Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia grasslands. Global Change Biol 16: 358–372. https://doi.org/10.1111/j.1365-2486.2009.01950.x
Didiano TJ, Johnson MTJ, Duval TP (2016) Disentangling the effects of precipitation amount and frequency on the performance of 14 grassland species. PLoS One 11: e0162310. https://doi.org/10.1371/journal.pone.0162310
Dong S, Shuang Z, Gao J, Boone RB (2020) Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agr Ecosyst Environ 287: 106684. https://doi.org/10.1016/j.agee.2019.106684
Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219: 1338–1352. https://doi.org/10.1111/nph.15225
Fry EL, Manning P, Allen DGP, Hurst A, Everwand G, Rimmler M, Power SA (2013) Plant functional group composition modifies the dffects of precipitation change on grassland dcosystem function. PLoS One 8: e57027. https://doi.org/10.1371/journal.pone.0057027
Gao J, Zhang L, Tang Z, Wu S (2019) A synthesis of ecosystem aboveground productivity and its process variables under simulated drought stress. J Ecol 107: 2519–2531. https://doi.org/10.1111/1365-2745.13218
Gibson-Forty EVJ, Barnett KL, Tissue DT, Power SA (2016) Reducing rainfall amount has a greater negative effect on the productivity of grassland plant species than reducing rainfall frequency. Funct Plant Biol 43: 380–391. http://dx.doi.org/10.1071/FP15174
Gong Y, Zhao D, Ke W, Fang C, Pei J, Sun G, Ye J (2020) Legacy effects of precipitation amount and frequency on the aboveground plant biomass of a semi-arid grassland. Sci Total Environ 705: 135899. https://doi.org/10.1016/j.scitotenv.2019.135899
Hautier Y, Niklaus P, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324: 636–638. https://doi.org/ 10.1126/science.1169640
Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia 158: 129–140. https://doi.org/10.1007/s00442-008-1116-9
Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biol 15: 2894–2904. https://doi.org/10.1111/j.1365-2486.2009.01961.x
IPCC (2013) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
Jiménez JdlC, Cardoso JA, Dominguez M, Fischer G, Rao I (2015) Morpho-anatomical traits of root and non-enzymatic antioxidant system of leaf tissue contribute to waterlogging tolerance in Brachiaria grasses. Grassl Sci 61: 243–252. https://doi.org/10.1111/grs.12095
Kang S, Li J, Niu J, Zhang Q, Zhang X, Han G, Zhao M, Bao H (2019) Typical steppe ecosystems maintain high stability by decreasing the connections among recovery, resistance, and variability under high grazing pressure. Sci Total Environ 659: 1146–1157. https://doi.org/10.1016/j.scitotenv.2018.12.447
Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291: 481–484. https://doi.org/10.1126/science.291.5503.481
Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Biosci 58: 811–821. https://doi.org/10.1641/B580908
Knapp AK, Ciais P, Smith MD (2016) Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytol 214: 41–47. https://doi.org/10.1111/nph.14381
Knapp AK, Carroll CJW, Griffin-Nolan RJ, Slette IJ, Chaves FA, Baur LE, Felton AJ, Gray JE, Hoffman AM, Lemoine NP, Mao W, Post AK, Smith MD (2018) A reality check for climate change experiments: do they reflect the real world? Ecology 99: 2145–2151. https://doi.org/10.1002/ecy.2474
Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W (2019) Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front Plant Sci 10: 499. https://doi.org/10.3389/fpls.2019.00499
Liu H, Yin Y, Tian Y, Ren J, Wang H (2008) Climatic and anthropogenic controls of topsoil features in the semi-arid East Asian steppe. Geophys Res Lett 35: L04401. https://doi.org/10.1029/2007GL032980
Lu X, Mao Q, Gilliam F, Luo Y, Mo J (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biol 20: 3790–3801. https://doi.org/10.1111/gcb.12665
Ma Q, Liu X, Li Y, Li L, Yu H, Qi M, Zhou G, Xu Z (2019) Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. J Ecol 108: 598–610. https://doi.org/10.1111/1365-2745.13264
Michalk D, Kemp D, Badgery W, Wu J, Zhang Y, Thomassin P (2018) Sustainability and future food security-A global perspective for livestock production. Land Degrad Dev 30: 561–573. https://doi.org/10.1002/ldr.3217
Nielsen UN, Ball BA (2015) Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biol 21: 1407–1421. https://doi.org/10.1111/gcb.12789
Post AK, Knapp AK (2020) The importance of extreme rainfall events and their timing in a semi‐arid grassland. J Ecol 108: 2431–2443. https://doi.org/10.1111/1365-2745.13478
Ren H, Xu Z, Huang J, Clark C, Chen S, Han X (2011) Nitrogen and water addition reduce leaf longevity of steppe species. Ann Bot 107: 145–155. https://doi.org/10.1093/aob/mcq219
