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Abstract

Centimeter-level positioning using real-time kinematic technology is
achievable only after overcoming the step of ambiguity resolution. Fast
algorithms providing such a solution tend to have low success rates, often
resulting in time to first fix too long in many real-life cases. On the
other hand, other algorithms, such as the LAMBDA method, provide
a better success rate at the expense of more computations. The recent
growth in the number of constellations available for positioning along
with the multiplication of signals per satellite is challenging slower algo-
rithms which prove to have a complexity exponential with the number
of signals. This article presents a new approach to the integer ambigu-
ity problem, showing in an experiment a success rate of 100% with a
computational speed ten times higher than the MLAMBDA algorithm,
the complexity of the search process being O(n2) with n the total num-
ber of signals. We consider here a short baseline model to introduce the
algorithm. It is straightforward to extend the results to longer baselines
using a more complete model, as the hypotheses for the algorithm to be
successful are made explicit along the article. Classical techniques devel-
oped to improve ambiguity resolution, as well as computational tricks
could be used to further improve the speed of this algorithm, and could
hence lead to improved time to first fix in low-cost embedded equipment.

Keywords: GNSS, ambiguity resolution, single-epoch, multiple frequencies,
multiple constellations, Real-Time Kinematic
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1 Introduction

Since the beginning of global navigation satellite systems (GNSS) positioning,
accuracy has been considerably improved, up to instantaneous centimeter-
level accuracy. Embedded receivers with technologies such as Precise Point
Positioning and Real-Time Kinematic (RTK) positioning are becoming more
accessible. These also brought with them their own theoretical issues, with
probably the most well-known among them: the Integer Ambiguity Problem.
Resolution of this problem allows reliable and accurate positioning. After
decades of research, such a problem still present difficulties, as we require the
resolution to be both fast and successful. Existing algorithm are generally a
balance of those, presenting their perks in some case and their shortcoming in
others.
The multiplication of the GNSS constellations (GPS, GLONASS, Galileo, Bei-
dou...), and signals brought their own advantages and drawbacks with respect
to this matter. On the positive side, it granted improved accuracy of code
positioning, the possibility to combine pairs or trios of signals to deal with
atmospheric deterioration of signals, and to mitigate multipaths, with the
effect of improving the success rate of algorithms solving the Integer Ambi-
guity Problem. On the negative side, the multiplication of available signals
requires more computations, making some algorithms obsolete or inoperable.
Hence, it is at the moment still difficult to make such an availability of signals
profitable for accurate positioning such as RTK positioning.
Different approaches in ambiguity resolution have been used over the years.
Without being exhaustive, the most straightforward one seem to be the
method adopted by Euler and Landau [1] where all possible ambiguities
around an initial guess are evaluated. In their paper, for 6 signals and a
search space 21 ambiguities, they evaluate 215 possible ambiguity combina-
tions. In terms of position, this search space corresponds to a radius of search
of 10 × wavelength/(dilution of precision), equivalent to around 1.5 meter
in good cases. With the current signal availability, such a search would be
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21n where n could reach a value of 100, showcasing the difficulties of treating
that many signals. In fact, any algorithm presenting a complexity exponential
with the number of signals will struggle to take advantage of this availabil-
ity without specific techniques of dimensionality reduction. One of the most
well-known and used Ambiguity Resolution algorithm has been pioneered by
Teunissen in 1995 [2, 3] and is known as the LAMBDA method. This method
allowed to improve greatly the computational time, showing a success rate high
enough for some real world applications. This algorithm has been optimized by
Chang, Yang and Zhou in 2005 [4], so as to improve performances of the previ-
ous method. If this algorithm allowed a fast resolution of the integer ambiguity
problem for larger n, the complexity is still exponential with the number of
satellites, again limiting its potential usefulness. Another shortcoming shown
in the paper of Chang et al. is the unreliability of the computation time, that
can vary greatly depending on the covariance matrix, and can turn out to be
a problem when time is limited. Other approaches favor speed over success
rate; the most computationally efficient algorithm is the rounding operation,
transforming the float ambiguity in an integer vector by rounding each vec-
tor component. With an unbeatable computation time, the success rate falls
sharply, but can sometimes prove to have its own perks. Integer bootstrap-
ping improves the latter technique making use of the correlation between the
measurements, at the expense of more computations. Such techniques are well
described by Teunissen in [5, 6]. Since then, many improvements of such algo-
rithms have been described, using combinations of signals, partial ambiguity
solutions, advanced models.
In this paper, we introduce a new approach to the integer ambiguity resolu-
tion in the case of double-differences (RTK case) for short baselines. Using
a simple hypothesis, we define a search space in a 3-dimensional subspace of
radius R, and evaluate the ambiguities in this subspace using n2 computations.
The search process being in the embedded space of coordinates, the basis of
this approach recalls the works of Mader [7] and Remondi and Hilla [8], in
which the coordinates space is searched using an ambiguity function described
by Counselman and Gourevitch [9]. The embedding of the position space in
the ambiguity one for the search process, along with an insight on the lower
boundary of the step size to be used, allows the research to be more efficient
and successful. In terms of computations, remembering the aforementioned
work of Euler and Landau, we hence have K ∼ (R/DOP )3 possible ambigui-
ties to evaluate, where DOP stands for dilution of precision, instead of the Kn

with n large. The full complexity of the algorithm presented is O(n3 +K3n2),
overcoming difficulties shown by algorithm with exponential complexity. This
guarantees our algorithm to be fast, even when the number of signals tends to
be high. The size of the search space is directly connected to the success rate as
the code positioning can be assumed to follow a normal distribution, and inside
the search space, the success rate reaches 100%. The computation time also
proves to be steady and predictable, allowing to adapt the duration of the algo-
rithm in advance as the search space can be changed at any moment, making
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it possible to strive for more speed or higher success rate when required. The
algorithm also stays customizable and adaptable to improvement techniques
developed throughout the years. Moreover, if the algorithm still requires a rea-
sonable first positioning (for example code positioning) to be efficient, the float
solution needs not to be close to any integer solution so as to find a solution.
Finally, as will be made clear when introducing the main hypothesis, a short
baseline is not required, as long as the general model compensates for it. At
the expenses of adding some dimensions to the problem (such as ionospheric
or tropospheric terms), it is straightforward to adapt the latter algorithm to
medium-range or long-range problems. An application of the algorithm on a
simple experiment using low-cost equipment shows results reaching 100% suc-
cess rate for positioning at less than the centimeter to the true position, in a
tenth of the time required by the MLAMBDA algorithm.

2 Preliminaries

In this section, we present the setting we consider throughout the paper, and
the main equations of the problem. We then described the problem to solve,
as well as the main hypotheses related to it. Before doing so, we introduce a
few notations relevant in our work.

2.1 Notations

As we consider double differences, we will often refer to a base b, a rover r, a
satellite s, and a pivot satellite p. The satellites will be shown as superscripts
while the base and rover will be referred to as subscripts. When using double
differences, we use the following simple notation:

Xps
br = (Xb −Xr)− (Xp −Xs).

We will keep the letter rfor vectors in R
3, and use the letter d to denote the

Euclidean norm of this vector: d = ‖r‖2. The variable P will refer to the
pseudorange, while ϕ refers to the phase in cycles, and Φ to the phase-range
in meters.
The rounding operation will be written as

⌊x⌉ = ⌊x+ 1/2⌋ .

The set of matrices of size (m,n) with elements in K is Km×n. Finally, for the
sake of readability we let:

M−⊺ = (M−1)⊺



Springer Nature 2021 LATEX template

Fast geometry-based ambiguity resolution algorithm for real-time kinematic 5

2.2 Classical setting

Consider a single constellation and signal: call I the set of all satellites that
are not a pivot satellite and p the pivot satellite. For each satellite s in I:

{

P ps
br = dpsbr + εpsbr,P

Φps
br = dpsbr + λsN

ps
br + εpsbr,Φ

(1)

Consider now that we already computed an approximated solution r0 by
some classical means (e.g. solving the pseudorange equations above using a
generalized non-linear least square algorithm). We then have, at the first order:

dpsbr = dpsbr0 + ups
r0

· rr0r, with us
r0

=
rsr0

‖rsr0‖2
(2)

For the sake of simplicity, we choose to divide the above system of equations
by the wavelength λs and reason in cycles instead of meters. Although
unusual for the pseudorange equations, it simplifies the further notations.
Writing p0 =

(

(P ps
br − dpsbr0)/λs

)

s∈I ∈ R
n, ϕ0 =

(

ϕps
br − dpsbr0/λs

)

s∈I ∈ R
n,

H =
(

ups
r0
/λs

)

s∈I ∈ R
n×3, N = (Nps

br )s∈I ∈ Z
n, and r = rr0r ∈ R

3, we have
the following problem:

{

p0 = Hr + εp
ϕ0 = Hr +N + εϕ

(3)

Moreover, when considering double differences, the fact that we use a pivot
satellite implies that the measures are correlated, and we consider here:

Cov((εp, εϕ)) =

(

Qp 0
0 Qϕ

)

(4)

Remark 1 The previous setting can easily be adapted with a more complete model
(such as atmospheric corrections), the following computations will stay true.
In the case of GLONASS, a correction should be applied to the corresponding
equations (1): in general, it is sufficient to subtract λpsNp

br0
from the value of φ0, as

described in [10]).

