Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Triclosan a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46: 1485-1489. https://doi.org/10.1016/S0045-6535(01)00255-7.
Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 372: 87-93. https://doi.org/10.1016/j.scitotenv.2006.08.007.
An J, He H, Yao W, Shang Y, Jiang Y, Yu Z (2020) PI3K/Akt/FoxO pathway mediates glycolytic metabolism in HepG2 cells exposed to triclosan (TCS). Environ. Int 136: 105428. https://doi.org/10.1016/j.envint.2019.105428.
Behra M, Cousi X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, Strähle,U, (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat. Neurosci. 5: 111-118. https://doi.org/111-118. 10.1038/nn788.
Bester K (2005) Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch. Environ. Contam. Toxicol. 49: 9-17. https://doi.org/10.1007/s00244-004-0155-4.
Binelli A, Cogni D, Parolini M, Riva C, Provini A (2009) In vivo experiments for the evaluation of genotoxic and cytotoxic effects of Triclosan in Zebra mussel hemocytes. Aquat. Toxicol. 91: 238-244. https://doi.org/10.1016/j.aquatox.2008.11.008.
Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82: 1518-1532. https://doi.org/10.1016/j.Chemosphere.2010.11.018.
Capkin E, Ozcelep T, Kayis S, Altinok I (2017) Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout. Chemosphere 182: 720-729. https://doi.org/10.1016/j.chemosphere.2017.05.093.
Chai L, Chen A, Luo P, Zhao H, Wang H (2017) Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to Triclosan. Chemosphere 182: 255-266. https://doi.org/10.1016/j.chemosphere.2017.05.040.
Chaty S, Rodius F, Vasseur P (2004) A comparative study of the expression of CYP1A and CYP4 genes in aquatic invertebrate (freshwater mussel, Unio tumidus) and vertebrate (rainbow trout, Oncorhynchus mykiss). Aquat. Toxicol 69 :81-94. https://doi.org/10.1016/j.aquatox.2004.04.011.
Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31: 285-311. https://doi.org/10.1002/jat.1660.
Dar OI, Sharma S, Singh K, Kaur A (2019) Teratogenicity and accumulation of triclosan in the early life stages of four food fish during the bioassay. Ecotoxicol. Environ. Saf. 176: 346-354. https://doi.org/10.1016/j.ecoenv.2019.03.102.
Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change?. Environ. Health Perspect. 107: 907-938. https://doi.org/10.1289/ehp.99107s6907.
Dejong CA, Wilson JY (2014) The cytochrome P450 superfamily complement (CYPome) in the annelid Capitella teleta. PLoS One 9: 107728. https://doi.org/10.1371/journal.pone.0107728.
DeMicco A, Cooper KR, Richardson JR, White LA (2010) Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol. Sci. 113:177-186. https://doi.org/10.1093/toxsci/kfp258.
Den Hertog J, Groen A, van der Wijk T (2005) Redox regulation of protein-tyrosine phosphatases. Arch. Biochem. Biophys. 434: 11-15. https://doi.org/10.1016/j.abb.2004.05.024.
Dhillon GS, Kaur S, Pulicharla R, Brar SK, Cledón M, Verma M, Surampalli RY (2015) Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Int. J. Environ. Res. Public Health 12: 5657-5684. https://doi.org/10.3390/ijerph120505657.
Eaton DL, Gilbert SG (2008) Principles of toxicology. Casarett & Doull’s toxicology: The basic science of poisons: 11-43.
EC (European Commission) (2003) European Commission Technical Guidance Document in Support of Commission Directive 93//67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part II. In: Commission, E. (Ed.): 100–103.
ECCC and HC (2016) ECCC and HC (Environment and Climate Change Canada and Health Canada) Assessment Report Triclosan Chemical Abstracts Service Registry Number 3380-34-5. Ottawa, ON, Canada. http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=65584A12-1.
Ellis MM (1937) Detection and measurement of stream pollution. US Government Printing Office.
Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat. Toxicol. 97: 79-87. https://doi.org/10.1016/j.aquatox.2009.12.008.
European Commission (2011) Commission decision 2010/169/EU Off. J. Eur. Union (2011) L 75/25.
Falisse E, Voisin AS, Silvestre F (2017) Impacts of triclosan exposure on zebrafish early-life stage: toxicity and acclimation mechanisms. Aquat. Toxicol. 189: 97-107. https://doi.org/10.1016/j.aquatox.2017.06.003.