Ren H, Xu Z, Huang J, Lv X, Zeng D, Yuan Z, Han X, Fang T (2015) Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant Soil 389: 211–223. https://doi.org/10.1007/s11104-014-2349-5
Ren H, Xu Z, Isbell F, Huang J, Han X, Wan S, Chen S, Wang R, Zeng D, Jiang Y, Fang T (2017) Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecol Monogr 87: 457–469. https://doi.org/10.1002/ecm.1262
Rubio G, Lavado RS (1999) Acquisition and allocation of resources in two waterlogging-tolerant grasses. New Phytol 143: 539–546. https://doi.org/10.1046/j.1469-8137.1999.00482.x
Schaeffer SM, Sharp E, Schimel JP, Welker JM (2013) Soil-plant N processes in a high arctic ecosystem, NW Greenland are altered by long‐term experimental warming and higher rainfall. Global Change Biol 19: 3529–3539. https://doi.org/10.1111/gcb.12318
Song M, Yu F (2015) Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytol 207: 70–77. https://doi.org/10.1111/nph.13329
Wang Y, Meng B, Zhong S, Wang D, Ma J, Sun W (2018) Aboveground biomass and root/shoot ratio regulated drought susceptibility of ecosystem carbon exchange in a meadow steppe. Plant Soil 432: 259–272. https://doi.org/10.1007/s11104-018-3790-7
Wang J, Shi Y, Ao Y, Yu D, Wang J, Gao S, Knops JMH, Mu C, Li Z (2019) Summer drought decreases Leymus chinensis productivity through constraining the bud, tiller and shoot production. J Agron Crop Sci 205: 554–561. https://doi.org/10.1111/jac.12354
Wijk MTv (2011) Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Global Ecol Biogeogr 20: 331–342. https://doi.org/10.1111/j.1466-8238.2010.00601.x
Wilcox KR, Fischer JCV, Muscha JM, Petersen MK, Knapp AK (2015) Contrasting above- and belowground sensitivity of three Great plains grasslands to altered rainfall regimes. Global Change Biol 21: 335–344. https://doi.org/10.1111/gcb.12673
Wilcox KR, Shi Z, Gherardi LA, Lemonie NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Jr JC, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Penuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo Y (2016) Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Global Change Biol 23: 4376–4385. https://doi.org/10.1111/gcb.13706
Xu X, Sherry RA, Niu S, Li D, Luo Y (2013) Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biol 19: 2753–2764. https://doi.org/10.1111/gcb.12248
Zeng W, Chen J, Liu H, Wang W (2018) Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands. Soil Biol Biochem 124: 255–265. https://doi.org/10.1016/j.soilbio.2018.06.019
Zhang Y, Loreau M, Lu X, He N, Zhang G, Han X (2016) Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biol 22: 1445–1455. https://doi.org/10.1111/gcb.13140
Zhang B, Tan X, Wang S, Chen M, Chen S, Ren T, Xia J, Bai Y, Huang J, Han X (2017) Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semi‐arid steppe. Funct Ecol 31: 1301–1311. https://doi.org/10.1111/1365-2435.12836
Zhang B, Cadotte M, Chen S, Tan X, You C, Ren T, Chen M, Wang S, Li W, Chu C, Jiang L, Bai Y, Huang J, Han X (2019a) Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 100: e02828. https://doi.org/10.1002/ecy.2828
Zhang H, Gao Y, Tasisa BY, Basin JM, Baskin CC, Lu X, Zhou D (2019b) Divergent responses to water and nitrogen addition of three perennial bunchgrass species from variously degraded typical steppe in Inner Mongolia. Sci Total Environ 647: 1344–1350. https://doi.org/10.1016/j.scitotenv.2018.08.025
Zhang T, Yu G, Chen Z, Hu Z, Jiao C, Yang M, Fu Z, Zhang W, Han L, Fan M, Zhang R, Sun Z, Gao Y, Li W (2020a) Patterns and controls of vegetation productivity and precipitation-use efficiency across Eurasian grasslands. Sci Total Environ 741: 140204. https://doi.org/10.1016/j.scitotenv.2020.140204
Zhang J, Zuo X, Zhao X, Ma J, Medina-Roldán E (2020b) Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland. Sci Rep 10: 9026. https://doi.org/10.1038/s41598-020-65922-0
Zhou R, Li Y, Zhao H, Drake S (2008) Desertification effects on C and N content of sandy soils under grassland in Horqin, northern China. Geoderma 145: 370–375. https://doi.org/10.1016/j.geoderma.2008.04.003
Zhou L, Zhou X, Zhang B, Lu M, Luo Y, Liu L, Li B (2014) Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Global Change Biol 20: 2332–2343. https://doi.org/10.1111/gcb.12490
Zhou M, Yang Q, Zhang H, Yao X, Zeng W, Wang W (2020) Plant community temporal stability in response to nitrogen addition among different degraded grasslands. Sci Total Environ 729: 138886. https://doi.org/10.1016/j.scitotenv.2020.138886
Zhu T (2004) Biological ecology of Leymus chinensis. Jilin Science and Technology Press, Changchun (In Chinese)