Remark 2 When considering double differences, one can consider that the covariance
for each signal S from satellite i and j of constellation C is given by σ2

p,C,S if i 6= j,

where σ2
p,C,S is the variance of the pivot satellite, and σ2

p,C,S+σ2
i,C,S if i = j. Hence,

the matrix QP and Qϕ takes the general block form:

Q = diag(QC1,S1
, QC1,S2

, ..., QC2,S1
, ..., QCk,Sl

), (5)
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where each QCi,Sj
is defined by:

QCi,Sj
=













σ2
p,Ci,Sj

+ σ2
1,Ci,Sj

σ2
p,Ci,Sj

... σ2
p,Ci,Sj

σ2
p,Ci,Sj

σ2
p,Ci,Sj

+ σ2
2,Ci,Sj

... σ2
p,Ci,Sj

...

σ2
p,Ci,Sj

σ2
p,Ci,Sj

... σ2
p,Ci,Sj

+ σ2
nCi,Sj

,Ci,Sj













(6)
In general, choosing the pivot such that σ2

p,Ci,Sj
< σ2

i,Ci,Sj
allows the matrix Q

to be well-defined, symmetric positive definite. We will assume Q to satisfy these
constraints thereafter.
Without loss of generality, for the sake of simplicity and readability, we consider only
one constellation with one signal in the article; the results can be adapted to any
number of constellations and signals in a straightforward way.

2.3 Main problem

In the following, we will consider two different problems. In the first one, we
forget about the pseudorange equations, and consider only the integer ambi-
guity resolution of the carrier phase equations ϕ0 = Hr+N + εϕ. This allows
to have an easier geometric representation of the problem which is beneficial
to a first approach. In a second phase, we will add the pseudorange equations.
It has the beneficial effect of bringing convexity to the first problem, limiting
the search space naturally to solutions close enough to the least square solu-
tion of p0 = Hr.
When looking for an ambiguity, the general approach is to consider that
the actual ambiguity vector minimizes the norm of the residuals ε. With
the existence of correlations between the measures, the Mahalanobis norm
‖x‖Q =

√

x⊺Q−1x, where Q is the covariance matrix, has been the regular
choice of norm for the residuals ϕ0 −Hr −N (see [11])
Finally, in the first case, we will need to limit the space of research in terms of
positions. The (bounded) search space will be called P ⊂ R

3. The definition
of this subspace is not necessary in the second case, given the convexity argu-
ment that will be made clearer thereafter. We can now state the two different
problems:

Problem 1 The solution of the ambiguity resolution is an ambiguity vector N ∈ Z
n

and a position r ∈ P ⊂ R
3 such that

‖ϕ0 −Hr −N‖Qϕ
= min

r′∈P,N ′∈Zn

∥

∥ϕ0 −Hr′ −N ′∥
∥

Qϕ
= min

r′∈P,N ′∈Zn
‖εϕ‖Qϕ

, (7)

where ‖x‖Qϕ
=

√

x⊺Q−1
ϕ x.

Problem 2 The solution of the ambiguity resolution is an ambiguity vector N ∈ Z
n

and a position r ∈ R
3 such that

‖(p0 −Hr,ϕ0 −Hr −N)‖Qp,ϕ
= min

r′∈R3,N ′∈Zn
‖ε‖Qp,ϕ

, (8)

where ε = (εp, εϕ) in equations (3), and Qp,ϕ is defined in equation (4).
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2.4 Dimensionality reduction

The problem of ambiguity resolution seems at first to be an n+3 dimensional
problem, with n integer dimensions and 3 real ones. Under the constraint of
minimization of problems 1 and 2, we can see that this is not the case anymore.
Indeed, considering problem 1, we can write:

min
r∈P,N∈Zn

‖ϕ0 −Hr −N‖Qϕ
= min

N∈Zn

(

min
r∈P

‖ϕ0 −N −Hr‖Qϕ

)

(9)

= min
r∈P

(

min
N∈Zn

‖ϕ0 −Hr −N‖Qϕ

)

(10)

The first equation (9) fixes first the ambiguity N , and then searches a minimiz-
ing r among the subset of positions P . For the latter, there exists at most one
solution to this minimizing problem, corresponding to the oblique projection
of ϕ0 −N onto the subspace span(H) (there is no solution when this process
gives a solution in PC). Hence for each N ∈ Z

n, we can associate a unique
r ∈ P ∪ {∅}.
The second equation (10) first fixes an r ∈ P , then looks for a minimizer over
the set of ambiguity vectors Zn. Such a solution is almost surely unique, and
for each r we hence can associate an ambiguity vector in Z

n.
The problem is therefore a problem either in an n-dimensional discrete space,
or in a 3-dimensional continuous one. The method developed thereafter allows
to consider this time a 3-dimensional discrete subspace of the ambiguity space
under some conditions.

Historically, approaches using equation (9) have been used, such as in the
work of Euler and Landau [1]. Such algorithms look for a solution in an
n-dimensional discrete space, and are hence extremely inefficient and inap-
plicable in the case of many satellites and many signals. Actual methods are
generally based on the LAMBDA algorithm [3, 12], which searches an n-
dimensional ellipsoid around an initial guess, following somewhat closely the
space span(H) [13]. However, with the multiplication of signals and constel-
lations, these methods require an exponential cost of computations, even for
the modified LAMBDA method [4].
In the scheme we propose, we consider a discrete search space in the subspace
span(H). To each point of this subspace, we associate an optimal (under some
conditions) ambiguity vector N . To this ambiguity vector, we can again asso-
ciate a vector r by the aforementioned projection. Hence, we associate to each
position r0 a new position r, minimizing locally the residual vector, and finally
keeping the best one. This process cost is proportional to the number of vis-
ited points in the search space.
To this end, we can decompose our work in three different parts. First, we
need to determine a search space that allows the search to be both efficient
and successful. Secondly, each searched position r needs to be associated to
an ambiguity vector N efficiently. Finally, for each ambiguity vector, we have
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to compute the minimizing position associated to it and its residual, so as to
rank the ambiguities.

Remark 3 It is important to emphasize that this algorithm supports wide-lane
strategies to browse more swiftly the search space as well as multi-epoch reduction
methods. Besides, every argument previously mentioned about problem 1 stands
when considering problem 2.

3 Process

In this section, we answer the main questions related to the algorithm. To
simplify the approach, we start from a fixed ambiguity N and compute the
associated optimal position as well as its residual. Secondly, we consider the
problem of the optimal ambiguity for a given position. Then, we determine the
discrete search space in the 3-dimensional space of position. Finally, we discuss
the extension to the solution of problem 2, when one takes into account the
pseudoranges.

3.1 Projection and residual

Recall the fundamental equation (1) for problem 1:

ϕ0 = Hr +N + εϕ

with covariance matrix Qϕ. We want to minimize the residual ‖εϕ‖Qϕ
over r

on some domain P ⊂ R
3 where N ∈ Z

n is fixed. Define A the affine subspace
ϕ0 + span(H). Whatever the ambiguity vector N is, the problem corresponds
to the determination of the closest point of A to N , under the norm ‖ · ‖Qϕ

.
Consider the Cholesky decomposition Qϕ = CC⊺ of the covariance matrix.
Write

ϕ⋆
0 = H⋆r +N⋆ + ε⋆ϕ, (11)

with ϕ⋆
0 = C−1ϕ0, H

⋆ = C−1H , ε⋆ = C−1ε and finally N⋆ = C−1N . We then
have

‖εϕ‖Qϕ
= ‖ε⋆ϕ‖2,

which allows to consider a minimization problem with the Euclidean norm.
The solution to this problem is the orthogonal projection of N⋆ on the affine
subspace A⋆ = ϕ⋆

0 + span(H⋆). Let us call natural space of ambiguity the
space of ambiguity vectors Z

n ⊂ R
n before transformation, and transformed

space of ambiguity vectors after transformation: {C−1K,K ∈ Z
n}.

