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Abstract
Spatial locational modeling techniques are increasingly used in species distribution modeling. However,
the implemented techniques differ in their modeling performance. In this study, we tested the predictive
accuracy of three algorithms, namely "random forest (RF)," "support vector machine (SVM)," and "boosted
regression trees (BRT)" to prepare habitat suitability mapping of an invasive species, Alhagi maurorum,
and its potential biological control agent, Aceria alhagi. Location of this study was in Fars Province,
southwest of Iran. The spatial distributions of the species were forecasted using GPS devices and GIS
software. The probability values of occurrence were then checked using three algorithms. The predictive
accuracy of the machine learning (ML) techniques was assessed by computing the “area under the curve
(AUC)” of the “receiver-operating characteristic” plot. When the Aceria alhagi was modeled, the AUC
values of RF, BRT and SVM were 0.89, 0.81, and 0.79, respectively. However, in habitat suitability models
(HSMs) of Alhagi maurorum the AUC values of RF, BRT and SVM were 0.89, 0.80, and 0.73, respectively.
The RF model provided significantly more accurate predictions than other algorithms. The importance of
factors on the growth and development of Alhagi maurorum and Aceria alhagi was also determined
using the partial least squares (PLS) algorithm, and the most crucial factors were the road and slope.
Habitat suitability modeling based on algorithms may significantly increase the accuracy of species
distribution forecasts, and thus it shows considerable promise for different conservation biological and
biogeographical applications.

Introduction
Camelthorn, Alhagi maurorum, is a 60–100 cm tall and glabrous undershrub1. It is native to Iran,
Pakistan, Afghanistan, Russia, Turkey, Iraq, Syria, Palestine, Cyprus, Egypt, India and China1. It has been
accidentally introduced in several regions of the world: South Africa has classified it as a category 1
invasive species; Australia has declared it a state-prohibited weed in Victoria; and the USA has
categorized it as a poisonous plant in seven states2. Alhagi maurorum is currently recognized as a
harmful species in Iranian agricultural ecosystems. Around the world, invasive weeds have had an
influence on both controlled and field regions3. An instance of an invasive plant that prominently has
caused issues in a variety of ecosystems in North America's dry climate is Alhagi maurorum4. Because
the invasive species is not native to the new environment, it might drive out other species that have been
naturally occurring in that region and hinder their development and reproduction5. In reality, invasive
species are those that grow quickly outside of their natural habitat. Through resource competition,
hunting, and parasitic illnesses, they may have reduced the number of native species5. On the other hand,
as vegetation has grown, native species now make up a significant portion of the pasture and field
vegetation6. Native vegetation produces certain natural disturbances in the living environments of people,
plants, and animals in addition to not being beneficial to the nearby living things7. Invasive plants can
have significant negative economic effects, decrease biodiversity, and change how ecosystems work8.
Therefore, the central emphasis of rehabilitation study in invader-dominated ecosystems is on invasive
plant management. Invasive species are a major threat to biodiversity9. The most prevalent and prolific
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invasive species in invading ecology are plants10. Studying and controlling species that have been
introduced outside of their natural habitats is a part of invasion science11. There is no denying that some
of these imported species have an influence on the existence and abundance of other species, as well as
the potential for significant economic repercussions12. Mechanical and chemical approaches for
controlling invasive species are costly13. For instance, it is estimated that pesticides for use against
exotic weeds in farming alone cost £90 million in the United Kingdom each year14. More significantly,
since control measures are frequently required for an extended length of time, chemical and mechanical
approaches are not considered as sustainable over the longer period15. Classical biological control, a
deliberate application of natural enemies from the native range to control the weed in its introduced
range, may offer a long-term, self-replicating, and successful control, particularly in more delicate
situations16.

Aceria alhagi Vidović & Kamali, an important species of eriophyid mite, has recently been reported as a
promising candidate for the biological control of Alhagi maurorum17. Aceria alhagi was able to impose
significant reductions in plant biomass (26%), seed production (95%) and photosynthesis (53%) of
camelthorn and thus it would diminish the weed’s competitive ability and long-distance spread via
seeds17. However, little particular research has been conducted on Aceria alhagi, despite the fact that it is
well known as a crucial species for the management of camelthorn.

