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Deep learning-based TCP congestion control algorithm for disaster 5G environment 

Abstract 

 

The 5G mobile telecommunication network is becoming known as one of the finest 

communication networks for transmitting and controlling emergencies due to its high 

bandwidth and short latency. The high-quality videos taken by a drone, an incorporated 

Internet of Things (IoT) gadget for recording in a catastrophe situation, are very helpful in 

controlling the crisis. The 5G mm-Wave frequency spectrum is susceptible to intrusion and 

has beam realignment concerns, which can severely reduce Transmission Control Protocol 

(TCP) effectiveness and destroy connections. High-speed devices and disaster zones with 

multiple barriers make this problem significantly worse. This research offers a Deep-

Learning-oriented Congestion Control Approach (DLCCA) for a catastrophic 5G mm-Wave 

system to solve this problem. By analyzing the node's transmitted data, DLCCA predicts 

when the network will be disconnected and reconnected, adjusting the TCP congestion 

window accordingly. To accomplish this, the proposed approach estimates the bottleneck 

link's queue length using the average Round Trip Time (RTT) and its data collected across 

the connection.  

Consequently, the proposed approach can use this buffer size to examine the congestion state 

and differentiate it from the randomized loss situation. This would stop the window length 

from getting smaller, increasing the amount of data transferred and speeding up the 

recommended method. Additionally, DLCCA frees up bottleneck bandwidth. The research 

provides simulated tests for TCP DLCCA compared to Newreno, Cubic, Compound, and 

Westwood while sustaining a two-way connection under heavy load and a wide range of 

randomized loss rates using the networking simulation NS-2. Experimental results show that 

DLCCA performs better than other TCP variants and significantly boosts throughput. 

Keywords – Deep learning, Congestion control, 5G, Transmission Control Protocol 

 

1. Introduction to the congestion control algorithms under disaster 5G networks 

Numerous recent natural catastrophes, such as the tsunami in Asia, the magnitude 9.0 

earthquakes in Japan, and the storms in the United States, threatened human lives [1]. Natural 

disasters occur worldwide, taking lives and creating significant financial damages in addition 

to uncommon climatic phenomena. To reduce injuries, it is essential to identify a disaster as 

soon as possible and to communicate pertinent information accurately and quickly, such as 

critical circumstances and action directives, to everyone in the disaster zone [2]. 



The present equipment (such as Long-Term Evolution (LTE) ground stations and WiFi 

Access points) is damaged during a catastrophe, which limits the ability to transmit necessary 

data [3]. Unmanned Aerial Vehicles (UAVs) outfitted with the Internet of Things (IoT) 

devices for photography that rove and collect photographs of the catastrophe site using a 

small 5G base station are one solution to this problem [4, 5, 6]. UAVs capture high-definition 

video for crises and deliver it instantly to the transmission network via the 5G core 

architecture. This movie could be used to aid in rescue functions or broadcast to everyone in 

a crisis area. For successful usage in emergency administration and life-saving treatments, 

high-quality images must be sent without interruption (high connection) and with minimum 

latency. A viable use case for 5G networks is delivering urgent information since it can 

provide high-throughput (increased mobile connectivity) and rapid and precise answers 

(ultra-dependable and lower latency). 

5G networks employ the millimeter wave (mmWave) range, which has a wide frequency 

range, to enable high bandwidth [7]. Although mmWave has a huge capacity, it has a 

significant path deterioration and high-quality factor, necessitating beamforming methods. 

Fortunately, the 3rd Generation Partnership Project (3GPP) 5G standardization groups have 

investigated and suggested beamforming techniques for 5G networks. Additionally, there are 

several problems with wireless connections that reduce the effectiveness of data transfer, 

such as video broadcasting, latency spreading, and random failures. 

Unpredictable loss occurs if there are problems with wireless technology or periodic 

difficulties with hardwires [8]. The primary cause of communication failures is randomized 

losses, and errors can infect transmissions. Wireless media are more prone to transmission 

errors than wired media because of distortions and aging, significant bit error ratios, and 

concealed or exposed terminal difficulties. Disturbance, which alters the data supplied and 

causes the information to be conveyed to the destination incorrectly, is one of the 

fundamental problems with data transmission between receivers and transmitters [9]. A high 

bit error rate occurs in wireless and wired connections when there is an imbalance between 

the amount of transmitted and received data. It happens when there are problems with the 

medium linking the transmitters and receiver, such as optic lines, Asymmetric Digital 

Subscriber Lines (ADSL), or wireless telephones [10].  

The research continues to investigate a better variability that may improve the effectiveness 

of data transmission in wireless links, even though the abovementioned variants discern 

between randomization losses and congestion loss to some extent. The DLCCA, congestion 

control approach, is designed for disaster environments and increases performance. TCP 



DLCCA has made sender-side changes to the TCP Reno technique. Because standard TCP 

uses the segment's most significant sequenced number throughout the fast recovery 

procedure, it differs from other TCP variants. The end-to-end TCP technique, which delivers 

high efficiency over wireless connections, does not reduce the slow start criteria and 

congested intervals when a randomization loss is found. The standard TCP versions will 

perform worse in the presence of piggybacking streams and a large traffic requirement (A), 

where A is a defined congestion limit. In contrast to standard TCP, which merely employs a 

predefined bottleneck buffering limit, this research provides a TCP DLCCA. The study 

conducts extensive simulation testing to show the effectiveness, which is suitable for the two 

cases discussed above in deficient networks with randomized errors.  

