 1 ,-\_‘I‘|
K 1 | ¢ 4 |
H bl "y g / 1 -,’
g I\ 1 ; V. 1
H 1 v 1 n
\ 1 ;v
1 ) 1 \ ) (U
17 1 A
I
(d) LFPG (f) KORD
LV
'
1 ,\‘ I'\. ol I\I" k
1 IR
| Y FERVA . \
. AN R N AR ! 1
H I [ IEY ] B ] !
2 | 1 v £. 1 1
i . 1 / 1
4 H 1 .
H 1 H } ]
i Y i ! l i
H X 1 I\I 1
i IR \ 1
1/
! v '
(g) KATL (h) CYYZ (i) CYVR

Figure 3: Evolution of travel volumes at the nine airports selected for the airport-based
analysis. Red lines separate the years.

specialisation to Canada, the US and Europe, the in-degree (as well as most
other measures) is smaller than it would be were data about the whole net-
work be available. Another important metric is betweenness centrality. This
metric is a measure of how frequent an airport falls along the shortest path
between other airports throughout the network. Betweenness centrality is
important because it highlights the potential for airports to act as a channel



’, \
SN i Iy \
AN I B 1y
W N , NEA 1y ) 1 \
i Iy AL LR ! H V]
i /i 1 i ! 1w v! '\1“1 L
i ! ! ! i ! Uy Foe T i
g 1 1 1 g 1 " " v Y “ .,,"
i 7 ; H pus A 1
P 'l il “ i " : ki \ b
H \ \
: Pty ; v e : Vo er
; \‘r 1 \ V!
11 I \ VP L
V1 W vy V!
~ vy v
(b) Betwenness for KORD (c) In closness for KORD
N i r=
N 1N/ | o
1’ | I i h N S " 1A
’ N I nt “' 1 A
! \, ) ho it Yoo /
z ! \ 1 et L B 1 " 1
P~ 1 ; Woeahog it o LR,
£ 1 AR AR (R P 1 HLBAAY
T 1 ,\" l|II l|l NI RSN 'I 1 n ‘, ‘l
\ ,‘\,\’ H A 'l”lll||||\|| H [
eAMYy TR LT 1
TR iV ZEEET K |REET ',“'f
¥ 1 ' & ' Y
(d) In degree for CYYZ (e) Betwenness for CYYZ (f) In closness for CYYZ

Figure 4: Evolution of different centrality measures Chicago O’Hare and Toronto Pearson
for the airport-based analysis. Red lines separate the years

for the spread of infectious diseases, since airports with high betweenness
tend to be important transit points for passengers (and consequently infec-
tious diseases) en route to their final destination. Finding airports with high
betweenness centrality is important; this information can be used to pinpoint
airports where non-pharmaceutical interventions (for example, surveillance,
enhanced diagnostics for dangerous pathogens) are likely to disrupt the in-
ternational and national spread of an infectious disease. Closeness is another
centrality metric used, it represents the average length of shortest paths be-
tween a given airport and all others throughout the airline travel networks.
These means that closeness centrality can be used to measure how accessible
an airport is from other airports. Similarly to what is observed for travel
volumes, there is a precipitous drop in connectivity. Here, however, the drop
happens in all nine airports in April 2020. For betweenness centrality, we see
that both KORD and CYYZ airports have an increase in centrality in April
2020.
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4.2. Global network evolution

The aviation industry has suffered greatly, as seen from Figure [pal, which
shows a dramatic decrease of the number of passengers in March 2020, not
just because of a decline in transportation needs due to the pandemic but
also because of the non-pharmaceutical interventions curtailing travel im-
plemented by countries. Furthermore, as seen from [5b] there was also a
sharp decrease in the number of active airports in March 2020. Note that
that number is obtained by considering the number of airports prior to the
second preprocessing step.
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Figure 5: Different changes in the network during 2019-2021

Note that the networks are not strongly connected, Figure [6al shows the
number of strongly connected components for each month.

In social network analysis, a community is a subset of nodes within the
graph that have a higher probability of being connected to each other than
to the rest of the network. In the following, we use three algorithms, the
so-called Louvain, Leiden and Infomap algorithms.

In Figure [7|, we observe that based on the Louvain algorithm, the Leiden
algorithm and the Infomap algorithm, the number of communities changes
over time; the size of the maximum community also changes. Interestingly,
the three algorithms detect smallest sizes of maximal communities at different

11
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times: April 2020 for Louvain, May 2020 for Leiden and August 2020 for
Infomap.