For creating habitat suitability maps for invasive species, machine learning approaches including
"Random forest (RF)", "Support vector machine (SVM)", and "Boosted regression trees (BRT)" have been
widely utilized recently18–20. It enhances the use of computer models with geographic information
systems (GIS)21. Additionally, the use of GIS technology offers appropriate substitutes for the efficient
implementation of vast and intricate geographical information22. Several investigations into weed and
invasive plant assessment utilizing GIS and RS methods have been carried out23–25. Recently, the study
of biological invasion has shown a lot of interest in remote sensing technologies. Many features of
remote sensing technologies are advantageous for identifying, mapping, and keeping an eye on
invaders26. The study of annual and long-term patterns in biological invasion is complicated by spatial
heterogeneity. However, because of its wide scope, remote sensing has the ability to provide the
necessary data27. Maps of the distribution of different plant and animal species, as well as of their
ecosystems, landscapes, bio-climatic conditions, and invasion-promoting factors, have already been
created using GIS and remote sensing13,28. The control of invasive species can now be performed much
easier by machine learning technologies and precision agriculture (PA)29. An emphasis on strategies to
ensure the credibility of present and future practices has emerged in response to the increased focus on
the potential ramifications of machine learning and artificial intelligence30. The present focus in this
direction reflects the understanding that preserving machine learning's credibility may be essential for
assuring the acceptance and effective acceptance of AI-driven solutions and services31. This makes it
possible for researchers to explore fresh and highly productive ideas. Farmers may also obtain
knowledge and data to make the best choice for controlling invasive species by using smart farming and



Page 4/32

machine learning in information systems32. Modern technology, such as machine learning, provides
advanced methods for controlling invasive species33. Agriculture can experience economic prosperity by
utilizing these cutting-edge technologies. Due to the fact that agriculture has contributed significantly to
global economic growth, experts are now able to search for new, precise, high-productivity technologies34.
Farmers may gather information and data through the use of precise agriculture, particularly machine
learning, to make the best choice for high farm productivity. Modern technology known as precision
agriculture provides advanced methods for increasing farm productivity35. Agriculture can experience
economic prosperity by utilizing this cutting-edge technology. Precision agriculture has a wide range of
uses, including the detection of plant diseases, weed identification, agricultural yield production, and
plant pest identification36. The ML has a wide range of uses, including plant disease detection, weed
identification, agricultural yield production, and plant pest identification37,38. 

Models of invasion risk based on comparisons between biodiversity and environmental characteristics
have become more prevalent in an effort to predict future invasions. These models are frequently
introduced as a method for managers to identify treatments for preventing invasions in their early stages.
The majority of habitat suitability models for invasive plants, however, are based on occurrence data,
which has no known correlation with the effects of invasive species. As a result, developing HSMs based
on regions with high invasive abundance and diversity may be a more management-relevant method of
predicting invasion risk39. In southwest Iran, we contrast the presence and abundance of two distinct
species. In order to assess how well HSMs predict the risk of Alhagi maurorum as a native species in Iran
and as an invading species in the introduced range, we ascertain the degree to which occurrence records
indicate regions of high species abundance and compare suitability model findings. We also produce
Aceria alhagi habitat suitability maps to analyze the biological control mechanisms developed by HSMs.
This study examines the RF, BRT, and SVM algorithms in order to create maps of the habitat suitability for
Alhagi maurorum and Aceria alhagi in Fars Province, Iran. This study's major goal is to use maps of
habitat suitability to aid Aceria alhagi in its biological control of Alhagi maurorum. Additionally, it
demonstrates how the Aceria alhagi may be utilized as a biological control agent in the new regions by
comparing the parameters used in the research area (the native range) with the parameters of the areas
where the Alhagi maurorum is recognized as an invasive species. In order to detect where Alhagi
maurorum and Aceria alhagi are established in the study area and to better manage Alhagi maurorum,
maps of the suitability of Alhagi maurorum and Aceria alhagi need to be studied simultaneously. 

Material And Methods

2.1 study area
The Fars Province in Iran's southwest served as the study's location (Fig. 1). The study area is located
between latitudes 28°00′ 29′′ and 31°00′ 36′′ N, and 52°11′ 32′′ and 54°11′ 49′′ E. Iran has 90 million ha of
pastureland, and Fars province is accounting for 15% of that total40. Fars Province is one of the largest
and most densely populated. A variety of climates exists in this province, making it feasible to cultivate
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crops all year round41. There is around 1,200,000 ha of the land used for agriculture in Fars province42.
Almost every sort of weather and climate, including cold, mountainous, temperate, semi-arid, desert,
forest, and semi-tropical climates, can be found in this province43. This allows for the cultivation of a
variety of agricultural crops in this province under various climatic conditions43. The variation of
topography in Fars has had an impact on the types of flora that grow there44. Therefore, the elevation
range of the study area is 270 to 3491 m. The mean annual temperature ranges from 3 to 19°C, and the
mean annual rainfall ranges from 141 to 637 mm. Since the geography and climatic diversity of the
studied region clearly demonstrate the importance of determining the habitat's suitability, the current
study intends to throw additional light on this topic.

