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Abstract: 

The objective of this paper is to show the procedure to follow to analyze a physical phenomenon, with 

a simple and effective method. Mathematical stability examination was performed to define which 

resolution is stable and physically feasible. We have seen the approach and the steps that must be 

taken to go from a mathematical model to a numerical model. To do this, we used the Poisson 

equation as an example, and to show the results, we used the heat transfer equation. In real life, the 

most difficult step is not the numerical processing and analysis, but to understand the physical 

phenomenon and to translate it into a mathematical formulation. The finite difference approach is 

employed to resolving those equations numerically. The resulting schemes were resolved by the 

iterative GAUSS Seidel technique.These differential schemes have an approximate order 0(h2), and 

are absolute stable.Differential schemes are a linear algebraic equation system which solution can be 

solved by the Gaussian techniqueof elimination. This paper provides a good basis for the analysis of 

physical phenomena that deal with partial differential equations in 2D. In several sectors and branches, 

whether in the industrial framework. 

Keywords: Laplace, heat transfer, Iterative techniques, numerical approaches, recurrence equation. 

1. Introduction 

In mathematics and theoretical physics, the heat equation is a second order parabolic partial 

differential equation, which can be solved by numerical approaches in several ways.To 

describe the physical phenomenon of heat conduction, initially introduced in 1807 by Joseph 

Fourier [1], after experiments on the propagation of heat, followed by the modeling of the 

evolution of temperature with trigonometric series, since then called Fourier series and 

Fourier transforms, allowing a great improvement in the mathematical modeling of 

phenomena, especially for the foundations of thermodynamics, and which also led to very 

important mathematical work to make them rigorous, a real revolution both physical and 

mathematical. 

A variant of this equation is very present in physics under the generic name of diffusion 

equation. It is found in the diffusion of mass in a binary medium or of electric charge in a 

conductor, radiative transfer, etc. It is also related to the Burgers equation and the Schrödinger 

equation [2]. Many engineering problems are reduced to partial differential equations which, 

because of their complexity, must be replaced by approximations.  The theory of partial 

differential equations (existence, uniqueness, well-posed problem) is not as complete as that 

of ordinary differential equations.  On the other hand, in the case where analytical solutions 

exist, their solutions are trivial or so simple that they are not useful in practice.Vaidya et al. 

[3] solved the partial differential heat equation by different methods. Obtained the same 
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solution when used Fourier transform, Laplace transform ,MATLAB software, and separation 

of variables method. Ullaha et al. [4] used the iterative Laplace transform to develop the series 

solution for a two-dimensional wave equation involving an external source term of fractional 

order. Computed the series solution that converges quickly to the exact value. Benhissen et al. 

[5]. used the finite difference method to solve the Poisson equation. Gives an approximate 

solution of the real behavior of a physical phenomenon. Example the heat transfer 

equation.Lagrée [6] presents analytical solutions in simple cases of the heat equation in 1D. 

Makhtoumi [7] studied the derivation of analytical and numerical solutions of heat diffusion 

in one dimension using adaptive methods. Applied and analyzed a comprehensive comparison 

based on the perturbation method and the finite difference method. Dhoyer et al. [8] studied 

the boundary behavior of the distribution from the spatially averaged solution of the stochastic 

heating equation piloted with a Rosenblatt sheet. They proved that spatially averaged 

converged low, in the continuous function space.Loskor et al. [9] proposed a numerical 

resolution using the finite differential approach with the direct time and centered space 

scheme for a problem that contains one-dimensional heating equation and the scheme stability 

condition.Taloub et al [10-11] have developed and validated the finite differential approach to 

non-stationary heat transfer from a square furnace source.The finite differential approach is 

applied to solving the heating equation. If the analytical solve is not possible to find way to 

get an approximated solve, also in a number of points of the geometry only, numerical 

approaches are employed to reach this objective.Kahlaf et al. [12] utilized numerical 

approaches to locate the imprecise resolution of the two-dimensional Laplace equation with 

Dirichlet boundary states. Used two approaches the finite difference technique and the finite 

element technique to receive the numerical resolution of this equation. Found that the finite 

difference approach is a considerably proper technique after approximating these results with 

identical resolution. 

The aim of the current paper is to investigate mathematically and numerically the stability of 

the temperature distribution in the heat equation, the case of two spatial variables with or 

without heat source (Laplace equation) in the furnace walls. This is important for the design 

work and for the effective operation of industrial furnaces. 