FDA (2016) FDA issues final rule on safety and effectiveness of antibacterial soaps. https://www. fda. gov/NewsEvents/Newsroom/PressAnnouncements/ucm517478. htm.
Fernandes C, Fontainhas-Fernandes A, Ferreira M, Salgado MA (2008) Oxidative stress response in gill and liver of Liza saliens, from the Esmoriz-Paramos Coastal Lagoon, Portugal. Arch. Environ. Contam. Toxicol. 55: 262-269. https://doi.org/10.1007/s00244-007-9108-z.
Finney DJ (1971) Probit Analysis: 3d Ed. Cambridge University Press.
Fritsch EB, Connon RE, Werner I, Davies RE, Beggel S, Feng W, Pessah IN (2013) Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promelas). Environ. Sci. Technol. 47: 2008-2017. https://doi.org/10.1021/es303790b.
Fu J, Tan YXR, Gong Z, Bae S (2020) The toxic effect of triclosan and methyl-triclosan on biological pathways revealed by metabolomics and gene expression in zebrafish embryos. Ecotoxicol. Environ. Saf. 189: 110039. https://doi.org/10.1016/j.ecoenv.2019.110039.
Gniadecki R, Thorn T, Vicanova J, Petersen A, Wulf HC (2001) Role of mitochondria in ultraviolet‐induced oxidative stress. J. Cell. Biochem. 80: 216-222. https://doi.org/10.1002/1097-4644(20010201)80:2<216::AID-JCB100>3.0.CO;2-H.
Guengerich FP, Chun YJ, Kim D, Gillam EM, Shimada T (2003) Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. MUTAT RES-FUND MOL M 523: 173-182. https://doi.org/10.1016/S0027-5107(02)00333-0.
Gyimah E, Dong X, Qiu W, Zhang Z, Xu H (2020) Sublethal concentrations of triclosan elicited oxidative stress, DNA damage, and histological alterations in the liver and brain of adult zebrafish. Environ. Sci. Pollut. Res.: 1-10. https://doi.org/10.1007%2Fs11356-020-08232-2.
Haarmann-Stemmann T, Abel J, Fritsche E, Krutmann J (2012) The AhR–Nrf2 pathway in keratinocytes: on the road to chemoprevention?. J. Investig. Dermatol. 132: 7-9. http://dx.doi.org/10.1038/jid.2011.359.
Haggard DE, Noyes PD, Waters KM, Tanguay RL (2016) Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol. Appl. Pharmacol. 308: 32-45. https://doi.org/10.1016/j.taap.2016.08.013.
Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in US water resources. Environ. Sci. Technol. 39: 1420-1426. https://doi.org/10.1021/es049071e.
Han J, Won EJ, Hwang UK, Kim IC, Yim JH, Lee JS (2016) Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 185: 131-137. https://doi.org/10.1016/j.cbpc.2016.04.002.
Hanneman EH (1992) Diisopropylfluorophosphate inhibits acetylcholinesterase activity and disrupts somitogenesis in the zebrafish. J. Exp. Zool. 263: 41-53. https://doi.org/10.1002/jez.1402630106.
Heffernan AL, Baduel C, Toms LML, Calafat AM, Ye X, Hobson P, Broomhall S, Mueller JF (2015) Use of pooled samples to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia. Environ. Int. 85: 77-83. https://doi.org/10.1016/j.envint.2015.09.001.
Hemalatha D, Nataraj B, Rangasamy B, Shobana C, Ramesh M (2019) DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan. Fish Physiol. Biochem. 45: 1463-1484. https://doi.org/10.1007/s10695-019-00661-2.
Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69: 334-342. https://doi.org/10.1016/j.talanta.2005.09.037.ea.
Hollenberg PF (2002) Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev. 34: 17-35. https://doi.org/10.1081/DMR-120001387.
Horie Y, Yamagishi T, Takahashi H, Iguchi T, Tatarazako N (2018) Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction. J. Appl. Toxicol. 38: 544-551. https://doi.org/10.1002/jat.3561.
Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 67: 167-179. https://doi.org/10.1016/j.aquatox.2003.12.005.
Jacobs MN, Nolan GT, Hood SR (2005) Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol. Appl. Pharmacol. 209: 123-133. https://doi.org/10.1016/j.taap.2005.03.015.