2.2. Methodology
In this study, 13 variables that impact the growth and development of Aceria alhagi and Alhagi maurorum
were taken into account. Elevation, slope degree, slope aspect, plan curvature, distance from rivers,
annual mean temperature and rainfall, pH, EC, clay%, silt%, and sand% were among the parameters.
Additionally, a global positioning system (GPS) device was used to track the existence of Alhagi
maurorum and Aceria alhagi throughout the province of Fars (Fig. 2). At each location where the species
was present, soil samples were also collected in the same manner. The Alhagi mauorum data was split
into two portions, 70% and 30%, which were utilized for the modeling process and the models'
assessment, respectively. For data on Aceria alhagi presence, the same process was repeated. In this
study, habitat suitability maps were created using RF, BRT, and SVM machine models. The accuracy of
the models was assessed using the "receiver operating characteristic (ROC)" curve, and the best model
was chosen. A flowchart has been created for this study, to put it briefly (Fig. 3).

2.3. Creating Study Layers
A digital elevation model (DEM) from the "Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER)" with a resolution of 30 m was used to extract the topographic parameters, such as
slope degree, aspect, and elevation (Fig. 4A, B and C) (Chen et al., 2022). Additionally, a plan curvature
map with a spatial resolution of 30 meters was created using the DEM as a supplementary characteristic
(Fig. 4D).

Due to the presence of Aceria alhagi and Alhagi maurorum at various locations, the samples of soil were
analyzed for a thorough investigation of the chemical and physical characteristics of the soil. A
hydrometer was used to test the soil's physical characteristics (its percentages of sand, silt, and clay)45. A
pH meter was used to measure the pH of the soil. A conductivity meter was used to analyze the EC46. By
using the IDW ("inverse distance weight") method, the values for each physical and chemical
characteristic (sand, silt, clay, pH, and EC) were calculated for each soil sample. The data points were
then assembled in Arc-GIS 10.8 to plot and analyze each variable. The soil layers were finally constructed
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using the IDW algorithm, point maps, and study area (Fig. 4E, F, G, H and I). For assessing quantified
climatic and ecological data, "inverse distance weighting (IDW)" is among the best methods47. When the
IDW optimizes the size across locations, the values for each atypical site are based on the weighted sum
of the nearby weather stations48.

Additionally, the mean annual rainfall and temperature were calculated from meteorological stations
gathered throughout the Fars province. Using IDW, the representative value for each was determined
(Fig. 4J and K). Using a topographic map of the Fars province, a raster map showing the "distance from
rivers" and "distance from roads" was produced by ArcGIS 10.8's Euclidean distance algorithm. (Fig. 4L
and M).

2.4. Machine Learning Algorithms

2.4.1. Random forest (RF)
The RF is a supervised learning technique that classifies data using multiple trees49. A large portion of
the decision trees are produced by the RF algorithm as a result of the replacement and ongoing
modification of the target's influencing elements. Decisions are then made by combining all of these
trees50. Three user-defined parameters make up the RF: the number of variables utilized in each tree's
creation, which represents the capacity of each independent tree; the number of trees inside the RF; and
the minimum number of sensor nodes51. With stronger independent trees and a lessening correlation
between them, RF prediction power rises52. In this approach, a bootstrap tree is grown using 66% of the
data, and then a regression analysis is injected at random as the tree grows to split a node. Additionally,
the fitted tree is assessed using the other 33% of the dataset53. The program makes numerous iterations
of this procedure before using the mean of all anticipated values as its final conclusion. The mean
decline in precision and the average drop in Gini (a measurement of how inputs are distributed
throughout a population) are two parameters in this model that are used to rank each of the important
components. When deciding the relative importance of effective factors, the average decrease accuracy
(ADA) is more useful than the average decrease Gini index, particularly when considering how
environmental factors interact12,54.

2.4.2. Boosted Regression Trees (Brt)
By integrating multiple models, BRT is one of the several methods that can help a single model to
perform better by integrating multiple models55. Regression and boosting are the two modeling
techniques used by BRT56. Boosting is a technique for improving model accuracy, and consequently
building, combining, and averaging several models is more efficient and precise than using a single
model alone57. The single decision tree's biggest flaw is that its comparatively poor data processing is
remedied by BRT. For BRT, only the initial tree from the datasets is formed; subsequent trees are
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developed using the leftover training data from the tree that came before them58. Trees are not generated
on all the training data; rather, they use a subset of it. The fundamental principle behind this approach is
to combine a number of weak prediction models with high predictive error to get strong predictions with
low predictive error59.