The solution of the previous problem is given by

r′ = (H⋆⊺H⋆)
−1

H⋆⊺(ϕ⋆
0 −N⋆) =

(

H⊺Q−1
ϕ H

)−1
H⊺Q−1

ϕ (ϕ0 −N) (12)
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We can then compute the residuals from this formula. Aiming for the least
number of computations, we do a QR factorization of H⋆, letting H⋆ = Q⋆R⋆.
In this setting, the vector N⋆ can be decomposed in two orthogonal vectors,
one in the affine subspace going through ϕ0 and spanned by H⋆, that corre-
sponds to the projection onto this subspace, given by Q⋆Q⋆⊺(N⋆ − ϕ⋆

0), and
the orthogonal part given by (In −Q⋆Q⋆⊺)(N⋆ − ϕ⋆

0). To obtain Q⋆, a Gram-
Schmidt process on the 3 three columns of H⋆ is sufficient, making the QR
decomposition extremely fast. The residual vector and the solution r′ of the
minimizing problem is now given by:

ε⋆ϕ = ϕ⋆
Q − (In −Q⋆Q⋆⊺)N⋆ (13)

r′ = r⋆Q − (R⋆)−1Q⋆⊺N⋆ (14)

where ϕ⋆
Q = (In − Q⋆Q⋆⊺)ϕ⋆

0 and r⋆Q = (R⋆)−1Q⋆⊺ϕ⋆
0. For each ambiguity

vector to test, we hence only need O(n2) computations.

3.2 Minimization over the ambiguity vectors

Consider equation (1):
ϕ0 = Hr +N + εϕ

with covariance matrix Qϕ. We want to minimize the residual ‖εϕ‖Qϕ
over the

N on Z
n where r ∈ R

3 is fixed.
Consider first that the matrix Qϕ is diagonal. We have the following result:

Lemma 1 Let r ∈ R
3, Qϕ ∈ R

n×n diagonal. Then N = ⌊ϕ0 −Hr⌉ minimizes
‖ϕ0 −N −Hr‖Qϕ

over N ∈ N
n.

The proof is straightforward, as any other choice for N leads to a larger
norm of the residuals. This fact is true for any norm associated to a diagonal
matrix, and in particular for any Lp-norm for p ≥ 1. Hence, if the measure-
ments are not correlated, minimizing N is straightforward.
In the general case, this fact is not true anymore. As an example, take the
following values:

Q−1
ϕ =

(

3 −1
−1 2

)

, ϕ0 −Hr =

(

0.3
−0.4

)

, N1 =

(

0
0

)

, N2 =

(

0
−1

)

,

In this case, we can see that N1 is not the integer choice minimizing the
residuals: taking N1, the squared norm of the residuals gives 0.83, whereas
taking N2, the squared norm becomes 0.63, and is hence smaller. However,
by providing a limit on the maximal residual needed, one can, as we will
show, only consider the rounded values of a vector under consideration to solve
ambiguities, allowing a large simplification on ambiguity resolution.

When applying a suitable model for the double-differences at the true position,
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one can expect the residuals to be less than half the wavelength. In the case of
short baselines, this argument stands for most elevations. When the elevation
is too low, or the multipaths are too high, this might not be true anymore.
For longer baselines, the residuals at the true position can grow larger than
half the wavelength, as atmospheric terms play a larger role. Our approach as
it is would hence not be suited. Nevertheless, by completing the model, with
atmospheric terms for example, our process stands as long as the expected
residuals of the signals are smaller than half their wavelength.
As an extension to the process described here, if the model can discriminate
some poor signals, one can forget about these signals in a first stage, and deal
with such data later. In the case where the problem is related to elevation, as
the variance of this measurement would usually be much larger, the position
change inferred by changing the ambiguity by ±1 is in general extremely small,
and in particular less than the expected precision, justifying such an omission.

The argument of considering only rounded values of ϕ0 −Hr is driven by the
fact that if the residuals are small enough for the norm ‖ · ‖Qϕ

, then they
are also small for the Euclidean norm. Figure 1a shows an affine subspace
of dimension 1, embedded in an ambiguity vector space of dimension 2. The
ambiguity vectors closer to the subspace are starred and the rounding process
of three different points is shown on the left figure. Taking

C =

(

1 0
1 1

)

as the Cholesky decomposition of Qϕ, the figure on the right shows the trans-
formed space. The former ambiguities N are shown as N⋆ on the figure. As
one can notice, the choice of ambiguity for r2 was wrong, as the ambiguity
(−1, 0)⋆ would minimize the distance to r⋆2 . However, it is easy to see that the
ambiguity vectors very close to the subspace in the natural space, stay close
to the affine subspace in the transformed space. Indeed, we have:

Lemma 2 Let r ∈ R
3. If there exists N ∈ Z

n such that ‖ϕ0 −Hr −N‖Q < l with

l =
(

2
√

max(λ(Q))
)−1

, then N = ⌊ϕ0 −Hr⌉.

Proof BQ(ϕ0 −Hr, l) ⊂ B2(ϕ0 −Hr, 12 ) ⊂ B∞(ϕ0 −Hr, 12 ). �

This lemma ensures that any ambiguity vectors giving a residual less than
l is in its intended form. However, it does not show the existence of such a
vector. In the search process, we associate to each r the ambiguity ⌊ϕ0 −Hr⌉.
If any residual is found to be less than l, then the lemma ensures that it is
sufficient to consider only the ambiguity vectors of the form ⌊ϕ0 −Hr⌉.
Observe also that the transposition is true: if the solution of the ambiguity
resolution was not the rounded value of ϕ0−Hr, then this would mean that the
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−2 −1 0 1 2

0

1

2

r₁

r₂

r₃

(-2,0)

(-1,1)

(2,2)

(a)

−2 −1 0 1 2

0

1

2
(-2,0)* (-1,1)*

(1,2)*
(-1,0)* (0,1)*

(1,1)*(1,1)* (2,2)*

(b)

Fig. 1 Rounding process for 3 different starting values ri in the affine subspace. On figure
1a, the natural subspace, in which the ambiguity vectors are integer vectors. On figure 1b,
the same operation in the transformed subspace, in which the former ambiguity choice is not
always the minimizer of our problem. The ambiguities close to the subspace in the natural
space stay close to the new subspace after transformation by C−1.

residual is larger than the value in lemma 2. Hence, as soon as one ambiguity
has residual less than this value, the solution is of the form ⌊ϕ0 −Hr⌉. With
a well-suited model and good quality receptors, such a constraint should be
verified.

Remark 4 The limit l is not optimal. Indeed, when Qϕ is diagonal, lemma 1 shows
that no bound on the norm of the residuals is necessary for the lemma to stand, in
other words we should have l = ∞. This shows that the optimal limit depends not
only on the eigenvalues of Qϕ, but also on the directions of its eigenvectors.

Remark 5 When the covariance matrix is block diagonal, the limit l can be described
as a vector l = (lCi,Sj

)i,j , where each constellation and signal has its own limit l,
hence making an extension for a constellation by constellation and signal by signal
approach straightforward.

Observe that, in the general case, one can bound the eigenvalues of matrix
Qϕ using Weyl’s inequality [14]. In the classical setting of double-difference
calculations, from equation (6), the covariance matrix can be written as the
perturbation of a diagonal matrix by a rank one matrix:

Q = D + σ2
puu

⊺, with u =











1
1
...
1











. (15)

In this case, the result by Ipsen and Nadler [15] gives a better bound. We have:
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Lemma 3 Let Q = D + σpuu
⊺ ∈ N

n, where D = diag(λ1, ..., λn), λ1 ≤ λ2 ≤ ... ≤
λn. Then:

λ(Q) ≤ λn +
1

2

(

nσ2
p − (λn − λn−1) +

√

(

nσ2
p − (λn − λn−1)

)2
+ 4(λn − λn−1)σ

2
p

)

(16)

≤ λn + nσ2
p (17)

Proof The first equation (16) is Ipsen and Nadler result adapted to our case, while
the (17) is Weyl’s one. �

With this second lemma, given the covariance values of each measurements,
one can now compute an acceptable limit l on the norm of the residuals for our
process. A more thorough study of the perturbation of a diagonal by a rank
one perturbation could however lead to a better limit l, increasing the limit of
application of this argument.