Kawajiri K, Fujii-Kuriyama Y (2007) Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Arch. Biochem. Biophys. 464: 207-212. https://doi.org/10.1016/j.abb.2007.03.038.
Kim MJ, Park HJ, Lee S, Kang HG, Jeong PS, Park SH, Park YH, Lee JH, Lim KS, Lee SH, Sim BW (2020) Effect of triclosan exposure on developmental competence in parthenogenetic porcine embryo during preimplantation. Int. J. Mol. Sci. 21: 5790. https://doi.org/10.3390/ijms21165790.
Ku P, Wu X, Nie X, Ou R, Wang L, Su T, Li Y (2014) Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 166: 105-114. https://doi.org/10.1016/j.cbpc.2014.07.006.
Liang X, Nie X, Ying G, An T, Li K (2013) Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere 90: 1281-1288. https://doi.org/10.1016/j.chemosphere.2012.09.087.
Lin D, Xie X, Zhou Q, Liu Y (2012) Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests. Environ. Toxicol. 27: 385-392. https://doi.org/10.1002/tox.20651.
Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ. Res. 97: 967-974. https://doi.org/10.1161/01.RES.0000188210.72062.10.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262.
Martínez-Paz P (2018) Response of detoxification system genes on Chironomus riparius aquatic larvae after antibacterial agent triclosan exposures. Sci. Total Environ. 624: 1-8. https://doi.org/10.1016/j.scitotenv.2017.12.107.
Miller KE, Grossnickle JA, Brooks RD, Deards CL, DeHart TE, Dellinger M, Fishburn MB, Guo HY, Hansen B, Hayward JW, Hoffman AL (2008) The TCS upgrade: design, construction, conditioning, and enhanced RMF FRC performance. Fusion Sci. Technol. 54: 946-961. https://doi.org/10.13182/FST08-A1910.
Nag SK, Das Sarkar S, Manna SK (2018) Triclosan–an antibacterial compound in water, sediment and fish of River Gomti, India. Int. J. Environ. Health Res. 28: 461-470. https://doi.org/10.1080/09603123.2018.1487044.
Ni Y, Zhang Z, Zhang Q, Chen J, Wu Y, Liang X (2005) Distribution patterns of PCDD/Fs in chlorinated chemicals. Chemosphere 60: 779-784. https://doi.org/10.1016/j.chemosphere.2005.04.017.
Oliveira R, Domingues I, Grisolia CK, Soares AM (2009) Effects of triclosan on zebrafish early-life stages and adults. Environ. Sci. Pollut. Res. 16: 679-688. https://10.1007/s11356-009-0119-3.
Olsen T, Ellerbeck L, Fisher T, Callaghan A, Crane M (2001) Variability in acetylcholinesterase and glutathione S‐transferase activities in Chironomus riparius meigen deployed in situ at uncontaminated field sites. Int. J. Environ. Res. Public Health 20: 1725-1732. https://doi.org/10.1002/etc.5620200815.
Organisation for Economic Co-operation and Development (1992) OECD guideline for testing of chemicals. Fish, early-life stage toxicity test, OECD 210. Organisation for Economic Co-operation and Development, Paris, France.
Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ. Toxicol. Chem. 21, 1338-1349. https://doi.org/10.1002/etc.5620210703.
Pan CG, Peng FJ, Shi WJ, Hu LX, Wei XD, Ying GG (2018) Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. Ecotoxicol. Environ. Saf. 148: 393-401. https://doi.org/10.1016/j.ecoenv.2017.10.011.
Park JC, Han J, Lee MC, Seo JS, Lee JS (2017) Effects of triclosan (TCS) on fecundity, the antioxidant system, and oxidative stress-mediated gene expression in the copepod Tigriopus japonicus. Aquat. Toxicol. 189: 16-24. https://doi.org/10.1016/j.aquatox.2017.05.012.
Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol. Biochem. 45: 70-79. https://doi.org/10.1016/j.plaphy.2006.12.004.
Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DJ (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J. Hazard. Mater. 186: 1586-1593. https://doi.org/10.1016/j.jhazmat.2010.12.037.
Regoli F, Principato G (1995) Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquat. Toxicol. 31: 143-164. https://doi.org/10.1016/0166-445X(94)00064-W.
Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ. Toxicol. Chem. 21: 2483-2492. https://doi.org/10.1002/etc.5620211130.
Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M (2017) Is Triclosan a neurotoxic agent?. J. Toxicol. Environ. Health B 20: 104-117. https://doi.org/10.1080/10937404.2017.1281181.
Sabaliunas D, Webb SF, Hauk A, Jacob M, Eckhoff WS (2003) Environmental fate of triclosan in the River Aire Basin, UK. Water Res. 37: 3145-3154. https://doi.org/10.1016/S0043-1354(03)00164-7.
Sanchez D, Houde M, Douville M, De Silva AO, Spencer C, Verreault J (2015) Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids. Aquat. Toxicol. 160: 31-38. https://doi.org/10.1016/j.aquatox.2014.12.002.
Sarkar A, Ray D, Shrivastava AN, Sarker S (2006) Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicology 15: 333-340. https://doi.org/10.1007/s10646-006-0069-1.
Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, Sutter TR (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 56: 2979-2984.
Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 36: 4998-5004. https://doi.org/10.1021/es025750i.
Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0.
Slaninova A, Smutna M, Modra H, Svobodova Z (2009) REVIEWS Oxidative stress in fish induced by pesticides. Neuro Endocrinol. Lett. 30, 2.
Solá-Gutiérrez C, San Román MF, Ortiz I (2018) Fate and hazard of the electrochemical oxidation of triclosan. Evaluation of polychlorodibenzo‑p‑dioxins and polychlorodibenzofurans (PCDD/Fs) formation. Sci. Total Environ. 626: 126-133. https://doi.org/10.1016/j.scitotenv.2018.01.082.
Song FN, Yang CP, Liu XM, Li GB (2006) Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmus pumila L. J. For. Res. 17: 13-16. https://doi.org/10.1007/s11676-006-0003-7.
Sun L, König IR, Homann N (2009) Manganese superoxide dismutase (MnSOD) polymorphism, alcohol, cigarette smoking and risk of oesophageal cancer. Alcohol Alcohol. 44: 353-357. https://doi.org/10.1093/alcalc/agp025.
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK (2016) Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. Environ. Res. 151: 106-114.https://doi.org/10.1016/j.envres.2016.07.019.
Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004) Effects of triclosan on various aquatic organisms. Environ. Sci. 11: 133-140.
Tseng YC, Lee JR, Chang JCH, Kuo CH, Lee SJ, Hwang PP (2008) Regulation of lactate dehydrogenase in tilapia (Oreochromis mossambicus) gills during acclimation to salinity challenge. Zool. Stud. 47: 473-480.
Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64: 178-189. https://doi.org/10.1016/j.ecoenv.2005.03.013.
Wang F, Liu F, Chen W (2019a) Exposure to triclosan changes the expression of microRNA in male juvenile zebrafish (Danio rerio). Chemosphere 214: 651-658. https://doi.org/10.1016/j.chemosphere.2018.09.163.
Wang F, Zheng F, Liu F (2019b) Effects of triclosan on antioxidant-and apoptosis-related genes expression in the gill and ovary of zebrafish. Exp. Anim. 19-115. https://doi.org/10.1538/expanim.19-0115.
Wang LQ, Falany CN, James MO (2004) Triclosan as a substrate and inhibitor of PAPS-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug Metab. Dispos. https://doi.org/10.1124/dmd.104.000273.
Wang Z, Li X, Klaunig JE (2017) Investigation of the mechanism of triclosan induced mouse liver tumors. Regul. Toxicol. Pharmacol. 86: 137-147. https://doi.org/10.1016/j.yrtph.2017.03.001.
Wassmur B, Gräns J, Kling P, Celander MC (2010) Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 100: 91-100. https://doi.org/10.1016/j.aquatox.2010.07.013.
Ying GG, Kookana RS (2007) Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ. Int. 33: 199-205. https://doi.org/10.1016/j.envint.2006.09.008.
Yueh MF, Tukey RH (2016) Triclosan: a widespread environmental toxicant with many biological effects. Annu. Rev. Pharmacol. Toxicol. 56: 251-272. https://doi.org/10.1146/annurev-pharmtox-010715-103417.
Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ. Exp. Bot. 65: 27-34. https://doi.org/10.1016/j.envexpbot.2008.06.001.
Zucker E (1985) Standard Evaluation Procedure: Acute Toxicity Test for Freshwater Fish. EPA-540/9-85-006. US Environmental Protection Agency, Washington, DC.