2.4.3. Support Vector Machine (Svm)

SVMs were created for both problems involving regression and classification21. Originally introduced by
Noble60, SVMs for classification seek to identify the hyperplane that maximizes the margin dividing the
hyperplane among two types of data. The nearest point from either class is as far away from the
hyperplane as possible. A soft margin approach was given for the situation when the categories are not
distinguishable by a linear border, and it permits some locations to be on the incorrect end of a margin61.
The user-defined variable C controls how often these incorrect classifications occur. SVMs' high level of
popularity is largely due to their capacity to represent intricate, non-linear connections62. Therefore, the
dataset's items are projected onto a high-dimensional space using a nonlinear feature value (often a
kernel function). In this expanded feature space, the best separating hyperplane is built, which results in a
non-linear decision border in the original space63. As a result, numerous techniques to enhance SVMs for
multi-class categorization have been suggested64. The so-called "one-against-one" strategy was used in
this instance. For a wide variety of classification problems in the current world, SVMs produce great
prediction accuracy. For categorization, no distributional presumptions are necessary65.

2.5. Partial Least Squares (Pls)
PLS streamlines and combines information from multiple regression and principal component
analysis66. Finding Y (reaction) from X (latent) and defining the common organization of the two
variables are the goals of PLS67. The best way to assess the relative relevance of variables in a model is
through PLS regression68. Multiple regression is frequently replaced by this regression technique because
it might be problematic or because there is a strong connection between the variables69. PLS may also
provide better accuracy than other techniques. PLS is often regarded as the gold standard for parameter
evaluation70. This algorithm's framework presupposes that the function of the independent variables at a
place explains the value of the dependent variable there. They are also capable of accurately predicting
the value of the dependent variable at subsequent times71.

2.6. Algorithms Evaluation
To validate algorithms, 30% of species presence sites that were not part of the modeling process were
utilized. The accuracy of the final habitat suitability maps created by three machine learning algorithms
was assessed by utilizing the "receiver operating characteristic (ROC)" curve and calculating the "area
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under the curve (AUC) " Thus, the best model has the highest AUC, as well as the values (AUC) range from
0.5 to 172. In general, AUC values of 0.9-1, 0.8–0.9, 0.7–0.8, 0.6–0.7, and 0.5–0.6, respectively, imply
excellent, very good, good, moderate, and poor classes73.

Results And Discussion

3.1. Effective factors collinearity test
In general, the multi-collinearity test of parameters is crucial for a habitat suitability map74. Multi-
collinearity denotes the existence of a linear connection between parameters. In this study, the “tolerance
(TOL)” and “variance inflation factor (VIF)” indices are employed to check for multi-collinearity when the
values of TOL and VIF are 0.1 and 5 or 10, suggesting multi-collinearity between independent variables,
respectively75,76. Table 1 displays the findings of the multi-collinearity analysis performed on the 13
habitat suitability parameters employed in this study. This research used 13 variables, including
elevation, slope, aspect, plan curvature, silt%, clay%, sand%, distance from rivers, distance from roads, EC,
pH, mean annual rainfall, and mean annual temperature. As a consequence, three models could utilize
these factors to create the final habitat suitability map.

Table 1
Collinearity Test of Effective Factors

Factors Tolerance VIF

Elevation (m) 0.23 4.35

Distance from rivers (m) 0.78 1.39

Distance from roads (m) 0.37 2.68

% Sand 0.25 4.97

% Silt 0.28 4.96

Slope degree 0.80 1.25

Mean annual temperature (oC) 0.20 4.98

% Clay 0.19 4.99

Plan curvature (100/m) 0.93 1.07

EC (dS/m ) 0.72 1.38

pH 0.80 1.24

Mean annual rainfall (mm) 0.45 2.22

Aspect 0.95 1.05
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3.2. Algorithms For Determining Habitat Suitability

3.2.1. Aceria alhagi
Three models—RF, BRT, and SVM—were utilized to create the Aceria alhagi habitat's suitability map in the
province of Fars (Fig. 5). Figure 5A shows the outcomes of RF algorithm modeling based on Aceria alhagi
presence and non-presence locations and 13 influencing factors. The output of this model demonstrates
that Aceria alhagi prefers the northern portion of Fars Province which is characterized by mean annual
temperature of 3.82–7.70°C and, elevation of 1740–3491m. In other words, the region with the best
habitat for Aceria alhagi also has the coldest climate. The RF model has been assigned the
classifications of low (30.40%), moderate (30.09%), high (21.86%), and very high (17.06%) as the final
output of the models is separated into four groups (Fig. 6A).

The BRT model is another algorithm that was applied to assess the habitat suitability of Aceria alhagi.
This model's final outputs are essentially identical to RF (Fig. 5B). According to the BRT model, Aceria
alhagi's habitat is not as suitable in the southern part. In fact, there are a few remote areas in the
southwest with ideal habitats. According to the categorization used to assess the habitat suitability of
Aceria alhagi, the low, moderate, high, and very high classes received values of 35.63%, 30.02%, 21.28%,
and 13.07%, respectively (Fig. 6B).