NOMENCLATURE 

C       Specific heat with pressure constant                      𝜃𝑖          Iinternal temperature  

D       Domain of resolution                        𝜃𝑒          External te;perqture 

F       Thermal energy source, or function of x,y                       ∆              Laplacian operator 

H      Coefficient of exchange by convection or step according to x,y      Γ𝑖             Inner surface 

S       Energy source                                                                                   Γ𝑒          Outer surface 
t        Time                                                                                   L           Length 

T       Temperature                                          Lettres grecques 

T’     Temperature        α             Diffusivity thermal of wall and internal 
X,xi     Cartesian coordinate                                         ρ      Density 

Y,yj    Cartesian coordinate                                                                          Λ          Lambda  
Ψ     Function of x,y   Indices / Exposants  Ωℎ   Network                                                                                                   ∂         Partial derivative 
   

 

 

 

 



2. Description of different forms of the heat equation 

Considering the differential equation controlling the heat conduction phenomena in anoven (if 

the medium is uniform ρ, C and Κ are fixed values) and written as follows: 𝜕𝑇𝜕𝑡 = 𝛼 (𝜕2𝑇𝜕𝑥2 + 𝜕2𝑇𝜕𝑦2) + 𝑓                                                                 (1) 

With: 0conste
C.ρ
Κ

α >==   ,   
C.ρ

S
f =  𝛼: is referred to as "thermal diffusivity". 

To completely write the process of thermal exchange, it is required to provide the initial 

temperature partition in the middle (initial boundary condition) and the boundary temperature 

conditions (boundary condition). 

It can be take into account the following various boundary conditions: 

1. The temperature T in Γ is written as: 𝑇|Γ = 𝑇0 

2. The heating flux in Γ is written as: 𝐾 𝜕𝑇𝜕𝑛|Γ = 𝑇1 

3. On the border Γheating transmission takes place according to Newton's law 𝐾 𝜕𝑇𝜕𝑛 + ℎ(𝑇 − 𝑇0)|Γ = 0 

Or h: coefficient of heating transmission 𝑇0: Temperaturefrom the surrounding environment. 

The law from Newton states that the flow of heating across the frontier is proportionate to the 

difference in temperature on the two sides of the boundary.  

For the stationary distribution, the temperature does not vary with timei.e.
𝜕𝑇𝜕𝑡 = 0.  

Therefore, it get the POISSON equation of the steady distribution of heat. −Δ𝑇 = 𝑓𝛼                                                                           (2) 

When there is no thermic source in the middle, the equation of POISSON (2) is reduced to the 

equation of Laplace 𝛥𝑇 = 0                                                                         (3) 

It is the equation for the stationary repartition within the walls of the oven. 

It uses second order approximation of finite differential schemes in the space step and 0(h2) 

and absolutely stable. 

 



3. The stationary heat transfer problem in the walls of an oven 

Consider a furnace in the plane of the straight section shown below.  We callΓ𝑖 the internal 

oven surface and Γ𝑒 the outer surface.  

In steady state and without source, the temperature 𝑇(𝑥, 𝑦) at a point(𝑥, 𝑦), of the wall 

verifies the Laplace equation. 

{Δ𝑇 = 0                  𝑇 = 𝜃𝑒𝑜𝑛Γ𝑒𝑇 = 𝜃𝑖 𝑜𝑛Γ𝑖𝜃𝑒 < 𝜃𝑖                                                               (4) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Geometry and mesh of the Oven walls 

Where: 𝛤 = 𝛤𝑒 ∪ 𝛤𝑖 the boundary of 𝛺 

The Taylor series expansion of the function𝑇(𝑥′, 𝑦), around 𝑇(𝑥, 𝑦) 

Where 𝑥′ = 𝑥 ± ∆𝑥is written: 

{𝑇(𝑥 + ∆𝑥, 𝑦) = 𝑇(𝑥, 𝑦) + ∆𝑥 𝜕𝑇𝜕𝑥 + (∆𝑥)22! . 𝜕2𝑇𝜕𝑥2 + (∆𝑥)33! . 𝜕3𝑇𝜕𝑥3 + (∆𝑥)44! . 𝜕4𝑇𝜕𝑥4 + ⋯𝑇(𝑥 − ∆𝑥, 𝑦) = 𝑇(𝑥, 𝑦) − ∆𝑥 𝜕𝑇𝜕𝑥 + (∆𝑥)22! . 𝜕2𝑇𝜕𝑥2 − (∆𝑥)33! . 𝜕3𝑇𝜕𝑥3 + (∆𝑥)44! . 𝜕4𝑇𝜕𝑥4 + ⋯                         (5) 

