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RNA silencing of GM-CSF in CAR-T cells reduces
the secretion of multiple in�ammatory cytokines
Siqi Shang 

Ruijin Hospital
Yunshuo Chen 

Ruijin Hospital
Xuejiao Yang 

Ruijin Hospital
Ying Yang 

Ruijin Hospital
Wenbo Wang 

Ruijin Hospital
Yueying Wang  (  yywang@shsmu.edu.cn )

Ruijin Hospital

Research Article

Keywords: Chimeric Antigen Receptor T cells, RNA silencing, Cytokine release syndrome, GM-CSF

Posted Date: January 5th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2429383/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Investigational New Drugs on March 29th,
2023. See the published version at https://doi.org/10.1007/s10637-023-01344-9.

https://doi.org/10.21203/rs.3.rs-2429383/v1
mailto:yywang@shsmu.edu.cn
https://doi.org/10.21203/rs.3.rs-2429383/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10637-023-01344-9


Page 2/10

Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has become a research hotspot in the �eld of
hematological malignancies. However, CAR-T cell therapy can lead to immunotherapy-associated side
effects including cytokine release syndrome and neurotoxicity. Gene depletion of GM-CSF in CAR-T cells
was found preventive against adverse effects, but additional transfections were required to produce CAR-
T cells. In this study, we interrupted GM-CSF expression in CAR-T cells by inserting the GM-CSF shRNA-
expression cassette in the CAR vector. Reduction of GM-CSF in CAR-T cells could decrease the level of
several proin�ammatory cytokines without hampering the killing capacity. The manufacture of GM-CSF
knockdown CAR-T cells does not require complicated transfections, which makes it more practical and
feasible for clinical application.

Introduction
Chimeric antigen receptor T (CAR-T) cell therapy has demonstrated extraordinary potentials in the
treatment of acute lymphocytic leukemia and B-cell lymphoma [1, 2]. However, immunotherapy-
associated side effects strongly hampered the development of CAR-T cell therapy, as severe
complications are life-threatening for patients [3, 4]. Cytokine release syndrome (CRS; manifested by
fever, hypotension, hypoxia, and target-organ damage) and neurotoxicity (characterized by headaches,
confusion, seizure, and other neurologic manifestations) are the most representative [3, 4]. Various
in�ammatory factors were found elevated in serum samples after infusing CAR- T cells; these factors
include interleukin-6 (IL-6), interferon-γ (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-
CSF), soluble interleukin-6 receptor (sIL-6R), macrophage in�ammatory protein-1 (MCP-1), interleukin-1
(IL-1), etc. [5, 6]. Activated CAR-T cells release various in�ammatory cytokines including GM-CSF, which
subsequently plays a major role in the stimulation and differentiation of innate monocytes–
macrophages lineage [5, 7, 8]. Stimulated monocytes–macrophages massively produce cytokines
including IL-6 and IL-1. In�ammatory cascade is thus initiated and leads to CRS and neurotoxicity [6, 8, 9].
Previous studies reported that gene editing of GM-CSF in CAR-T cells could prevent against adverse
effects in vitro and in xenograft mouse models without damaging the cytotoxicity of CAR-T cells [8, 10].
However, these studies were conducted using CRISPR/Cas9 or TALENs, which require either a dual
transduction of CAR-expressing vector and GM-CSF-gRNA-lentiCRISPRv2 lentiviruses [10] or
electroporation of mRNA encoding TRAC TALEN arms and subsequent AAV transfection [8] to prepare
GM-CSFKO CAR-T cells. These additional manufacturing procedures might hamper the viability of CAR-T
cells. Meanwhile, the knockout e�ciency of GM-CSF through double transduction could be unpredictable,
and additional examinations would be needed. In the present study, we inserted a short hairpin RNA
(shRNA)-expression cassette in the CAR vector to reduce GM-CSF secreted by CAR-T cells. Regular
manufacturing procedures would su�ce to produce GM-CSFKD CAR-T cells and achieve comparable gene
silencing e�ciency to gene knockout, thereby promoting the clinical application of CAR-T cell therapy.