Application 1 To have an idea on the bound of the residuals, let us consider the vari-
ance of the measure in a bad case. Consider seven satellites of a same constellation,
and more particularly a pivot p and a satellite s, with respective elevation of 90◦ and
10◦. For σϕ, we consider the formula in Leick, Rapoport, Tatarnikov [11]

σ2
ϕ = σ2

0 +

(

σ1
ε+ sin(E)

)2

, (18)

where we take σ0 = σ1 = 0.03 cycles and ε = 0.1. In this case, σ2
s ≈ 0.0129 and

σ2
p ≈ 0.00164. Equation (17) gives max(λ(Qϕ)) ≤ 0.0293 as a bound on the largest

eigenvalue of the covariance matrix. Hence, the limit on the residuals is l = 3.32,
meaning that the residuals we consider for the different satellites should amount to
less than this value in terms of σϕ. Given the number of satellites, this would lead to
an average residual of around 0.5σϕ, which is quite restrictive. However, as explained
before, the limit value is not optimal, and can be improved.

3.3 Search process

Given a vector r ∈ R
3, we have now defined a corresponding ambiguity vector

N , which in turn is associated to a value r′ minimizing the residuals for N .
When searching for the minimizing ambiguity vector and position, we hence
need to reach the wanted ambiguity in our search process. Observe that the
position r such that ⌊ϕ0−Hr⌉ is in general not isolated. Recall that our initial
search space is called P ∈ R

3. Define the set of ambiguity vectors around the
affine subspace A = ϕ0 + span(H):

NP = {N ∈ Z
n, ∃r ∈ P s.t. N = ⌊ϕ0 −Hr⌉}

Each ambiguity vector in NP reciprocally defines a set PN in P :

∀N ∈ NP , PN = {r ∈ P , N = ⌊ϕ0 −Hr⌉}
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Naturally, we have that P = ∪N∈NP
PN . If we define a search process such

that accesses every PN , then we would visit all our potential ambiguity vectors
and could determine the couple (N, r) minimizing the norm of the residuals.
However, the requirement to visit all the PN in a limited time is not realistic
as we will show; fortunately it is not needed either. The scheme we propose
will ensure that we access all the PN for which N has residual less than some
fixed value.
First, let H = QR be the QR decomposition of H, where Q ∈ R

n×3 and
R ∈ R

3×3. The columns (a, b, c) of matrix Q define an orthonormal basis of
the subspace span(H). Call B the image ϕ0 + HP ⊂ A the set of vectors of
P after transformation. To define our search process, consider the following
lattice of A: D(α) =

{

ϕ0 + αk1a+ αk2b+ αk3c, (k1, k2, k3) ∈ Z
3
}

∩ B. The
value α determines the step of the lattice. It remains to choose α wisely, to
ensure that for any N close enough to the subspace A, ϕ0 +HPN ∩D(α) 6= ∅.
A straightforward upper bound on α is 1. As figure 2a shows, let α > 1,
ϕ0 = (1−α/2, 0), and a = (1, 0), then for k1 = k2 = 0, the associated ambiguity
is (0, 0), while for k1 = 1, it is (2, 0); we hence did not search ambiguity (1, 0),
which has the same residuals as any ambiguity vector (k, 0).
On the other hand, on figure 2b, to make sure that we pass through a point
that rounds to the ambiguity vector (1, 1), α would need to be small. To visit
all the ambiguity vectors of NP , if one lets P tend to R3, α will tend to
zero almost surely, showing that a lower bound on α has to be zero without
further hypothesis. However, observe that the smaller the intersection between
the subspace S and the space rounding to one specific ambiguity, the larger
the norm of the residual. Since we are interested in minimizing the norm of
the residuals, we can generate a lower bound on α, ensuring that the good
ambiguity vectors with small residuals are accessible via our lattice, while
dropping some others that would lead to high residual. Besides, observe that
the larger the α, the fewer points are in the search space.

Lemma 4 Let 0 < m ≤ n ∈ N, and 0 < s ≤ 1/2 ∈ R. Consider C = B∞(0, 1/2)
the n-dimensional hypercube of radius 1/2 centered in 0, and B2(0, s) the closed ball
of radius s for the L2-norm. Then, for any m-dimensional subspace S intersecting
B2(0, s) (S ∩ B2(0, s) 6= ∅), there exists a point a ∈ S and 1−2s

2
√
m

≤ s′ ≤ 1 such that

B∞(a, s′) ∩ S ⊂ C.

In other words, let us consider the ambiguity space of dimension n, a given
ambiguity vector (here we take 0), and our affine subspace S of position of
dimension 3. As seen before, the position locally minimizing the residuals is
the projection of the ambiguity vector 0 on A. The norm of the residuals
then corresponds to the norm of the projection of the ambiguity vector on the
subspace orthogonal to A. For this norm to be less than some upper bound s, it
means that the ball of radius r for the euclidean norm intersects the subspace
A. Now, the lemma states that there exists a cube of some radius r′ such that
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Fig. 2 Figure 2a shows that the search space lattice upper bound is 1, otherwise one might
miss an ambiguity vector when rounding the elements of the lattice. Figure 2b shows that
the lower bound on the lattice step has to be small enough so as to reach every ambiguity
vectors. However, ambiguity vectors which require a small lattice step to be reached have
high residuals, as they are far from the ambiguity vectors itself.

α
2 = 1−2s

2
√
m

≤ s′ ≤ 1, that is contained in the subspace of positions S as well

as in the space of points that round to the considered ambiguity. This shows
that if we let (a, b, c) be an orthonormal basis of S and we consider the set
of points

{

k1αa+ k2αb+ k3αc, (k1, k2, k3) ∈ Z
3
}

, for any ambiguity vector N
with Euclidean norm of its residuals less than s, there exists (k1, k2, k3) such
that ⌊ϕ0 + k1αa+ k2αb + k3αc⌉ = N . Hence, we will reach such an ambiguity
vector and determine its residual during the search algorithm.

Proof Let x ∈ A ∩ B2(0, s). We have B′ = B2(x, 1/2 − s) ⊂ C. Now consider the
intersection B′ ∩ A, this set is

{

x ∈ A, ‖y − x‖2 ≤ 1/2 − s
}

. In such a space, it is
possible to inscribe a hypercube of side length equal to α = (1− 2s)/

√
m, which is

a ball of radius α/2 for the infinite norm. �

The construction for the proof is given in figure 3, showing the different
steps. The previous lemma works for the L2-norm on the space of residuals.
However, if we want to consider the norm ‖ · ‖Qϕ

, we need to make a small
adjustment:

Corollary 1 Let 0 < m ≤ n ∈ N, and 0 < s ≤ 1/2 ∈ R. Let Qϕ be a symmetric
positive definite matrix, and 0 < λ = max λ(Qϕ) its largest eigenvalue. Define l =
s/
√
λ. Consider C = B∞(0, 1/2) the n-dimensional hypercube of radius 1/2 centered

in 0, and BQ(0, l) the closed ball of radius l for the norm ‖ · ‖Qϕ
. Then, for any m-

dimensional subspace A intersecting BQ(0, l) (A∩BQ(0, l) 6= ∅), there exists a point

a ∈ A and 1−2s
2
√
mλ

≤ s′ ≤ 1 such that B∞(a, s′) ∩ A ⊂ C.
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Fig. 3 3a displays the ambiguity space of dimension 2, in which the subspace of position
of dimension m = 1 intersects the ball of radius s, resulting in a corresponding position for
the ambiguity (0, 0) having residual less than s. In 3b, we built the ball of radius 1/2 − r,
its size is optimal as it is tangent to the line y = 0.5. In the intersection of this ball with the
position space, the largest m-dimensional ball has radius (1/2 − r)/

√
m.

Proof BQϕ
(a, l) ⊂ B2(a, s). �

We can bound the maximum eigenvalue of Qϕ using Weyl’s or Ipsen and
Nadler’s formulas, described in lemma 3. Once again, the lower bound is not
optimal, as we have to go through the ball determined by the Euclidean norm
to obtain it, instead of finding a bound directly. However given the complexity
and the diversity of the geometry of an embedded subspace of dimension m in
an n-dimensional space, such a lower bound is extremely helpful. In practice,
it is possible to use a larger value for α to get less redundancy in the search
process without missing the potential solution.