Adding these two relations and dividing by(∆𝑥)2, we find: 𝜕2𝑇𝜕𝑥2 = 𝑇(𝑥+∆𝑥,𝑦)−2𝑇(𝑥,𝑦)+𝑇(𝑥−∆𝑥,𝑦)(∆𝑥)2 + Ο(∆𝑥)2                                     (6) 

Operating in the same way for the variable y, we find: 𝜕2𝑇𝜕𝑦2 = 𝑇(𝑥,𝑦+∆𝑦)−2𝑇(𝑥,𝑦)+𝑇(𝑥,𝑦−∆𝑦)(∆𝑦)2 + Ο(∆𝑦)2                                     (7) 



Thus, the two-dimensional Laplacian is written: 𝜕2𝑇𝜕𝑥2 + 𝜕2𝑇𝜕𝑦2 = 𝑇(𝑥+∆𝑥,𝑦)+𝑇(𝑥−∆𝑥,𝑦)−4𝑇(𝑥,𝑦)+𝑇(𝑥,𝑦+∆𝑦)+𝑇(𝑥,𝑦−∆𝑦)Ο(∆𝑥)2+Ο(∆𝑦)2                            (8) 

In our case, we haveΔ𝑥 = Δ𝑦 = ℎ.  𝜕2𝑇𝜕𝑥2 + 𝜕2𝑇𝜕𝑦2 = 𝑇(𝑥+∆𝑥,𝑦)+𝑇(𝑥−∆𝑥,𝑦)−4𝑇(𝑥,𝑦)+𝑇(𝑥,𝑦+∆𝑦)+𝑇(𝑥,𝑦−∆𝑦)ℎ2                             (9) 

We pose:{ 𝑥𝑖 = 𝑖∆𝑥 = 𝑖ℎ  ⟶ 1 ≤ 𝑖 ≤ 𝑛𝑦𝑗 = 𝑗∆𝑦 = 𝑗ℎ  ⟶ 1 ≤ 𝑗 ≤ 𝑚 

To simplify the notation, the previous problem expression (4) is approximated by the 

following difference scheme: 

{𝑇𝑖−1,𝑗+𝑇𝑖+1,𝑗+𝑇𝑖,𝑗+1+𝑇𝑖,𝑗−1−4𝑇𝑖,𝑗ℎ2 = 0          ∀ (𝑖, 𝑗)interior ∈  Ωℎ0𝑇𝑖,𝑗 = 𝜃𝑒    ,     ∀ (𝑖, 𝑗)  ∈ 𝛤𝑒Ωℎ =  𝛺ℎ0 ∪ 𝛤ℎ𝑇𝑖,𝑗 = 𝜃𝑖    , ∀ (𝑖, 𝑗)  ∈ 𝛤𝑖                      (10) 

It is obvious that the approximation of this scheme to differences is of order 2. 

4. Stability study  

The stability of difference schemes (10) is proved as follows:  

Let 𝛺 be the solution domain of the stationary heat problem (9) and Γ the boundary of 𝛺. 
The difference scheme (10) is defined on the network: 𝛺ℎ = {(𝑥𝑖, 𝑦𝑗) = (𝑖ℎ, 𝑗ℎ) ∈ 𝛺} 

A node (𝑥𝑖, 𝑦𝑗)or simpler (𝑖, 𝑗)is called an interior node of Ωℎif all its 4 juxtaposed nodes(𝑖 −1, 𝑗),(𝑖 + 1, 𝑗),(𝑖, 𝑗 − 1), (𝑖, 𝑗 + 1)also belong toΩℎ. 

We name Ωh0the set of nodes inside Ωℎ. 

Then we have the decomposition 𝛺ℎ = 𝛺ℎ0 ∪ 𝛤ℎ with 𝛺ℎ0 ∪ 𝛤ℎ = ∅ and 𝛤ℎ  is the set of border nodes. 