Materials And Methods
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Cells and Reagents
K562 (ATCC, #CCL-243) and HEK-293T (ATCC, #ACS4500) cells were obtained from ATCC. Cryopreserved
human adult puri�ed PBMCs (MT-BIO, #PB010C) were purchased from MT- BIO. The cryopreserved
PBMCs were thawed and cultivated in PRIME-XV T cell CDM (Irvine SCIENTIFIC, #91154) at 1x106/ml
supplemented with interleukin-2 (100 IU/ml) to prepare CAR-T cells. Anti-CD3/CD28 Dynabeads (Gibco,
#1132D) were added at a bead-to-cell ratio of 1:1 for 24 hours to stimulate and expand T cells. The
ampli�ed T cells were resuspended at 3x105/ml and transfected with lentiviruses (MOI = 3x105vg/cell) on
RetroNectin (Takara, #T100B) pre-coated plates for 72 hours. Transfection e�ciency was assessed by
detecting GFP expression through �ow cytometry and the �nal transfection e�ciencies were
approximately at 30–50%.

Generation Of Gm-csf Knockdown Car-t Cells
Four sets of shRNA sequences (Supplementary Table. S1) for GM-CSF silencing were modi�ed to be
constructed on the pLVX-shRNA2 plasmid. The knockdown e�ciency in K562 cells was compared
through Western blot assay before application to CAR-T cells. The shRNA- expressing fraction was then
ampli�ed through polymerase chain reaction and inserted into the anti-human CD19 CAR (CAR19) vector.
The CAR19 involved in this research contains an anti-human CD19 single-chain variable fragment (scFv),
hinge and transmembrane (TM) regions, and intracellular signaling domains including coactivator 4-1BB
as well as CD3 zeta. Lentivirus was produced in 293T cells with Lipofectamine 3000 (Thermo Fisher
Scienti�c, # L3000015) and puri�ed using ultra�ltration kit (Millipore, #UFC910096). Transfection was
conducted as described above.

Flow Cytometry Analysis
For CAR19 expression assay, the transfected 293T cells were incubated with diluted biotinylated human
CD19 (Acrobiosystems, #CD9-H8259) and then with BV605 Streptavidin (Biolegend, #405229) following
the manufacturer’s instruction. Flow cytometry was performed on BD LSR Fortessa X-20 Cell Analyzer. As
for other cell surface markers, cells were harvested, washed in Dulbecco's phosphate-buffered saline, and
incubated with Human TruStain FcX (Biolegend, #422302) to block the Fc receptor. Anti-CD3 (Gibco,
#555335, #555340), anti-CD4 (Gibco, #555349), anti-CD19 (BD, #562440), anti-CD14 (Biolegend,
#301804), and anti-CD11b (Biolegend, #101208) antibodies and Zombie NIR Fixable Viability Kit were
added as needed for �ow cytometry analyses. All �ow cytometric data was analyzed on FlowJo
X10.0.7r2. Enzyme-linked immunosorbent assay

Nalm6 cells were co-cultured with CAR-T cells or mock T cells at 1:1 ratio for 16 hours. Cell supernatant
was collected for cytokine assays. ELISA kits of human IL6 (Biolegend, #430504) and GM-CSF
(Biolegend, 432004) were used to detect the concentration of in�ammatory cytokines according to
manufacturer’s instructions.
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Cell Killing Assay
Nalm-6 cells were transduced with lentivirus for co-expression of luciferase-zsGreen (Hanbio
Biotechnology) beforehand. Nalm-6Luc + cells were later co-incubated with CAR-T cells or mock T cells at
effector to target (E: T) ratios of 0.25:1, 0.5:1, and 1:1 for 12 hours. D- Luciferin (Thermo Scienti�c,
#8829) was added simultaneously to the cell culture. Residual live cells were measured by detecting
bioluminescence on a Thermo Scienti�c Microplate Reader.

Monocyte Cocultivation And Endotheliocyte Activation Assay
Total monocytes were isolated from cryopreserved human PBMCs of the same donor by using the
MojoSortTM Human Pan Monocyte Isolation Kit (Biolegend, #480059) immediately after thawing. CD14 
+ monocytes were harvested, and about 2×105 was placed at the upper chamber of a 24-well transwell
plate (pore size:3.0 µm), with equal numbers of CAR-T cells and Nalm-6 cells cultured in the lower
chamber. After 16 hours, supernatant was collected for cytokine measurement.