The search space D(α) is explored by a lattice, directed by vectors a, b and c.
We want this lattice to cover the subset B. In the case the initial position was
determined by the pseudoranges equation p0 = Hr + εp, with H = QR and
measurement covariance Qp, then the covariance of the solution is related to
(R⊺Q⊺Q−1

p QR)−1, shaping the search space B. In the general case, when the
geometry of the satellite is good, the influence of Qp over the covariance matrix
should not be fundamental, most of the influence coming from the dilution
of precision given by (R⊺R)−1. Neglecting the influence of Qp on the search
space, and considering the vectors r′ = Rr, the covariance matrix in the new
space of position then becomes the identity matrix and the space B becomes a
sphere. Hence, we can define a value K to simplify the definition of the search
space. Define:

D(α,K) =
{

k1αa+ k2αb+ k3αc, k = (k1, k2, k3) ∈ Z
3, ‖k‖2 < K

}

. (19)
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Even if this definition neglects the covariance matrix Qp, it facilitates the
definition of the search space. To avoid computations, one can even use a
different norm in the definition of D(α,K), so as to make the search algorithm
as readable as possible.

Remark 6 Given the previous construction of the matrix Q and R, we can loosely
relate the variable K to the radius of search in the position space. Indeed, given
that the rows in the matrix H are the difference between two unit vectors divided
by the wavelength, a rough estimation of the minimal radius of search is K ×
√

min(λ(R⊺R)−1). More coarsely, the radius of search is related to K ×PDOP , by
definition of the position dilution of precision.

3.4 Pseudorange convexity

We now extend the previous process to the full problem 2 with the pseudorange
measurements. We are looking for a minimizer of

‖p0 −Hr‖2Qp
+ ‖ϕ0 −Hr −N‖2Qϕ

(20)

Considering only the pseudorange equation, the position minimizing the first
term is the projection of p0 on the subspace spanned byH . Call r0 this solution,
then we have p0 = Hr0 + s0 with s0 the projection of p0 on the subspace
orthogonal to H . For any r, we then have:

‖p0 −Hr‖2Qp
= ‖s0‖2Qp

+ ‖H(r − r0)‖2Qp

= ‖s0‖2Qp
+ (r − r0)

⊺
(

H⊺Q−1
p H

)

(r − r0)

This value growing with the distance to r0, the pseudorange equations add
convexity to the previous problem, as shown on figure 4. Indeed, when far
enough from the position r0, the first part of the norm in equation (20) grows
larger than the fixed limit for the norm of the residuals. The advantage of this
convexity is that one does not have to define artificially the width of the search
space. Hence, by taking the best computed residual γ during the algorithm, if
the position tested is too far, and ‖H(r − r0)‖Qp

≥ γ − ‖s0‖2Qp
, then for any

λ > 1, it is not needed to test vectors r′ = r0+λ(r−r0) allowing the algorithm
to stop by itself when testing positions far from r0.

It remains to check and eventually modify the results of the previous parts.
First, the residuals and projections formulas (13) and (14) are changed. Indeed,
given the weight of being far from r0 on the norm, the projections on A will
be made more oblique towards the point Hr0. It is straightforward to compute
the new projection of an ambiguity vector, as instead of considering only Qϕ

we have to consider the full covariance matrix. We let

Qp,ϕ =

(

Qp 0
0 Qϕ

)

, CC⊺ = Qp,ϕ
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(a) (b)

Fig. 4 The planes z = 0 of the two figures represent the ambiguity space of dimension
2, while the line represents the subspace of position of dimension m = 1. In figure 4a, the
surface drawn represents the squared norm of the residuals z = ‖ϕ0−Hr−N‖2

Qϕ
. The search

space should follow the subspace of position, and is not finite without further hypothesis,
as along the line the norm of the residuals is null. In figure 4b, the surface drawn represents
the squared norm of the residuals z = ‖ϕ0 −Hr −N‖2

Qϕ
+ σ × ‖r − r0‖22. Using the effect

of the pseudorange equations, the search space is now limited by the strict convexity of the
squared norm of the residuals.

(

p⋆0
ϕ⋆
0

)

= C−1

(

p0
ϕ0

)

, Q⋆R⋆ = C−1

(

H
H

)

, ε⋆ = C−1

(

εp
εϕ

)

We then have:

ε⋆ = (In −Q⋆Q⋆⊺)

(

p⋆0
ϕ⋆
0

)

− (In −Q⋆Q⋆⊺)

(

0
N⋆

)

(21)

r′ = (R⋆)−1Q⋆⊺

(

p⋆0
ϕ⋆
0

)

− (R⋆)−1Q⋆⊺

(

0
N⋆

)

(22)

About the minimization of the residuals over the ambiguity vectors, we can
first observe that if the matrix Qϕ is diagonal, then clearly the minimizing
ambiguity vector is again the vector ⌊ϕ0 −Hr⌉. In any case, when r is fixed
and consequently Hr is too, the problem of finding N is exactly the same as
before, as the matrix Qϕ is unchanged and the other measurements are not
correlated to these ones.
Regarding the search process, the goal was to reach all ambiguity vectors close
enough to the subspace A, with residuals less than some fixed limit. Adding
the pseudorange equations, the norm of the residual increases, adding another
term to it. Apart from adjusting the limit of the accepted residual by adding
‖s0‖2Qp

, we reach the exact same ambiguities and there is no difference between
the two search processes. One could also choose to compute an irregular lattice
with growing step depending on the distance to r0. Our process is hence mostly
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the same when adding the pseudorange equations, apart from the projection
equations and the residual computations.

3.5 Naive example of algorithm

We can state a naive algorithm solving problem 1 by gathering our work. We
do so in algorithm 1 in the style of the algorithm by Chang, Yang and Zhou [4].
We are not looking to be optimal in term of number of computations, instead
we aim for readability.

If one requires the p best ambiguity vectors, it is straightforward to keep
them in a list, as well as the list of residuals. This algorithm, even though naive,
gives an upper bound on the complexity necessary to get the best ambiguity
vector out of some space of position. The position space being search, which is
an ellipsoid, contains the ball

(

min λ(R−1)
)

Kα. Before entering any loop, the
preparation phase is made of matrix multiplications, Cholesky decomposition,
and eventually a spectral decomposition to obtain the maximal eigenvalue of
the matrix Qϕ. Hence, the complexity of the operations before starting the
loops are O(n3). Then, for each ambiguity we perform the product MN0,
which is O(n2), making the final complexity of the algorithm and the farthest
position visited in the position space given by:

C(K,n) = O
(

n3 + (2K + 1)3n2
)

(23)

d(K) ≥ Kαmin λ(R−1)

Remark 7 The value of α has been fixed at the lower bound of corollary 1, to make
sure we visit the right ambiguity. The algorithm described here relies on a balance
between the extension of the search and the success rate. Increasing the value of s
decreases the extension of D(α), while decreasing it might prevent us to reach the
solution of our problem. This dilemma can be overcome by different strategies, such
as changing the value of s when a new ambiguity with small residual as been found.
In general, we advocate for a lower value of s (higher α), so as to avoid redundancy
during the search. A better generic value can be established through trial runs after
choosing a wanted percentage of success.

4 Possible extensions

We discuss here several possible extensions of the algorithm, in cases that seem
to have interesting developments.

4.1 Multi-epoch case

The algorithm we developed being O(n3), computing a position with a large
number of satellites is computationally cheap. In the case of multiple epochs,
the number of satellites to consider will increase sharply, making it harder to
compute every wanted ambiguity. Moreover, observe that when doing the QR
decomposition, the larger the number of satellites, the smaller the coefficients
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Algorithm 1 Finds a position and integer ambiguity minimizing the norm of
the residuals in the integer ambiguity problem.

Require: Let n ∈ N, n ≥ 2. Let Qϕ be a symmetric positive definite matrix
in R

n×n, ϕ0 ∈ R
n, and H the measurement matrix. Choose a maximum

admissible value s < 0.5 for the norm of the residuals ‖εϕ‖2, and K ∈
N \ {0} defining a radius of the search space.

Ensure: Returns a position r and an integer ambiguity vector N minimizing
the residual ‖ϕ0 −Hr′ −N ′‖Qϕ

over r′ ∈ D and N ′ ∈ Z
n.