By denoting Λ𝑇𝑖𝑗 = 1ℎ2 (𝑇𝑖−1,𝑗 + 𝑇𝑖+1,𝑗 + 𝑇𝑖,𝑗−1 + 𝑇𝑖,𝑗+1 − 4𝑇𝑖,𝑗) 

Then we can write the difference scheme (9) in the symbolic form 𝐿ℎ𝑇ℎ = 𝑓ℎ                                                                                                      (11) (𝐿ℎ𝑇ℎ)𝑖𝑗 = Λ𝑇𝑖𝑗        in (𝑖, 𝑗) ∈ 𝛺ℎ0 

And (𝐿ℎ𝑇ℎ)𝑖𝑗 = 𝑇𝑖𝑗       in (𝑖, 𝑗) ∈ 𝛤ℎ  (𝑓ℎ)𝑖𝑗 = 0 in all (𝑖, 𝑗) ∈ Ωℎ0  (𝑓ℎ)𝑖𝑗 = Ψ𝑖𝑗given value, ∀ (𝑖, 𝑗) ∈ 𝛤ℎ 

To prove the stability of the difference scheme (10) we first prove two following propositions: 



Let 𝑇′be a network function on Ωℎand Λ𝑇𝑖,𝑗′ = 1ℎ2 (𝑇𝑖−1,𝑗′ + 𝑇𝑖+1,𝑗′ + 𝑇𝑖,𝑗−1′ + 𝑇𝑖,𝑗+1′ − 4𝑇𝑖,𝑗′ ) 

Proposition 1:If Λ𝑇𝑖𝑗′ > 0 at every interior node of Ωℎ0then the maximum component of 𝑇′is 

reached (realized) at least at one boundary node of 𝛤ℎ i.e.,∃ (𝑖, 𝑗) ∈ 𝛤ℎsuch that: 𝑇𝑖𝑗′ ≥ 𝑇𝑘,𝑙 , ∀(𝑘, 𝑙) ∈ 𝛺ℎ. 

Proof: Let us reason by absurdity, i.e. if the conclusion of Proposition 1 is false then we end 

up with a contradiction. 

Indeed, suppose that the maximal component 𝑇𝑖𝑗′ is not reached on the boundary𝛤ℎ . 

We choose an inner node (𝑖, 𝑗) located on the leftmost side i.e. with: 

a) 𝑇𝑖𝑗′ ≥ 𝑇𝑘𝑙  , ∀(𝑘, 𝑙) ∈ 𝛺ℎ 

b) 𝑇𝑖𝑗′ ≥ 𝑇𝑖−1,𝑗 

Then we can write: Λ𝑇𝑖,𝑗′ = 1ℎ2 ((𝑇𝑖−1,𝑗′ − 𝑇𝑖,𝑗′ ) + (𝑇𝑖+1,𝑗′ − 𝑇𝑖,𝑗′ ) + (𝑇𝑖,𝑗−1′ − 𝑇𝑖,𝑗′ ) + (𝑇𝑖,𝑗+1′ − 𝑇𝑖,𝑗′ )) 

All terms are ≤ 0and the first term𝑇𝑖−1,𝑗′ − 𝑇𝑖,𝑗′ < 0 ⟹ Λ𝑇𝑖,𝑗′ < 0 

This contradicts the assumptionΛ𝑇𝑖,𝑗′ ≥ 0, ∀(𝑖, 𝑗) ∈ 𝛺ℎ0 

Therefore, Proposition 1 is true. 

Proposition 2: If Λ𝑇𝑖𝑗′ ≤ 0 at any interior point (𝑖, 𝑗) then the minimum component of𝑇′ is 

reached at least at one boundary node. 

Demonstration of stability: 

The solution 𝑇ℎof the difference scheme (5) verifies both the inequalities Λ𝑇𝑖𝑗 ≥ 0 and Λ𝑇𝑖𝑗 ≤ 0 at any node (𝑖, 𝑗) ∈ 𝛺ℎ0 

From the previous two propositions, we obtain: ‖𝑇ℎ‖𝑈ℎ = max(𝑖,𝑗)∈𝛺ℎ|𝑇𝑖𝑗| = max(𝑖,𝑗)∈𝛤ℎ|𝑇𝑖𝑗| = max(𝑖,𝑗)∈𝛤ℎ|Ψ𝑖𝑗|                                       (12) 