The third model that was utilized in this study to assess the compatibility of the Aceria alhagi habitat was
the SVM model. Figure 5C displays the SVM model's findings for four classes. The result of this model
demonstrates that the low, medium, high, and low classes are essentially identical across the various
areas of Fars Province. As a result, habitat suitability is present in the low 36.63%, moderate 24.65%, high
17.94%, and very high 20.78% classifications (Fig. 6C).

3.2.2. Alhagi maurorum
Three models of RF, BRT, and SVM were also employed to calculate the attractiveness maps of the Alhagi
maurorum habitat. Figure 5 shows the outcomes of the models. The RF algorithm's findings revealed that
the southeast, southwest, northeast, and northwest parts of Fars Province are the species' preferred
habitats (Fig. 5D). Additionally, the RF model's final map was separated into four classes: low 25.19%,
moderate 33.58%, high 28.70%, and very high 14.56%. (Fig. 6D).

In order to more accurately assess the findings, three comparable models for Alhagi maurorum were
utilized in this work. The BRT model was utilized for this purpose as well, to determine if the habitat of
Alhagi maurorum was suitable, and its findings were given in four groups (Fig. 5E). The outcomes of the
BRT model used to identify the places in Fars Province that have a high habitat suitability for Alhagi
maurorum are essentially identical to those of the RF model, with the exception of a portion of the
northern areas. Additionally, the BRT algorithm's classification result revealed that the low 30.11%,
moderate 27.46%, high 27.87%, and very high 14.56% classes have habitat suitability (Fig. 6E).
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In Fig. 5F, the SVM model's findings are presented. It is evident that the Alhagi maurorum habitat
suitability areas in the Fars Province based on the SVM model are comparable to the BRT model, with the
exception being that the northeastern areas do not exhibit high habitat suitability. This model's output
was similarly split into four groups, with low, moderate, high, and very high classes being given the values
24.05%, 27.90%, 26.43%, and 21.62%, respectively (Fig. 6F).

Researchers have recently turned to habitat suitability modeling as a reliable and practical method for
managing the habitats of various pests, insects, and plant species77. Researchers compared the
effectiveness of seven data analysis strategies for forecasting the spread of China berry (Melia
azedarach L.) in a study using three standard metrics for evaluating model accuracy. The RF model
offered the maximum degree of accuracy in creating a climate niche model because of its considerable
durability and stability. According to the RF forecast findings, M. azedarach would profit from future
changes in climate by expanding its range, which has a propensity to move north and west of where?78.
In a different investigation, it was proven that RF and BRT performed better than decision trees, MaxLike,
and Lasso overall79. Variable significance and complicated variations in reaction to the resolution play a
key role in how well models work (REF). Wunderlich et al.79 encourage researchers to regularly investigate
a variety of algorithms, parameters, and frequencies because RF and BRT are strongly advised but could
necessitate bias correction techniques.

3.3. General Discussion
Except for Bioclim, all "machine learning and regression" models produced accurate predictions,
according to the present results. "Random Forest (RF)" outperformed the other investigated models with
99% AUC and 93% TSS, followed in decreasing order by "Boosted Regression Trees (BRT)", "ensemble,"
"Generalized Additive Model (GAM)," "Support Vector Machine (SVM)," and "Generalized Linear Model
(GLM)"76. Our findings also showed that RF and BRT models are better able to simulate the dispersal of
the Aceria alhagi and Alhagi maurorum species. Additionally, for remote sensing-based intrusive SDM, the
application of machine learning techniques like the RF and BRT algorithms is absolutely crucial. Similarly,
it had been shown in other studies that BRT, Maxent, MLP, RF, and SVM showed excellent performance,
with RF being the best at predicting the distribution of Bombus formosellus80.

Prosopis juliflora is anticipated to spread to more regions in Ethiopia, according to Sintayehu et al.81 who
used a variety of algorithms including RF, BRT, SVM, and GLM. They stressed that P. juliflora is expected
to spread rapidly to numerous drylands in Ethiopia, including major areas in "Afar", "Oromia", "Southern",
"Dire Dawa", "Somalia", "Amhara", "Tigray", and "Gambella". This will reduce agricultural output and pose a
danger to the region's biodiversity. The invasive species' ongoing range expansion has already had a
negative impact on ecosystem services, the economy, and biodiversity. Many pastoralists across the
world, in particular, rely on natural resources and other natural ecosystems for their livelihood to
survive82. We need coordinated and extensive actions due to the existing situation and probable future
increases in the range and abundance of invasive species worldwide. The study's findings will also aid in
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the early discovery and control of invasive species in prospective habitat-friendly niches. Based on our
research, we recommend cooperation amongst various stakeholders, research institutes and authorities
for early detection and eradication efforts at the national level to create and apply comprehensive
biological management of Alhagi maurorum by Aceria alhagi that would minimize the adverse effects by
reducing camelthorn’ size and seed production17. Although Alhagi maurorum is native to Iran, the
research findings are extremely helpful for areas where this species is invasive. According to the findings
of another study, the RF model outperformed other methods, and it is useful for mapping the
proportionate covering of species distribution in agro climatic settings like those of the Afar Region (The
Afar Region, previously designated as Region 2, is the home of the Afar people and a local state in
northeastern Ethiopia). The GLM, the GBM-BRT, and the DNN performed poorly when considering
specificity, precision, kappa, and the AUC, although the GBM and the SVM only slightly less accurately
predicted outcomes83. However, if a substantially greater quantity of data (i.e., the response variable) is
utilized, if there is a lack of training data, or if the research is carried out in a different agroecological
environment, MLTs' performances may change (REF).

