1 Lytle, N. K., Barber, A. G. & Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer 18, 669-680, doi:10.1038/s41568-018-0056-x (2018).
2 Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299-312, doi:10.1016/j.cell.2014.11.050 (2015).
3 Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199-204, doi:10.1038/s41586-019-1373-2 (2019).
4 Yamashita, T. et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012-1024, doi:10.1053/j.gastro.2008.12.004 (2009).
5 Yamashita, T. et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology 57, 1484-1497, doi:10.1002/hep.26168 (2013).
6 Matsumoto, T. et al. Proliferating EpCAM-Positive Ductal Cells in the Inflamed Liver Give Rise to Hepatocellular Carcinoma. Cancer research 77, 6131-6143, doi:10.1158/0008-5472.Can-17-1800 (2017).
7 Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 181, 236-249, doi:10.1016/j.cell.2020.03.053 (2020).
8 Zhai, W. et al. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat Commun 8, 4565, doi:10.1038/ncomms14565 (2017).
9 Brunt, E. et al. cHCC-CCA: Consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 68, 113-126, doi:10.1002/hep.29789 (2018).
10 Munoz-Garrido, P. & Rodrigues, P. M. The jigsaw of dual hepatocellular-intrahepatic cholangiocarcinoma tumours. Nat Rev Gastroenterol Hepatol 16, 653-655, doi:10.1038/s41575-019-0185-z (2019).
11 Sato, K. et al. Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology 69, 420-430, doi:10.1002/hep.30150 (2019).
12 Marquardt, J. U., Andersen, J. B. & Thorgeirsson, S. S. Functional and genetic deconstruction of the cellular origin in liver cancer. Nat. Rev. Cancer 15, 653-667, doi:10.1038/nrc4017 (2015).
13 Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260-264, doi:10.1038/nature19768 (2016).
14 Zhu, M. et al. Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease. Cell 177, 608-621.e612, doi:10.1016/j.cell.2019.03.026 (2019).
15 Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47, 505-511, doi:10.1038/ng.3252 (2015).
16 Lin, D. C. et al. Genomic and Epigenomic Heterogeneity of Hepatocellular Carcinoma. Cancer research 77, 2255-2265, doi:10.1158/0008-5472.Can-16-2822 (2017).
17 Wang, A. et al. Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat Commun 9, 894, doi:10.1038/s41467-018-03276-y (2018).
18 Xue, R. et al. Genomic and Transcriptomic Profiling of Combined Hepatocellular and Intrahepatic Cholangiocarcinoma Reveals Distinct Molecular Subtypes. Cancer cell 35, 932-947.e938, doi:10.1016/j.ccell.2019.04.007 (2019).
19 Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538-542, doi:10.1038/s41586-019-1670-9 (2019).
20 Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173, 371-385.e318, doi:10.1016/j.cell.2018.02.060 (2018).
21 The Cancer Genome Atlas Research Network.Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 169, 1327-1341.e1323, doi:10.1016/j.cell.2017.05.046 (2017).
22 Chow, E. K., Fan, L. L., Chen, X. & Bishop, J. M. Oncogene-specific formation of chemoresistant murine hepatic cancer stem cells. Hepatology 56, 1331-1341, doi:10.1002/hep.25776 (2012).
23 Vicente-Dueñas, C., Hauer, J., Cobaleda, C., Borkhardt, A. & Sánchez-García, I. Epigenetic Priming in Cancer Initiation. Trends in cancer 4, 408-417, doi:10.1016/j.trecan.2018.04.007 (2018).
24 Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science (New York, N.Y.) 357, doi:10.1126/science.aal2380 (2017).
25 Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330, doi:10.1038/nature14248 (2015).
26 Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11, 817-820, doi:10.1038/nmeth.3035 (2014).
27 Gravina, S., Dong, X., Yu, B. & Vijg, J. Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 17, 150, doi:10.1186/s13059-016-1011-3 (2016).
28 Linker, S. M. et al. Combined single-cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity. Genome Biol 20, 30, doi:10.1186/s13059-019-1644-0 (2019).
29 Mazor, T., Pankov, A., Song, J. S. & Costello, J. F. Intratumoral Heterogeneity of the Epigenome. Cancer cell 29, 440-451, doi:10.1016/j.ccell.2016.03.009 (2016).
30 Zhang, Q. et al. Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut 68, 2019-2031, doi:10.1136/gutjnl-2019-318912 (2019).
31 Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance. Cancer cell 37, 471-484, doi:10.1016/j.ccell.2020.03.007 (2020).
32 Easwaran, H. et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 22, 837-849, doi:10.1101/gr.131169.111 (2012).
33 Yan, L. et al. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver. J Biol Chem 291, 4386-4398, doi:10.1074/jbc.M115.672931 (2016).
34 van Es, J. H. et al. Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Current biology : CB 9, 105-108, doi:10.1016/s0960-9822(99)80024-4 (1999).
35 Llabata, P. et al. Multi-Omics Analysis Identifies MGA as a Negative Regulator of the MYC Pathway in Lung Adenocarcinoma. Molecular cancer research : MCR 18, 574-584, doi:10.1158/1541-7786.Mcr-19-0657 (2020).
36 He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science (New York, N.Y.) 333, 1303-1307, doi:10.1126/science.1210944 (2011).
37 Xu, G. L. & Bochtler, M. Reversal of nucleobase methylation by dioxygenases. Nature chemical biology 16, 1160-1169, doi:10.1038/s41589-020-00675-5 (2020).
38 Liu, J. et al. Global DNA 5-Hydroxymethylcytosine and 5-Formylcytosine Contents Are Decreased in the Early Stage of Hepatocellular Carcinoma. Hepatology 69, 196-208, doi:10.1002/hep.30146 (2019).
39 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).
40 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
41 Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43, 11 10 11-11 10 33, doi:10.1002/0471250953.bi1110s43 (2013).
42 Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31, 213-219, doi:10.1038/nbt.2514 (2013).
43 Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22, 568-576, doi:10.1101/gr.129684.111 (2012).
44 Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29, 308-311, doi:10.1093/nar/29.1.308 (2001).
45 Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68-74, doi:10.1038/nature15393 (2015).
46 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164, doi:10.1093/nar/gkq603 (2010).
47 Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 12, e1004873, doi:10.1371/journal.pcbi.1004873 (2016).
48 Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571-1572, doi:10.1093/bioinformatics/btr167 (2011).
49 Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13, R87, doi:10.1186/gb-2012-13-10-r87 (2012).
50 Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10, 1523, doi:10.1038/s41467-019-09234-6 (2019).
51 Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science (New York, N.Y.) 353, 78-82, doi:10.1126/science.aaf2403 (2016).