We then proceeded to a pairwise comparison of the results of some of
the community detection algorithms; see Figure [§ In Figure we see
the the pairwise comparison of the Louvain and Leiden algorithms using
Variant of Information method and in Figure [8fj we used Adjusted Rand Index
(ARI). It is apparent that these two community detection methods provide
different results. See Appendix for a overview of the Variant of
Information and ARI. Similar results where observed when comparing other
community detection algorithms.

In Figure we can see United States airports (KORD is Chicago O’Hare
airport and KADS is Addison Airport in Dallas, Texas) have the highest be-
tween centrality in 2020, furthermore, from 2019-2021 United States airports
have the highest centrality. Table illustrates the 10 airports which have
the highest betweeness centrality values for March 2019, April 2019-2021 and
May 2019-2021. Values have been normalised between zero (lowest betwee-
ness) and one (highest betweeness) to aid interpretation.

Note that centrality metric in this paper are based on the global airline
flight networks, and they represent the potential for flow through the net-

12
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Figure 8: Pairwise comparison of different community detection algorithms using Variant
of Information and Adjusted Rand Index.

works and although airports with high betweeness centrality are important
transit points for passengers, in reality this may not be the case.

Note that, Figure [0 illustrate another limitation of the data, since pri-
vate and small airports appear 23 times as having the highest in-closness
centrality.

Figure shows the the edge formation for 2019, 2020 and 2021, from
this we can see that April 2020 has a significant drop of edge formations
compared to April 2019 and April 2021. Note that the function used evaluates
a network object at multiple time points and return counts of the number of
edges forming (edge onset at time point). This function provides a descriptive
stats about momentary rate of change in the network. Figure shows the
edge disolution for our networks, and again we can see that April 2020 has a
significant drop of edge dissolution compared to April 2019 and April 2021.

14
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Figure 9: Highest monthly centralities for the years 2019-2021.

Note that the function used evaluates a network object at multiple time
points and return counts of the number of edges dissolving (edge onset at
time point).

5. Discussion

In this paper, we had several aims. The first was to use of a publicly
available dataset to answer questions about air travel that have typically
been addressed using costly datasets such as those obtained from IATA. We
provided a methodology for preprocessing this data in the perspective of
obtaining network level information, and investigated the shortcomings of
the resulting data compared to more extensive paying closed datasets. The
second aim was to make use of the resulting data to evaluate the effect of
measures like flight bans. We collected data about travel restrictions, flights
between US, Canada and Europe. Using this data, we studied changes in
the flight network, characterising a precipitous drop in April 2020, followed
by a progressive recovery.

In future work, we will compare the information obtained here with infor-
mation obtained from other datasets. Such comparison could allow to derive
rules for inferring travel data from this free resource.

Appendix A. List of countries in “Europe”

In our analysis, the countries used under the term Europe are the fol-
lowing: Albania, Andorra, Armenia, Austria, Belarus, Belgium, Bosnia and
Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
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Figure 10: Evolution of different measures of the network.
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Appendix B. Timeline of travel restrictions

On 17 March 2020, the European Union imposed a ban on incoming travel
for citizens from countries not in the European Union, European Economic
Area, Switzerland and the United Kingdom; the only country not partic-
ipating in the travel suspension was Ireland [23]. Starting 30 June 2020,
the restrictions were gradually lifted from global restrictions to non-global
restrictions [22]. On 27 March 2020, Republic of Tiirkiye suspended all in-
ternational flights [12] and on 4 May 2020, they started to ease up the travel
restrictions [§]. Serbia imposed a travel ban on 15 March 2020 [5] and started
to ease up restrictions on 10 June 2020 [4]. Lastly, on 14 March 2020, Ukraine
imposed a travel ban [I0] which was lifted on 28 September 2020 [9].

In mid-March 2020 Canada closed its border for all travelers who were
not citizens, permanent residents or U.S. citizens. Starting 6 January 2021,
Canada started to gradually lift its travel restrictions, then on 31 January
2021, it imposed further restriction to funnel scheduled international com-
mercial passenger flights into four Canadian airports: Montréal-Trudeau In-
ternational Airport, Toronto Pearson International Airport, Calgary Inter-
national Airport, and Vancouver International Airport [3]. These restriction
were lifted and currently international travelers can enter Canada only if are
vaccinated [2].