The results of research by Mudereri et al. (2020)84 show that RF, CART, SVM, BRT, GLM, and FDA have
been used to predict the likelihood of Striga (Striga asiatica) incidence in Zimbabwe using multi-source
bio - climatic and remotely sensed data. It has been determined that RF, CART, SVM, and the wide range of
communication processes yield the most accurate Striga incidence prediction results in Zimbabwe.
Additionally, several SVM kernels were utilized to generate GPMs with satisfactory performance. Their
performance, however, lags below RF performance. In order to create the habitat suitability model,
Pourghasemi and Rahmati (2018)85 used a variety of models, including the "generalized linear model
(GLM)", "generalized additive model (GAM)", "classification and regression trees (CART)", "boosted
regression trees (BRT)", "multivariate adaptive regression spline (MARS)", "random forests (RF)", "support
vector machines (SVM)", "artificial neural networks (ANN)", "maximum entropy (Maxent)", "penalized
maximum likelihood GLM (GLMNET)", "domain, and radial basis function network (RBF)". Their
distribution model identified basins as having the highest likelihood of harboring invasive Fallopia
species. The Southern Slovak Basin and the Koice Basin have the greatest potential for the propagation
of this species.

3.4. Choosing The Optimal Algorithm
As was mentioned in the preceding section, three algorithms—RF, BRT, and SVM—were applied in this
work to predict habitat suitability of Aceria alhagi. Based on ROC-AUC, machine learning algorithms were
assessed. The results demonstrate that RF (89%), BRT (81%), and SVM (79%), respectively, were more
accurate at predicting the events when the algorithms were applied to create the map of suitable Aceria
alhagi habitats (Fig. 7 and Table 2). In other words, the SVM model had good accuracy, whereas the RF
and BRT models had very good accuracy.
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Table 2
Evaluating algorithms and selecting the best algorithm for Aceria alhagi based on the AUC

Test Result
Variable(s)

Area Std.
Errora

Asymptotic
Sig.b

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

BRT 0.816 0.053 0.000 0.712 0.921

RF 0.890 0.044 0.000 0.803 0.977

SVM 0.790 0.059 0.000 0.674 0.906

A habitat suitability map of Alhagi maurorum was also created using machine learning techniques, and
the outcomes were quite similar. The ROC curve and area under the curve (AUC) findings show that the
RF, BRT, and SVM algorithms have accuracy rates of 89%, 80%, and 73%, respectively (Fig. 7 and Table 3).
As a result, the RF and BRT models had very good accuracy, while the SVM model had good accuracy. In
general, a key tactic in the process model is the assessment of estimated outcomes86. As a standard
procedure, the ROC curve is used to evaluate the accuracy of diagnostic tests87. Area under the curve
(AUC) values for the ROC technique range from 0.5 to 1.088. If the constructed model is unable to forecast
the existence of species more correctly than probability, the AUC is equal to 0.5. In comparison, the
prediction has an AUC value of 1, which is ideal65. When training the habitat suitability models, the AUC
value takes the species pixels into account89. Using existing species in the training phase, this approach
was utilized to assess the accuracy of habitat suitability maps. However, in order to calculate accuracy in
the validation stage, we employed species that weren't used in the training stage90. What is evident is that
in recent years, ROC-AUC has been widely employed to assess habitat suitability maps91.

Table 3
Evaluating algorithms and selecting the best algorithm for Alhagi maurorum based on the AUC

Test Result
Variable(s)

Area Std.
Errora

Asymptotic
Sig.b

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

BRT 0.800 0.043 0.000 0.716 0.884

RF 0.894 0.031 0.000 0.834 0.955

SVM 0.733 0.048 0.000 0.640 0.826

3.5. Importance Of Factors By Pls
Alhagi maurorum and Aceria alhagi are threshold-dependent processes influenced by a wide array of
useful parameters92. Therefore, in order to conduct a habitat suitability evaluation, it is required to
determine the parameters that are effective for Aceria alhagi and Alhagi maurorum, as well as their
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significance among the conditioning factors69. A greater understanding of the impact that each
influencing factor has on the overall evaluation of habitat suitability was achieved by developing the PLS
approach after training data selection. For example, Fig. 8A and B show the 13 variables for Aceria alhagi
and Alhagi maurorum habitat suitability models in the correct order of significance93,94. The findings
show that, in that order, roads, slope, clay, and temperature are the most important variables for Aceria
alhagi. However, plan, aspect, rain, and elevation, were of the least consequence (Fig. 8A).