The results of the study are summarized as follows:  

• The research looked at and concluded how TCP was affected by the terrible 5G 

mmWave platform and technical issues (beam misaligned and obstruction issues). 

• The research created a Deep Learning (DL) algorithm for the 5G mmWave network, 

which anticipates obstruction length based on motion, and location. It acquired the 

TCP transmitters' Signal Noise Ratio (SNR) values. The proposed DL model is 

independent of the User Equipment (UE) mobility concept and has an accuracy rate of 

90% or above for forecasting obstruction duration (TCP senders). 

• The proposed TCP employs the necessary congestion control techniques after 

distinguishing between a brief link disruption and actual congestion.  

• The research discovered that the proposed TCP performs superior to other existing 

TCPs in all configurations with the 5G mmWave environment, such as the disaster 

site (sports complex, smart city, inside, etc.). 

The rest of the article is listed in the following manner. The background and history of the 

congestion control models in 5G and disaster areas are listed in section 2. Section 3 deals 

with the proposed Deep-Learning-oriented Congestion Control Approach (DLCCA) are 

designed, and the outcomes and experimental findings are enumerated in section 4. The 

conclusion and the overall results of the proposed congestion control algorithm are shown in 

section 5.  

 

2. Background to the congestion control models in 5G and disaster areas 

The standard TCP variants are one of the network's main transport layer methods. There have 

been many different TCP versions proposed as an outcome. In this section, the research 



provides a brief overview of prior studies on three various kinds of TCPs: conventional 

TCPs, 5G mmWave TCPs, and machine-learning TCPs. 

2.1 Traditional TCP variants 

CUBIC, a congestion control technique for TCP, is now Linux's standard TCP technique 

[11]. The approach transforms the current TCP protocols' linear window expanding algorithm 

into a cubic proportion, making TCP more extensible over quick and long-range networks. 

Additionally, it makes it possible for flows with various Round-Trip Times (RTT) to share 

capacity more fairly by maintaining the window expansion independent of RTT. As an 

outcome, the congested window grows for each of those flows at the same pace. When the 

window is stabilized, CUBIC increases the window size violently and gently depending on 

how far away from the maximum it is. 

TCP Westwood, a transmitter-side improvement to the TCP congested window technique, 

beats TCP Reno on communication networks [12]. The increase is particularly noticeable 

with lossy channels since TCP Westwood employs end-to-end capacity forecasting to 

differentiate between the sources of traffic problems (congested highways or wireless link 

errors), which is a significant issue in TCP Reno. The main aim is to assess the regularity of 

the association by monitoring the rate of transmitting data at the TCP source. The 

approximation is utilized to determine the congestion duration and threshold following a 

congestion occurrence, following three repeated acks, or a timeout. The recommended 

method is particularly effective over wireless connections since current TCP systems 

typically misinterpret periodic failures caused by accessible radio difficulties for congestion, 

resulting in an exaggerated window reduction. Experimental research has revealed 

improvements in fairness and operational efficiency. 

The research has discussed several ways to improve TCP, including a novel timeout 

technique, a state-of-the-art congestion control technique that reduces the amount of extra 

network throttling a connection needs, and an altered slow-start technique [13]. The 

simulation results show that Vegas' implementation of TCP beats the Reno version of Unix 

by 37-71%, with one-fifth to one-half as few packets being resent. Furthermore, the research 

has demonstrated that Vegas is just as fair as Reno, is reliable, and has no detrimental 

consequences on latency. 

2.2 TCP in 5G mmWave network 

This study presents a unique TCP relying on a fuzzy controller to avoid performance 

deterioration in 5G networks [14]. Fuzzy sets are used in the novel system's congestion 

control phase to dynamically change the sending rate and lessen the consequences of 



obstructions. The theory's ultimate objective is to manage the transmitting rate depending on 

the system's condition to maximize performance. Furthermore, it tries for minimal latency 

and reduces the mean sending rate to avoid buffer exhaustion. 

Wireless networks cannot employ the current Multipoint TCP (MP-TCP) bottleneck control 

approach because it was designed for 5G networks. By distinguishing between loss due to 

congestion and radio channel failures, the RTT allows for various Veno congestion-

controlling approaches; a unique MP-TCP congestion-controlling technique is developed in 

this work to enhance support for wireless communication systems [15]. The proposed system 

employs a novel backlog estimation method that distinguishes between errors due to 

congestion and random wireless failures while accounting for the total buffering length. The 

Veno approach will use these estimations to balance the ideal RTT of each sub-flow and 

decrease the rearrangement delay. 