1: Compute the QR factorization of H: H = QR

2: Call a,b, c the columns of Q
3: Compute λ, the largest eigenvalue of Qϕ or a bound on it using formula

(16) or (17)
4: α = 1−2s√

3λ

5: Compute a′ = αa, b′ = αb, c′ = αc
6: Compute the Cholesky decomposition of Qϕ: Qϕ = CC⊺

7: Compute the QR decomposition of C−1H: C−1H = Q⋆R⋆

8: Compute M = (In −Q⋆Q⋆⊺)C−1

9: Compute ϕ⋆
Q = Mϕ0

10: Compute L = R⋆−1Q⋆⊺C−1

11: Compute r⋆Q = Lϕ0

12: Maximal residual m = l

13: for k1 = −K : 1 : K do

14: e1 = k1a
′

15: for k2 = −K : 1 : K do

16: e2 = k2b
′

17: for k3 = −K : 1 : K do

18: e3 = k3c
′

19: N0 = ⌊ϕ0 − e1 − e2 − e3⌉ ⊲ Current ambiguity vector
20: ε⋆ = ϕ⋆

Q −MN0

21: ‖ε⋆‖ =
√
ε⋆⊺ε⋆

22: if ‖ε⋆‖ < m then

23: l = ‖ε⋆‖
24: N = N0

25: end if

26: end for

27: end for

28: end for

29: r = r⋆Q − LN
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in R. Indeed, the size of the diagonal elements ri,i grows as 1/
√
µ× n, where

µ is the number of considered epochs. Hence, the more epochs we consider,
the slower in the position space our ambiguity search is. Even though this
should be compensated by the reliability of the first guess, we should be enti-
tled to ask for a more efficient algorithm, using the fact that when no cycle
slip happens between two epochs, the dimension of the ambiguity space does
not increase. The latter argument will be exploited in the next section, as we
decide to focus for now on easy and straightforward method to decrease the
number of computations.

First, observe that, if µ is the number of epochs, the number of computations
in the set-up part of the algorithm is multiplied by µ3, while those in the
search process are multiplied by µ2. The matrices computations are in general
not the main problem, even in high dimensions. Indeed, the epoch by epoch
nature of the problem usually simplifies the approach, as Qϕ can be consid-
ered block diagonal, and hence, the computational cost is only multiplied by
µ instead of µ3. However, in the case the residuals are time-correlated, this
part could become heavy in term of computations. The main problem arises
with the number of computations in the search process itself. Each searched
ambiguity vector is multiplied by the matrix M = (In − Q⋆Q⋆⊺)C−1, before
computing its norm. This process can be easily improved by batch computa-
tions, considering subvectors and computing the latter product and norm on
them. This method is straightforward and allows to reduce the amount of com-
putations by some non negligible constant. Observing that the squared norm
of the residuals follows a χ2-distribution, one can eliminate ambiguity vectors
such that the probability that its norm is small enough is too low given the
norm of a subvector of residuals.

As previously mentioned, the eigenvalues of the matrix R obtained by QR fac-
torization of H are inversely proportional to the square root of the number of
epochs. Indeed, the more measurements we have, the more accurate our posi-
tioning, as the dilution of precision will decrease with new information. When
one wants to keep the same search ratio, there exists however a heuristic tech-
nique that can help us achieve this goal. Indeed, considering the measurement
matrix H , its shape is

H =









H1

H2

. . .
Hµ









,

where eachHi corresponds to the measurements done at some epoch. When the
epochs are relatively close together, the matricesHi also are, apart from new or
missing satellites in one epoch or the other. Consider now each column a, b, or
c of Q, each of them (take a for instance) has norm 1 and can be written as a =
(e1, ..., eµ)

⊺, each ei being the first column of the QR factorization of Hi. Since
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the ei are very similar, we have that a ∼ (e1, ..., e1)
⊺. Now the norm of e1 is

close to 1/
√
n. The main argument is the following: consider an n-dimensional

hypercube Cn = B̄n
∞(0, 1), and a vector e; call K = max{k ∈ R, ke ∈ Cn};

consider Cµn the µ × n-dimensional hypercube, the vector e′ = (e, e, ..., e)⊺

and K ′ = max{k′ ∈ R, k′e′ ∈ Cµn}; then K ′ =
√
µK. This is easily shown by

taking the coordinates of Ke for example.
In our setting, our argument states that if we want to find another ambiguity
vector, we have to travel a distance

√
µ times longer than if we considered only

a matrix Hi. Hence, in our algorithm 1, instead of taking e1 = k1a
′, we can

take e1 = αk1a
′, with α ∼ √

µ. The radius of research using this trick then
becomes similar to the research radius with only one epoch.
If all the submatrices at each epoch were perfectly equal, this trick would be
mathematically valid. However, the submatrices are never exactly the same, as
the positions of the satellites change over time. The results are still convincing
in many cases: for observations as long as four hours, with satellite positions
subjected to a lot of changes and a high number of observations, the tests on
this heuristic technique keep a very good success rate. Observe on the other
hand that when the data are very degraded and the set of observed signals
differs a lot from one epoch to the other, this argument becomes less relevant:
when matrices Hi vary a lot between different epochs, one should not used a
full multiplier

√
µ, but instead could use a lower one in-between 1 and

√
µ.

Remark 8 The heuristic technique basically consists in saying that our data are a
repetition of µ times the same observations. Another approach, described in the next
section, uses the continuity of the ambiguity to reduce the initial µ× n-dimensional
problem to an n-dimensional one. In the heuristic argument, the continuity is not
required at all, the argument being purely geometric, as we still solve all ambiguities
for the µ epochs.

4.2 Multi-epoch reduction

In this section, we consider again the multi-epoch case, but we take advantage
of the continuity of the ambiguities between different epochs. We describe here
a scheme in the static case that can be extended to the dynamic one when
relative motion is known.
We consider the observation of n satellites without interruption for µ epochs.
Call ϕs,i the observation at epoch i of satellite s. The ambiguity associated to
the double difference is Nps

fm = Nps. Without interruption or cycle slip for this
signal, when the pivot satellite stays the same, the ambiguities do not depend
on the epoch of observation i. Writing Hi the measurement matrix at epoch
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i, we have:











ϕ1,1

ϕ2,1

...
ϕn,µ











=







H1

...
Hµ






r + Λ











Np1

Np2

...
Npn











+ ε, Λ =









In
In
...
In









, (24)

with an appropriate covariance matrix Qϕ. When the pivot changes or a cycle
slip occurs, we can change the form of equation (24) to take the change into
account. First, define a reference pivot q, e.g. the pivot at the first epoch.
When the pivot changes, the ambiguity Nps can be written as

Nps = Np −Ns = Np −N q +N q −Ns = N qs −N qp

If both satellites had such a measurement at the previous epoch, then upon a
change of Λ, we can still write equation (24). The following equation shows a
matrix Λ when the pivot changes at the second epoch:











ϕ1,1

ϕ2,1

...
ϕn,µ











=







H1

...
Hµ






r + Λ











Np1

Np2

...
Npn











+ ε, Λ =









In
A
...
A









, (25)

where A is now a matrix with −1 on the column corresponding to the pivot
satellite p, a 1 on the column i corresponding to any other satellite i present
at the wanted epoch, and 0 elsewhere.

Remark 9 When a cycle slip occurs for a satellite k, its previous ambiguity cannot be

observed anymore. Hence, Npk should not appear anymore; instead we define Npk′

,
new ambiguity for the satellite k.

Remark 10 Observe that there only needs to be one satellite (apart from the pivot)
with a measurement at each epoch to compute the ambiguities in the way described
before. Indeed, with new satellites p′ and s′, if s is a satellite present at epoch m and

m−1 and no cycle slip occurred for s, then we have Np′s = Nqs−Nqp′

which defines

the ambiguity of p′, and Np′s′ = Nqs′ −Nqp′

. As long as the epochs are connected by
one satellite without a cycle slip in the measurements, we can compute the ambiguity
with respect to the reference satellite q. Once there exists a discontinuity for every
satellite, one has to change reference satellite, and hence define new ambiguities with
respect to the new reference, starting a new block with new columns in Λ.