On the other hand ‖𝑓ℎ‖𝐹ℎ = max(𝑖,𝑗)∈𝛺ℎ|(𝑓ℎ)𝑖𝑗| = max(𝑖,𝑗)∈𝛤ℎ|(𝑓ℎ)𝑖𝑗| = max(𝑖,𝑗)∈𝛤ℎ|Ψ𝑖𝑗|                            (13) 

From (11) and (12) it follows: ‖𝑇ℎ‖𝑈ℎ = ‖𝑓ℎ‖𝐹ℎ  

From which we also have ‖𝑇ℎ‖𝑈ℎ ≤ ‖𝑓ℎ‖𝐹ℎ  

This is the stability of schemes with differences (11). 



 

5. Results and discussion  

Here are some results: If we apply our system as a heat equation, with constant conductivity 

and steady state. 

Thus, the system (or discretized Laplace equation) can be solved by the Gauss-Seidel method 

(explicit method) where the Laplace equation gives the central point of each molecular form 

by the expression: 𝑇𝑖,𝑗 = 𝑇𝑖+1,𝑗+𝑇𝑖−1,𝑗+𝑇𝑖,𝑗+1+𝑇𝑖,𝑗−14                                                  (14) 

 

The elaborated program allows to solve the system (14) by the explicit method. To do this, we 

give ourselves an arbitrary initial value (distribution) 𝑇𝑖,𝑗(0)
, which is carried in equation (14) to 

the second member for each pair (𝑖, 𝑗), gives a new value 𝑇𝑖,𝑗(1)
, and so on. The computations 

stop when |𝑇𝑖,𝑗(𝑝+1) − 𝑇𝑖,𝑗(𝑝)| ≤ 𝜀 where ε is the limit of convergence that we give ourselves. 

Figures (2, 3) represent the contours from the isotherms at various Δx and Δy values and three 

dimensional x, y and T in the case where the stationary heat transfer problem in the walls of 

an Oven.From the boundary conditions imposed, the diffusion of the isothermal provides a 

very good justification for the physics meaning for those conditions. 

We notice that the smaller the spatial pitch, the more the flow penetrates inside, with a 

concentration in the middle. The propagation of the temperature is intense in the middle of the 

end to all regions. This has the effect of giving a good accuracy on some sides or regions. 

With points defined by the grids in figure 2 and figure 3, starting from an arbitrary estimate (θ 
= 100). For the interior points, the method converges in 33 iterations. A better choice of 

estimate would have reduced this number of iterations. Note that we could have used 

symmetries to decrease the number of calculations. 

Instead of using a usual test of the type ║ r ║<ε, we used the fact that the furnace has two 

axes of symmetry and thus the temperature distribution has this property. Since the 

calculation process itself is asymmetric, two symmetric points like T2,2 and Tn-1,n-1 will have 

same temperature only after convergence . This test allows us to avoid the costly calculation 

of the norm of the residual ║ r ║. 

Knowing that the discretization of the Laplacian introduces an error of order Δx, the results 

with different values of Δx are significantly different at the common points between two grids. 

The difference decreasing with Δx. 
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ConsiderL1=1, L2=1, L3=0.4, L4=0.4, T0 = 100K, θe = 50K, θi = 1150K, Δx = Δy = 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Temperature variation as a function of xi, yj(stationary case) for ∆x=∆y=0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Temperature variation as a function of xi, yj (stationary case) for ∆x=∆y=0.06 
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6. Conclusion 

The numerical results demonstrate the stability of the convergent difference schemes, the 

conformity to the physical phenomena of the problem, and the developed algebraic 

calculation.The developed solving algorithm and the difference schemes presented in the 

present paper are solvable to the domains in any geometrical pattern with slight changes.It is 

possible to develop, and generalized the problem studied in the present paper into an optimum 

control method in which the control factor (the heat source) has to be chosen in order to get 

the required heat flow (stable).It is a highly common problem in the conception and 

functioning for industrial ovens. 

Finally, this paper allowed us to work in groups and to apply mathematical theory in 

computer programming. This paper also shows the importance of mathematics as a tool to 

understand, explain and predict natural phenomena. 

In the next work, we will move to 3D. With the same procedure and approach and there we 

will see the efficiency of the resolution algorithm, and especially the limits of capacity of 

sequential computers. 
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