1 Phan, T. Novel coronavirus: From discovery to clinical diagnostics. Infection, Genetics and Evolution 79, 104211 (2020).
2 de Miranda, A. S. & Teixeira, A. L. Coronavirus Disease-2019 Conundrum: RAS Blockade and Geriatric-Associated Neuropsychiatric Disorders. Front Med (Lausanne) 7, 515-515, doi:10.3389/fmed.2020.00515 (2020).
3 Wang, L., Lin, Z. Q. & Wong, A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Scientific Reports 10, 19549, doi:10.1038/s41598-020-76550-z (2020).
4 Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D. & Lessler, J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction–Based SARS-CoV-2 Tests by Time Since Exposure. Annals of Internal Medicine 173, 262-267, doi:10.7326/M20-1495 (2020).
5 Satia, I. et al. Assessing the accuracy and certainty in interpreting chest X-rays in the medical division. Clin Med (Lond) 13, 349-352, doi:10.7861/clinmedicine.13-4-349 (2013).
6 Wong, H. Y. F. et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 296, E72-E78, doi:10.1148/radiol.2020201160 (2020).
7 Singh, K. K., Siddhartha, M. & Singh, A. Diagnosis of Coronavirus Disease (COVID-19) from Chest X-ray images using modified XceptionNet. Romanian Journal of Information Science and Technology 23, S91-105 (2020).
8 Shen, L. et al. Deep learning to improve breast cancer detection on screening mammography. Scientific reports 9, 1-12 (2019).
9 Ullah, I., Hussain, M. & Aboalsamh, H. An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems with Applications 107, 61-71 (2018).
10 Wang, J. et al. Detecting cardiovascular disease from mammograms with deep learning. IEEE transactions on medical imaging 36, 1172-1181 (2017).
11 Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature medicine 25, 954-961 (2019).
12 Xu, X. et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering (2020).
13 Massion, C. & Fugh-Berman, A. CT Scan Safety. Women's Health Activist 37, 11 (2012).
14 Antin, B., Kravitz, J. & Martayan, E. Detecting pneumonia in chest X-Rays with supervised learning. Semanticscholar. org (2017).
15 El Asnaoui, K. & Chawki, Y. Using X-ray images and deep learning for automated detection of coronavirus disease. Journal of Biomolecular Structure and Dynamics, 1-12, doi:10.1080/07391102.2020.1767212 (2020).
16 Zhang, R. et al. COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images. Interdisciplinary Sciences: Computational Life Sciences 12, 555-565, doi:10.1007/s12539-020-00393-5 (2020).
17 El-Din Hemdan, E., Shouman, M. A. & Karar, M. E. COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv:2003.11055 (2020). <https://ui.adsabs.harvard.edu/abs/2020arXiv200311055E>.
18 Horry, M. J. et al. COVID-19 Detection Through Transfer Learning Using Multimodal Imaging Data. IEEE Access 8, 149808-149824, doi:10.1109/ACCESS.2020.3016780 (2020).
19 Rahimzadeh, M. & Attar, A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Informatics in Medicine Unlocked 19, 100360, doi:https://doi.org/10.1016/j.imu.2020.100360 (2020).
20 Ismael, A. M. & Şengür, A. Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications 164, 114054, doi:https://doi.org/10.1016/j.eswa.2020.114054 (2021).
21 Masoudnia, S. & Ebrahimpour, R. Mixture of experts: a literature survey. Artificial Intelligence Review 42, 275-293 (2014).
22 Ziae Mousavi Mojab, S., Shams, S., Soltanian-Zadeh, H. & Fotouhi, F. Epistocracy Algorithm: A Novel Hyper-heuristic Optimization Strategy for Solving Complex Optimization Problems. arXiv:2102.00292 (2021). <https://ui.adsabs.harvard.edu/abs/2021arXiv210200292Z>.
23 McKay, M. D., Beckman, R. J. & Conover, W. J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239-245 (1979).
24 Shin, H.-C. et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging 35, 1285-1298 (2016).
25 Selvaraju, R. R. et al. in Proceedings of the IEEE international conference on computer vision. 618-626.