The PLS algorithm also looked at the parameters that were important in the Alhagi maurorum habitat
suitability modeling process. The findings revealed that the three most important variables were road,
slope, and EC. On the other hand, the suitability of the Alhagi maurorum's habitat was not significantly
impacted by rain, silt, or aspect, respectively (Fig. 8B).

In the current study, the abundance of Aceria alhagi and Alhagi maurorum was substantially greater close
to the roads. The findings of Delgado et al. (2017)95, who discovered early indications of relatively high
Aceria alhagi abundance near roads and in the area of road underpasses, are consistent with our study.
This outcome was connected to the vegetation around the road and the presence of ticks. Another study
established that closer to road borders than farther away, increased tick abundance was seen96. Along
remote road edges with little traffic, adult ticks were seen acting aggressively. Ticks may have a better
chance of finding hosts if they spend a lot of time on roadside vegetation. Our findings also suggest that
roads may contribute to an increase in tick development and transmission. Since roads act as a barrier to
stopping tick movement, Hornok et al. (2017)97 show that roads may influence disparities in tick species
composition and tick-borne pathogen frequency along their two sides. The slope is a significant factor
that determines whether a certain tick habitat is suitable. A study indicated that younger ticks are sparser
on lower slopes, while older ticks are more numerous on higher slopes98.

One of the main factors contributing to the degradation of plant ecosystems is human disturbance. The
amount of the Alhagi maurorum increased as the distance from the highways shrank in this investigation
as well. According to Jahantigh and Pessarakl )2021(99 Alhagi maurorum distribution expanded as the
distance from a road decreased. Furthermore, it is crucial to consider how the slope component affects
the distribution of Alhagi maurorum. Water runoff and the spread of invasive plant seeds are both a result
of the land's slope100. As a result, in this study, it is also determined that Alhagi maurorum is more
abundant on low slopes.

3.6. The Perspective Of Hsms And Mlts

In general, it is evident that Aceria alhagi has been shown by Bijani et al. (2021)17 to act as a potential
biological control by preventing the growth and development of Alhagi maurorum. The main goal of this
research was to find a way to extend the control of Alhagi maurorum such that even the threat of its
appearance could be used in areas where it is known to be an invasive species. When it comes to
managing invasive plants, habitat suitability models (HSMs) and species distribution models (SDMs) are
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often utilized nowadays101,102. As a result, a novel approach in this area was to apply habitat suitability
modeling.

By identifying the environmental factors limiting a species' distribution, HSMs seek to define the
"envelope" that best captures the species' geographic range boundaries103. They are created by
connecting the distributions of extant species to their current surroundings. By extrapolating these
associations to certain environmental change scenarios, future species' natural geographical ranges are
projected104. Measures of climate (such as temperature and rainfall), landscape structure (such as
connectivity indices), vegetation heterogeneity (such as ecotone cover), resources (such as insect
availability), soil characteristics (such as physical and chemical properties), the topography of an area
(such as elevation, slope, aspect, and so on), and biotic information are frequently used as variables for
habitat suitability modeling of plants105.

Environmental variables can exert direct or indirect effects on species and are optimally chosen to reflect
the three main types of influences on the species: (1) limiting factors, defined as factors controlling
species’ eco-physiology (e.g., minimum winter temperature or high summer temperatures) or appearance
(e.g., competition and facilitation); (2) disturbances, defined as all types of perturbations affecting
environmental systems (e.g., fire frequency); and (3) resources, defined as all materials that can be
assimilated by organisms (e.g., availability of seeds or insects). The environmental data related to these
three main types of influence depict the environmental niche of the species106. The environmental
information pertaining to these three primary categories of effect shows the species' environmental
niche103. The ecological niche is often multidimensional, and different aspects may be significant at
various geographical scales. In the patterns of habitat utilization, these scale-dependent interactions
between niche traits and plant species distributions frequently produce hierarchical structures107.

SDMs are very important, although the field of computer science has paid them very little attention.
Although mapping habitat appropriateness using HSMs is our main objective, our other objective with
this effort, we hope to do two things: first, provide computer scientists with the knowledge they need to
understand the SDM literature and, second, create ML-based SDM algorithms that are beneficial to the
environment. These characteristics could be extremely useful in ecology and agriculture, with potential
future uses in plant management and conservation. The method may be used, for instance, to model
distribution changes brought on by climate change. Additionally, it represents a novel strategy in relation
to the many models mentioned in the literature.