Multi-analyte Flow Assay
Beads-based multi-analyte �ow cytometry analysis was conducted using LEGENDplexTM Human
In�ammation Panel 1 (13-plex, Biolegend, #740809), which included IL-1β, IFN-α2, IFN-γ, TNF-α, MCP-1, IL-
6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, and IL-33, to quantify cytokines and chemokines in the
supernatant of cocultured cells. Data were analyzed via Legendplex Version 8.

Statistical analysis
Statistical signi�cance was calculated using Student’s t test on GraphPad Prism. The results were
expressed as mean (SD). Two-sided p-values < 0.05 were considered statistically signi�cant.

Results
To obtain GM-CSFKD-shRNA-CAR vector, we �rst inserted the shRNA sequences for GM-CSF knockdown
on the pLVX-shRNA2 plasmid (Supplementary Table. S1). We chose four sets of shRNA and compared
their knockdown e�ciency in K562 cells by Western blot assays. Compared with the scramble shRNA
group, GM-CSFKD-shRNA-2 (shGM2) exhibited moderate GM-CSF silencing capacity, while GM-CSFKD-
shRNA-4 (shGM4) was the most effective (Supplementary Fig. S1). The shRNA expression cassette of
shGM2/shGM4 was inserted into the anti-human CD19 CAR vector (Fig. 1a). The expression levels of
FMC63 and GFP were not hampered in the modi�ed CAR vector (Supplementary Fig. S2).

Cryopreserved human adult puri�ed PBMCs were used to produce activated and ampli�ed T cells. The
transfected T cells were divided into �ve groups: mock T cells (GFP+), CAR19 T cells (CAR19+, GFP+),
shGM2-CAR19 T cells, shGM4-CAR19 T cells, and scramble-CAR19 T cells (Supplementary Fig. S3). We
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used Nalm6 cells (a cell line of CD19+ B cell acute lymphoblastic leukemia) as target cells to coculture
with CAR-T cells or mock T cells for 16 hours. Cell supernatant was collected, and enzyme-linked
immunosorbent assay (ELISA) experiments were conducted to detect the levels of GM-CSF. The average
GM-CSF concentration in the regular CAR19 T supernatant was 25 086.21 ng/ml. The GM-CSF
concentrations were 2 815.42 ng/ml in the shGM2-CAR19 T group and 284.22 ng/ml in the shGM4-
CAR19 T group (Fig. 1b). The average KD ratio in shGM2-CAR19 T cells and shGM4-CAR19 T cells
reached 89% and 98.9%, respectively. Co-expressing GM-CSFKD shRNA in CAR-T cells proved to be an
e�cient method to reduce GM-CSF secretion.

To evaluate the killing e�cacy of GM-CSFKD CAR-T cells, we used Nalm6 cells marked with luciferase-
zsGreen (Nalm6Luc+ cells) as target. In luciferase-based killing assays, CAR-T cells or mock T cells were
added at effector to target (E: T) ratios of 0.25:1, 0.5:1, and 1:1 for 12 hours. The killing e�ciency was
signi�cantly higher in all CAR-T groups than in mock T cells (Fig. 1c). CAR-T cells with different levels of
GM-CSF secretion exhibited comparable killing capacity. We indicated that the cytotoxicity of CAR19 T
cells was not affected by the reduction of GM-CSF.