The USA did not start with a global travel suspension, however they sus-
pended travels from countries that had a high amount of infections. Starting
31 January 2020, people other than citizens, permanent residents and their
immediate family were prohibited from entering the U.S. within 14 days of
being in China [7], followed by Iran on 2 March 2020, the Schengen area on
13 March 2020 and Brazil on 29 May 2020 [6].

Appendix C. The air transportation network as a social network

Social network analysis is an analytical tool used to map and measure
social relationships. This multidisciplinary area involves social, mathemati-
cal, statistical and computer sciences. A social network is defined as a set of
social “actors” and a social relationship between each pair of actors. These
actors, called nodes, can be individuals, families, households, villages, com-
munities, regions, etc. In our case, the nodes are the airports and the social
relationship between nodes indicates the existence of a flight from one airport
to another.
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The network is oriented because the direction of flights is important and,
although rare, there are cases when it is not symmetric. We call arcs the
links between nodes in this case. An oriented network can be transformed
into a mon-oriented one by assuming two nodes are in relation if there is
an arc between them in any direction. In this case, the link is called an
edge. Multiple connections between the same two nodes can be represented
by putting a weight on the arc, obtaining a weighted network. A weighted
network is also easily transformed into an unweighted network by assuming
that there is an arc if the unweighted network if there is a nonzero weight in
the weighted one and no arc otherwise.

Appendiz C.1. Implementing and analysing the network

We create a network for each month of 2019, 2020 and 2021, leading to
36 different networks, which we call the monthly networks. Recall that in
the preprocessing stage, we select nodes that are present in all networks; this
implies that the 36 networks considered share the same nodes, although arcs
and weights vary month to month. The network is typically weighted, with
weight the number of passengers on a given route for a given time period
(one month here, although further work might consider smaller time steps).

The analyses described in the following sections are then run on each
monthly network and the results are collated.

Appendiz C.2. Centralities

Centralities are measures computed at individual nodes in the network,
representing how they are connected to other nodes in the network, describing
influential nodes in the connected structure of a graph [30]. In our compu-
tational work, we use [13| [19] to compute centralities.

In a directed network, each node has an in-degree (the number of arcs
terminating in the node), an out-degree (the number of arcs originating in the
node) and a degree (sum of in- and out-degree). Because the cleaning step
removes self-connections, the in- and out-degrees are exactly the number of
airports directly connected (inbound or outbound) to an airport in the month
under consideration.

The shortest path between two airports is the minimal number of flights
one has to take to go from one airport to another; we assume the distance is
infinite if there does not exist a shortest path. The out-eccentricity of a node
is the length of the longest shortest path out of a node; the in-eccentricity is
the length of the longest shortest path into a node.
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Other types of centralities considered on monthly networks are between-
ness and closeness centralities.

Betweenness centrality measures how often a given node is on shortest
paths not initiated or terminating there. A node (airport) with high be-
tweenness centrality has more control over a network and plays an important
role in ensuring overall connectivity of the network; if it is removed from the
network, the risks of overall disconnection are higher.

Closeness centrality is the reciprocal of the sum of the length of the short-
est paths between the node and all other nodes in the graph. Closeness cap-
tures how efficiently the entire network can be traversed from a given node;
a node is central in that sense if it is close to many other nodes.

Appendiz C.3. Network level properties

The network diameter is the maximum value of the eccentricity, while the
radius is the minimum value. The average path length refers to the average
number of steps along the shortest paths between all pairs of nodes in the
graph. Another network-level property used is density, which is the ratio of
the number of arcs present in the network to the total number of arcs that
a complete network would have, where a complete network has all nodes
connected to all other nodes.

Appendiz C.4. Communities

A network has a community structure if the nodes can be grouped into
sets such that each set is densely connected and loosely connected to vertices
in the other communities. Note that nodes in networks can have overlapping
and non-overlapping community structures. However communities partition
the set of nodes; each node belongs to a single community. Nodes in a given
community behave more like other nodes in the same community, so each
community can be considered as a meta-node in a smaller graph, simplifying
the analysis.

Finding communities can be a difficult task; usually the number of com-
munities is unknown and the size of the communities is unequal. There are
several methods to find the community structure of a network. There are
two primary types, agglomerative and divisive methods [34].

Agglomerative methods start with an empty network having only vertices
and no edges, we think of each vertex as its own community. Then at each
step of the algorithm, edges are added to merge the two closest communities
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to create new communities. The division method starts with a network hav-
ing both vertices and edges. Initially we have one big community containing
all vertices. Then we start removing edges to partition the vertices into sim-
ilar communities using sum of square errors of each community and keeping
the ones with the largest value