Machine learning technology has recently been created, particularly for SDMs108. Numerous studies
attest to the remarkable accuracy of algorithmically generated habitat suitability maps109–111. From our
perspective, the main issue with the majority of these comparisons is that they only validate model
performance (defined as the match up among both predicted and observed species' distributions) against
the needs under current conditions, despite the fact that most models are approximately accurate in
trying to project distributions under present environmental conditions. However, highly diverse model
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structures may be the origin of what appear to be minor variations in estimates of present distributions,
leading to unsettlingly divergent projections for novel conditions.

The overall conclusion is that Alhagi maurorum can be biologically controlled in both its native and
invasive ranges by introducing habitat suitability maps. In fact, the findings of this study add to those of
Bijani et al. (2021)17. They found that the Alhagi maurorum was controlled by the Aceria alhagi. Now that
we have created maps of habitat suitability, we can extend the reach of this biological control. By
annihilating the inflorescences and branches of Alhagi maurorum, Aceria alhagi has the ability to stop its
growth. We may now considerably more successfully accomplish our aim of controlling Alhagi
maurorum by taking into account the habitat suitability maps of both Alhagi maurorum and Aceria
alhagi. We can steer Aceria alhagi in that direction by using maps that show the favorable and vulnerable
locations of the Alhagi maurorum habitat. Since Aceria alhagi can control Alhagi maurorum, it is
predicted that Alhagi maurorum would be more controlled in regions with greater Aceria alhagi habitat.
The Aceria alhagi habitat suitability map also conveys the idea that by taking crucial aspects into
account, we may expand the Aceria alhagi range and in order to control Alhagi maurorum. For instance, in
this study, roads, slope, clay, and temperature were the most significant elements; thus, the Aceria alhagi
may be produced by taking these aspects into account. Furthermore, this approach could be extensively
explored in regions where Alhagi maurorum is regarded as an invasive species. In other words, the
regions that need to be managed are identified by creating a map of the habitats of Alhagi maurorum and
Aceria alhagi.

Conclusion
In this work, we validate the claim that adopting HSMs approaches, particularly machine learning
technologies, can result in considerable increases in the accuracy of species distribution forecasts. Our
findings may have significant ramifications for area protection and management planning studies, in
which incomplete or biased field data should be appropriately supplemented by species distribution
modeling. However, our findings also demonstrated that algorithms enhance the habitat suitability
prediction's accuracy. Even though the Alhagi maurorum is native to Iran, it can damage a lot of crops.
According to our research, the distribution of these two species can be impacted by the slope of the land
and roads, since they have the biggest impact on the habitat suitability of the Alhagi maurorum and the
Aceria alhagi. Furthermore, our research has revealed that Aceria alhagi are more common in colder
climates, implying that Aceria alhagi could be used as a biological control in other colder climate areas
where Alhagi maurorum is recognized as an invasive species. Therefore, it is suggested to carefully
monitor the Aceria alhagi habitats in these areas to enable early detection and stop the invasion of Alhagi
maurorum. The outcomes of our models may assist in the development of management strategies to
postpone or stop invasions as well as help identify the environmental factors that encourage Alhagi
maurorum's propensity for invasion. Combination of habitat suitability models can offer insightful
information about the threat presented by invasive species, but as our research demonstrates, care
should be taken in choosing the environmental factors that are used to predict species dispersal.
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Figure 1

The study area in Fars province, southwest of Iran

Figure 2

Identification and sampling of Alhagi maurorum and Aceria alhagi (photos by Frazad Bijani)
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Figure 3

A flowchart of the habitat suitability modeling process
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Figure 4

Study layers for habitat suitability modeling: (A) slope; (B) aspect; (C) elevation; (D) plan curvature; (E)
sand percent; (F) silt percent; (G) clay percent; (H) pH; (I) EC; (J) annual mean rainfall; (K) annual mean
temperature; (L) distance from rivers; (M) distance to roads
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Figure 5

Habitat suitability maps for Aceria alhagi (RF "A", BRT "B", SVM "C") and Alhagi maurorum (RF "D", BRT
"E", SVM "F")
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Figure 6

Evaluation of the accuracy of the three algorithms based on the percentage value of each class: Aceria
alhagi (A): RF model; B: BRT model; C: SVM model); and Alhagi maurorum (D): RF model; E: BRT model; F:
SVM model)
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Figure 7

Evaluating algorithms and selecting the best algorithm based on the ROC curve: (A) Aceria alhagi; (B)
Alhagi maurorum
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Figure 8

Determining the most important factor based on the PLS algorithm: (A) Aceria alhagi; (B) Alhagi
maurorum
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