Springer Nature 2021 LATEX template

Fast geometry-based ambiguity resolution algorithm for real-time kinematic 23

The matrix Λ is left invertible: there exists a matrix Θ such that ΘΛ = In′ .
We have:







ϕ′
1
...
ϕ′
n






= H ′r +







Np1

...
Npn






,







ϕ′
1
...
ϕ′
n






= Θ











ϕ1,1

ϕ2,1

...
ϕn,µ











+ ε′, H ′ = Θ







H1

...
Hµ






,

(26)

with covariance matrix Q′
ϕ = ΘQϕΘ

⊺.
We are now in a situation where we can apply the previous algorithm, on a
problem that is n-dimensional, and not µ × n-dimensional anymore (in fact,
with cycle slips and other events, the problem is n′-dimensional, with n ≤ n′ ≤
µ×n). The computations for each ambiguity vectors are hence µ2 times faster.
However, as the matrices Λ and Θ are not invertible, the previous process does
not allow us to conclude. Indeed, consider a simple one-dimensional example
with Λ =

(

1 1
)⊺

, we then have Θ = 1
2

(

1 1
)

and ε′ = 1
2 (ε1 + ε2). Observe

that a whole subspace of (ε1, ε2) would give the exact same residual, without
any condition on the size of ǫ1 and ǫ2 independently. However, ‖ε‖ ≪ 1 =⇒
‖ε′‖ ≪ 1, or in our case, if the norm of ε′ is not small, then the norm of ε is
not small either. Hence, we can discard ambiguity vectors quickly by looking
at their residual ε′, and then look at the residual ε to determine if they are an
interesting ambiguity vector for the non-reduced problem.
The construction of the algorithm should hence undergo a few changes. The
starting point is to consider the problem after reduction given by equation
(26). Before starting the loop, as we will need to check the residual ε, we need
to compute the Cholesky decomposition of the full matrix Qϕ, and the QR
decomposition of H so as to compute the norm of ε. Before starting the loop,
one chooses a maximal value h for the residual ε′, such that, while in the
loop, if ‖ε′‖ < h, then we check if the value of ‖ǫ‖ is lower than a previously
found ambiguity vector. The limit h should be small enough to get rid of the
majority of the vectors that will not minimize our problem, but high enough to
not get rid of the right ambiguity vector. This second check happening in the
unreduced space of higher dimension, one can again use the batch strategy of
section 4.1 to improve computation time. Finally, at the end of the algorithm,
one can compute the position solution of the minimizing problem with the
unreduced matrices.
Such an algorithm will again speed up the search process and should be more
efficient than the previous multi-epoch algorithm, as we avoid inconsistent
ambiguity vectors, relying on the continuity of our observations. On large
amount of epochs, with steady satellite presence, this algorithm can deal with
ambiguity resolution almost as efficiently as the single epoch case.
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4.3 Signals combinations

With receivers being able to make observations of several signals of a constel-
lation, combinations of pairs or trios of signals can be used (see [16]), as some
of them keep the integer nature of the ambiguity vector and are hence suitable
for algorithm 1, making them potentially more efficient. As an example, in the
case of short baselines, if one can neglect the atmospheric terms, then using
the wide-laning combination allows to browse swiftly a large position space,
as the related wavelength is much larger.
Using the wide-laning combination in the algorithm, one can browse a deter-
mined search space more swiftly as the value of K needs to be much lower. As
an example, in the GPS-only case, where the wide-laning wavelength using L1
and L2 is around 4 times larger than the one of L1, the computing time for the
same range in the position space would be 43 = 64 times shorter. The down-
side of using wide-lane combinations is that the observations might lead to a
less precise position, as they are more noisy. However, one can easily modify
our main algorithm, so as to obtain rough positions and ambiguity vectors by
wide-laning, and improve these positions by taking either narrow-lane obser-
vations, or all the L1, L2 and L5 observations.
An example of modified algorithm is to start with algorithm 1 for the wide-
lane combination and K ′ = K/4. Then, keeping the l best solutions, one could
operate again algorithm 1 on each of these positions, with a smaller K ′′ (e.g.
K ′′ = K/8), as we know we are close to a solution. The highest coefficient of
the computational cost of the search part then becomes K3n2 (1 + l/2) /8. In
comparison, for 2n signals, the classic algorithm would need ∼ 32K3n2 com-
putations. The use of the wide-lane combination hence needs 128 times less
computations if l = 2, or 32 times less if l = 14. Hence we see that wide-lane
combination can substantially reduce the computation time.

5 Application

We apply here our algorithm 1 to some real-world data, so as to show its per-
formances. We first describe our setup, and then give results seeming relevant
for its evaluation.

5.1 Setup

Receivers. To obtain the data, we consider two probes made of the same com-
ponents. The GNSS receiver used is the u-blox ZED-F9P, supplied by an
embedded antenna Tallysman TW1889. Using these, we obtain raw data from
the following signals: GPS (L1C/A, L2C), GLONASS (L1OF, L2OF), Galileo
(E1B/C, E5b) and BeiDou (B1I, B2I).

Experiment. The two probes are placed in a location with a clear sky above
15◦. They are positioned side by side, at 10.8cm. We set the rate at 1s for 15
minutes, so as to obtain 900 epochs of data.
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The choice of putting the probes side by side allows us to focus on the main
problem: the fast ambiguity search with a good enough model. Given the prox-
imity of the probes, the atmospheric terms can be neglected, and we hence
put our focus on the success rate and the speed of the algorithm.

Algorithm. To write our algorithm, we use a homemade program in Python
(run on a laptop). The algorithm is designed to find the solution of problem 1.
We perform two tests: one on all raw data for all elevations and another one
for elevations higher than 10◦; we choose to not filter the poor SNR, nor filter
poor signals by any other mean, so as to show a minimum expected success
rate before any kind of pre-processing filters. Using satellites at all elevations
maximizes the number of satellites at the cost of having poorer data, but it
allows us to show the timing difference when more satellites are used.
We split the algorithm in three different parts for timing purposes.
First, using the pseudoranges, we determine a raw position and the clock off-
sets for each signals between the receivers, and we apply the time corrections
to the raw data. To this end, we use the noise formula described earlier with σ
depending only on the elevation, as described in equation (18). This algorithm
is made as simple as possible, and is not timed as it is not part of our problem.
We then compute all the matrices needed for the search part. For each epoch,
we perform two QR factorization, a Cholesky decomposition, a matrix inver-
sion (on the matrice C), and the needed matrices multiplications. We however
do not compute the eigenvalues of Qϕ; as explained in the remark following
algorithm 1, the value of α can be chosen higher, so as to make the search
more efficient. We take advantage here of the fact that the matrix Qϕ is block
diagonal to compute the matrix C−1.
Finally, we perform the search process, using the raw position values and the
computed matrices. Instead of considering ki going from −K to K, we con-
sider all the k = (k1, k2, k3) such that ‖k‖2 ≤ K, implying a lower number of
ambiguities to search, but in a more appropriate space.

Independence between epochs. Each epoch is computed completely indepen-
dently from the others. There are no interactions between consecutive epochs.
The raw position is computed each time from scratch. We are hence in a situ-
ation where the position and ambiguities are computed instantaneously.

3 modes. We use three different modes of computations of the ambiguities.
We call ”Single” the mode where no combination of signal is done. We treat
the two signals (when they are present) of each satellite as completely inde-
pendent. The number of satellites used in our computation is then the sum of
all eight independent (constellation, signal) couples used.
We call ”Wide” the mode where we only consider the wide combinations of
signals for each constellation. This divides the number of satellites at the cost
of noisier data, and also allows to expand the radius of search since the wave-
length is much larger. The results of the wide mode are shown to introduce
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the last mode, which is a combination of the two previous ones.
The ”Mixed” mode comprises two steps. First, we fix a limit for the residu-
als of the wide lane and compute Qϕ the covariance matrix for the wide-lane
combinations. We then run our search process, keeping every ambiguity vec-
tor such that ‖ǫ⋆‖ is smaller than our limit. For such ambiguity vectors, we
perform a second search in single mode around the position given by the wide
lane ambiguity resolution. To do so, it is necessary to correct the value of φ0 by
the change in range at the new position. In such a mode, we need two values
of K for each search. A couple (K1,K2) can hence be chosen for the wide lane
search, and single search. A greater value of K1 will quickly raise the radius of
the search space, while a greater value of K2 will increase the chance of find-
ing the right ambiguity in a small space around the wide lane solution.

Factor α. The value of α is buffed so as to make the search process more effi-
cient. Choosing a maximal residual l = 0.2 cycle, we then choose αsingle =√
2× (1 − 2l) and αwide = 1− 2l. The factor

√
2 is introduced as we consider

2 frequencies for each satellite, and hence have twice the same unit vector in
H for almost all satellites. This argument is the same as the one developed in
the multi-epoch case in section 4.1. As for the factor 1− 2l, in practice such a
value has shown excellent results, allowing to browse a larger space of ambigu-
ities while maintaining the same rate of success. In the following, it has been
checked that reducing the value of α left unchanged the results.