To mimic the complicated interplay of immunocytes and in�ammatory factors, we used a transwell co-
culture system containing mock T/regular/GM-CSFKD CAR-T cells, Nalm6 cells, and monocytes (Fig. 1d).
The concentration of GM-CSF in the supernatant of the mock T group was signi�cantly lower than that of
CAR19 T cells, regardless of monocyte cocultivation (Fig. 1e). CAR-T cells were proved to be the main
source of elevated GM-CSF in CAR-T cell therapy. IL-6 was evidently elevated in the cocultivation of
CAR19 T cells, Nalm6 cells, and monocytes (Fig. 1e). GM-CSF KD in CAR19 T cells could alleviate IL-6
approximately to basic secretion (Fig. 1e). We then performed multi-analyte �ow assay to assess the
pro�le of in�ammatory factors. IFN-γ, TNF-α, IL-17A, MCP-1 IL-8, and IL-10 were �rstly produced by
activated CAR-T cells, and elevated when cocultured with monocytes (Fig. 1f). We con�rmed that the
in�ammatory cytokine cascade was initiated at the encounter of CAR-T cells and target cells, while the
outburst was mediated by monocytes and macrophages. The supernatant of GM-CSFKD CAR19 T cells
cocultured with Nalm6 cells and monocytes had low expression levels of IL-6, IL-8, MCP-1, IFN-γ, TNF-α,
and IL-17A (Fig. 1f). GM-CSFKD CAR19 T cells have the potential to reduce the extent of CRS/CRES by
alleviating the release of pro-in�ammatory factors.

Discussion
Antagonizing CRS biomarkers have been the main strategy in the management of immune-related
syndromes. IL-6 receptor blockage with tocilizumab is widely employed in patients with CRS [4, 11]. Our
group previously found that the blockage of TNF-α and IL-1β signaling could ameliorate endothelial
activation in CAR-T cell therapy [12]. The IL-1 receptor antagonist anakinra managed to protect from CRS
and neurotoxicity in vivo [6, 13]. Compared with blocking downstream cytokines, the prevention of
immune-related adverse effects is also of great importance. Recent studies set monocytes–macrophages
as key mediators and GM-CSF as messenger in CRS and neurotoxicity [6, 8]. Monocyte depletion
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contributed to prevention from CRS, but it would also impede leukemia clearance in xenograft models [6].
Inhibiting GM-CSF and hence weakening the circuit between CAR-T cells and monocytes have been
inspiring. GM-CSF neutralization with lenzilumab and GM-CSF knockout in CAR-T cells did not hamper
their anti-tumor effects [8, 10, 14]. Recent study revealed that GM-CSF knockout with CRISPR/Cas9 could
ameliorate early activation, contribute to proliferation, and exhibit anti-tumor functions in CAR-T cells [15].
Here, we demonstrated that GM-CSFKD CAR-T cells could reduce cytokine release in CAR-T cell therapy in
vitro and hence possess the potential to protect from immune-related adverse effects. Nevertheless, the
e�cacy and toxicities of the CAR-T cells in vivo are susceptible to the interplay with the innate immune
system. We still need to perform further experiments on suitable animal models for verifying the
advantages of GM-CSFKD CAR-T cells in the future studies.

In conclusion, we introduced a new method to reduce GM-CSF secretion from CAR-T cells by inserting the
GM-CSF shRNA-expression cassette in the CAR vector. This approach can be applied on any newly-
developed CAR construct. The manufacture of GM-CSFKD CAR-T cells does not require repeated
transfection, and the knockdown e�ciency is more predictable and controllable. Hence, the method is
practical and feasible for clinical application.
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Figure 1

Characterization and effects of GM-CSFKD CAR-T cells. (a) Schematic presentation of the GM-CSFKD-
shRNA-CAR19 construct used in this study. (b) CAR-T cells (or mock T cells) were cocultured with CD19+

Nalm6 cells for 16 hours. Concentration of GM-CSF in the supernatant was analyzed by ELISA. (c)
Cytotoxicity of conventional CAR19 T cells and GM-CSFKD CAR19 T cells were compared 12 hours after
cocultivation with Nalm6Luc+ cells. (d) Diagram of the space division of CAR-T, Nalm6 and CD14+ cells
cocultured in transwell (pore size=0.3 μm). (e) Concentration of GM-CSF (left) and IL-6 (right) in the
supernatant collected after coculturing CAR-T/Nalm6/ CD14+ cells for 16 hours assessed by ELISA. (f)
Cytokine profiles of co-cultured supernatants were measured by multi-analyte flow assay. The
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concentrations of IFN-α2, IL-12p70, IL-18, IL-23, and IL-33 were below the minimum value and not shown
in this �gure.

Each experiment was repeated for at least three times, and the results were expressed as mean (SD). *
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, ns: not signi�cant.
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