5.2 Results

We give here the results of the algorithm when we consider all satellites. When
it seems relevant, we also give the results obtained by considering only satel-
lites above 10◦.
During the experiment, the number of usable signals (in this context a signal
with both pseudorange and phase value with an LLI of 0 or 1) stayed mostly
constant, with an average of 60.6 signals for the whole sky, and 53.4 above
the 10◦ elevation, as shown in table 1. Observe that when computing double
differences, these numbers will go down by exactly 8, as we consider one pivot
per (constellation, signal) couple. In terms of distribution of signals between
bands, the higher frequency signals (L1, B1, E1) have an average of 33.9 satel-
lite signals, when the lower ones (L2, E5b, B2) have an average of 26.8 satellite
signals. In the case of signal combinations, after computing double differences,
the average of wide lane signals is 22.8.
Pseudorange positioning at each epoch with that amount of signals gives good
results. When using all the satellite above the horizon, the average distance
to the real position is 22.3cm with a standard deviation of 9.4cm. The maxi-
mum distance computed reached a value of 52.4cm.When considering satellites
above the 10◦ elevation, the results are slightly less good, with a maximum
reached value of 63.3cm, as shown in table 2.

In the following, we collect the results using the three different modes, as
well as different values of K (and in the wide mode, of couples (K1,K2)).
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Table 1 Average number of satellite signals used for the tests:
total number of signals tracked, number of signals L1/B1/E1
tracked, number of signals L2/E5b/B2 tracked, and number of
available wide lane combination signals (after double difference),
depending on the elevation constraint.

Elevation N signals L1/E1/B1 L2/E5b/B2 Wide Lane

> 0◦ 60.64 33.88 26.76 22.76
> 10◦ 53.35 29.72 23.63 19.63

Table 2 Distance between the position computed
using pseudorange and true position: average
distance of all epochs, standard deviation (STD) of
the distance, maximal distance.

Elevation Average (cm) STD (cm) Max (cm)

> 0◦ 22.3 9.5 52.4
> 10◦ 23.2 10.5 63.3

In table 3, we collect the average duration of the algorithm in ms for the
matrix computations and then for the search process, as well as the number
of ambiguities searched. In the mixed case, we call k the number of searched
single ambiguities, as it depends on the limit of the residuals that we fixed.
We also put between parentheses some values of the times in the case we only
consider the satellites above 10◦ elevation.
The matrix computation part takes less than 2ms in each cases, which is
much less than the duration of the search process. This preparatory work for
the search process can be considered to have a negligible duration in the algo-
rithm. One can see that the search process grows linearly with the number
of searched ambiguities. Each ambiguity computed takes around 1.5 × 10−5s,
apart from the mixed case K = (5, 3) with a value of k impacting a lot the
result. As expected, we see that the time per ambiguity is slightly less when
we remove some satellites due to the elevation (values between parentheses),
and for 12% less satellite we have a slight gain in computation time.
On the same data set, using all the signals on each frequencies of each constel-
lations, applying the MLAMBDA approach gives a reduction time of 18.20ms,
and a search time 79.47ms. Comparing these to the single process, we see that
the reduction takes a larger time than our computations on matrices, while
the search duration would correspond to a number of searched ambiguity
around 5680, or equivalently to the case K ∼ 11.

In terms of success rate, it is necessary to choose an appropriate way to
measure if the ambiguity resolution was successful or not. We choose here
to compare the positions given by the ambiguity process to determine if the
solution is successful or not. If the distance between the position given by the
ambiguity algorithm and the true position does not exceed some value, we



Springer Nature 2021 LATEX template

28 Fast geometry-based ambiguity resolution algorithm for real-time kinematic

consider the resolution successful. For the single wavelengths, we consider the
cases where this distance does not exceed 1cm and 3cm. For the wide case,
where data are noisier, we give the results for 3cm and 10cm. The success rates
are listed in table 4.
In the single case, we reach a success rate above 50% with a very low search
radius, this result being improved when considering only satellites above 10◦.
At K = 10, we are already very close to a perfect success rate for both 1cm
and 3cm positioning. When K = 15, the results cannot be improved anymore.
The wide case is mostly interesting as it gives an insight on the mixed case.
Indeed, if some of the best solution given by the wide case are close enough to
the true position, then it will follow that the single search occurring after has
a lot more chance to be successful. The success rate for a distance to the true
position of less than 10cm is almost 100% when K = 5, and does not change
with higher K, showing that the search space was large enough already when
K = 5 as the raw positioning was good enough. Observe also that when we
consider only the satellites above 10◦ elevation, the results slightly deteriorate,
probably because of the diminution of the number of satellites. In the mixed
case, the good results given by the wide case are confirmed, and for K = (5, 1),
the success rate is 100%. We do not bother to give the results for higher values
of K, as they are obviously the same.
Applying the classical MLAMBDA algorithm [4] gives a success rate of 88.9%
at 3cm, dropping to 15.1% at 1cm. The drop in the rate can be explained by
the presence of some wrong ambiguities for the solution at 3cm.

Additionally, we can give a measure of confidence of the given solution.
A first possibility is to use the Neyman-Pearson lemma (see [17]), so as to
compare the residuals obtained by the present algorithm, and the ones that
would be obtained in the case the residuals are equally distributed on the range
]−λ/2, λ/2]. A second possibility is to compare the residuals of the solution to
the second best set of residuals. The ratio between these two values increases
as the square root of the number of satellites. When successful, we find that for
the single case this ratio is close to 4.3, with a standard deviation of less than
0.3. As for the wide case, this ratio is 2.21 with a standard deviation lower
than 0.2. When unsuccessful, we have instead ratio very close to 1 (e.g. as low
as 1.0005 in the single case for K = 10). It hence seems that this ratio is an
appropriate internal measure to determine when the solution can be considered
valid or not. Other classical methods in the field of ambiguity resolution can
be applied (see for example [18] for a better overview on the subject).

Finally, let us give an insight on the search space in the position space. As
explained earlier, the search space is an ellipsoid determined by the geometry
of the satellites. The furthest searched position grows rather linearly with the
value of K, as it is related to the value K × PDOP . In the single case, the
furthest searched position from the initial guess averages to 33cm when K = 5,
60cm when K = 10 and 88cm. In the wide case, we obtain the averages of
140cm when K = 5, 239cm when K = 10 and 342cm when K = 15. The
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difference between the width of the search spaces in this two cases explains
the difference in success rates observed. A wider research implies a better
success rate, and is easily reachable using the wide lane combination, making
the mixed algorithm both quick and successful.
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Table 3 Timings of the two parts of the ambiguity resolution algorithm for different modes (single, wide, mixed) and different values of K. The
number of searched ambiguity is shown, as well as the duration of the matrix computations, the search process, and the average duration of an
ambiguity search. Between parentheses is shown the time in the case we consider only the satellites above 10◦.

Mode K t matrix comp. (ms) N searched t search (ms) t / N search (µs)

Single 5 1.10 515 7.38 14.3
Single 10 1.09 4169 58.16 14.0
Single 15 1.08 (0.96) 14147 203.06 (191.04) 14.4 (13.5)
Wide 5 0.56 515 6.20 12.0
Wide 10 0.55 4169 50.30 12.1
Wide 15 0.55 (0.52) 14147 172.06 (170.63) 12.2
Mixed (5, 1) 1.67 515 + 7k 7.25 14.1
Mixed (5, 3) 1.66 515 + 123k 12.91 25.1
Mixed (10, 1) 1.60 4169 + 7k 52.75 12.7
Mixed (10, 3) 1.65 4169 + 123k 57.79 13.9
Mixed (15, 3) 1.63 (1.48) 14147 + 123k 184.91 (173.31) 13.1
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Table 4 Success rate of the ambiguity resolution algorithm: success
corresponds to a distance between the given solution and the true
solution of respectively less than 1cm, 3cm or 10cm.

Mode K Success < 1cm Success < 3cm Success < 10cm

Single 5 51.9% (58.0%) 59.0% (64.2%) -
Single 10 98.9% 99.4% -
Single 15 100% 100% -
Wide 5 - 52.3% (45.9%) 99.9% (99.6%)
Wide 10 - 52.3% 99.9%
Wide 15 - 52.3% 99.9%
Mixed (5, 1) 100% (100%) 100.0% (100%) -
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