The most popular transport layer technology, TCP, affects by considerable performance 

decrement due to the fast-varying wireless environment of the 5G transmission. This study 

presents a congestion-controlling method that assures adequate performance in 5G systems 

without significantly impairing TCP fairness [16]. The recommended approach, a version of 

the high connectivity structure, Scalable TCP (S-TCP), delivers a more dependable efficiency 

than the available congestion control technique in 5G environments with only minor tweaks. 

2.3. TCP with learning algorithms 

As shown in this study [17], an intermediate router (like a phone provider) may detect the 

sending status of the TCP client linked to a TCP flow by only watching the TCP data. The 

research demonstrates how the intermediary router may predict the TCP client's Congestion 

Windows (cwnd_) size. The technique may be used to forecast the state of other receiver TCP 

connections. The approach for identifying the cwnd_ within a flow utilizing passive data 

acquired at intermediate nodes is a broad, deep learning-based potential advancement. 

The research recommends the Machine Learning Losses Differentiation Approach (ML-

LDA) for managing cellular TCP overload [18]. To distinguish between transmission failures 

brought on by congested and wireless link characteristics, ML-LDA employs Multi-Layer 

Perceptrons (MLP). In the occurrence of random errors, the congestion control doesn't tighten 

the additional traffic; instead, it classifies the source of losses depending on the learning 

results. The research incorporated the technique into the Linux kernels and created a test 

environment where package drops occur irregularly to verify the viability of the proposed 

network problems. 



The study suggests a congestion control method that ensures enough capacity in 5G 

mmWave systems and doesn't materially compromise TCP equality [19]. Through minor 

adjustments, the suggested method, a variation of Scalable TCP (S-TCP), a high-speed 

network architecture, offers a more reliable efficiency than the current TCP congestion 

management method in 5G systems. The suggested mmWave Scaling TCP (mmS-TCP) 

method achieved throughput up to 2.3 times greater than CUBIC in the simulated analysis. 

Machine Learning (ML) has successfully resolved complex and large-scale problems, and 

academics have begun to place less emphasis on rule-based approaches and more on ML-

based methods [20]. This paper presents an overview of current learning algorithms for end-

to-end congestion management. This work briefly introduces the relationship between 

learning algorithms and traffic management. The research reviews recent studies that employ 

machine learning to reduce congestion problems. These initiatives either help the operators 

work more effectively or help them choose the best action to minimize bottlenecks. 

Additionally, these studies use packet-based data to foresee or enhance network traffic 

control (congestion windowing size, round trip time, periods of acknowledgments, etc.). As a 

result, congestion control techniques will only be able to address obstruction concerns 

brought on by mobility problems. This problem will undoubtedly worsen, given the 

continuous mobility and multiple obstructions in the 5G mmWave catastrophe infrastructure. 

The study offers a deep learning framework relying on the movements, location, and gathered 

Signal Noise Ratio (SNR) information. 

 

3. Proposed Deep-Learning-oriented Congestion Control Approach 

The research discusses the 5G mmWave network concept and associated problems for the 

catastrophe area in this segment. The study presumes an uplink situation in which firefighters 

with digital news collecting cameras and Unmanned Aerial Vehicles (UAV) for 

comprehensive coverage of disaster locations send the footage to a broadcasting network or 

control units. They utilize the 5G connection to transmit high-definition videos to 

broadcasters and emergency operation centers in basic data form without compression. 

Nevertheless, a data speed of the order of Gigabits per second (Gbps) is necessary to send 

uncompressed pictures without latency, enabling a 5G mmWave system with a broad 

capacity. 

The beamforming technique is crucial for mitigating high route loss in 5G mmWave systems. 

The produced beams provide high antenna gain among the 5G ground system and the 

transmitter endpoint (transferring UE); nevertheless, it is susceptible to obstructions because 



of the beam's positional accuracy. Additionally, the reception gain is decreased, which lowers 

the SNR level, when the orientations of the generated beams connecting the sending and 

receiving stations are not aligned. The transmission UEs have unpredictable movement in the 

current 5G mmWave networking topology, which might cause connectivity issues. 

 

Fig. 1. 5G mmWave networking topology for a disaster area model  

The 5G mmWave networking topology for a disaster area model is shown in Fig. 1. In Line-

Of-Sight (LOS) settings, UAVs send videos of disaster events to a 5G ground station. Signal 

transmission in the mmWave range is impossible; nevertheless, Non-Line-Of-Sight (NLOS) 

is created because of obstructions like trees or structures [21]. Fast-moving UAVs and 

camera operators covering catastrophe scenes are more prone to encounter these issues. The 

UAV and ground Node Base (gNB) wavelengths are appropriately matched, and the 

transmitter SNR is vital. Still, the cameraman's and the gNB's wavelengths need to be in 

alignment, making it impossible to capture the signal. 

 

3.1 Deep learning architecture 

The proposed congestion control algorithm for mmWave systems has blocked and beam 

misalignment issues, which are discussed in this section. 



 

Fig. 2. A deep learning-based Transmission Control Protocol 

A deep learning-based Transmission Control Protocol is designed and depicted in Fig. 2. A 

deep learning model analyzes the user's mobility based on location information. The deep 

learning model has multiple processing layers, softmax, and classifier layers [22]. This 

approach is attached to the TCP agent, which is further used for transmitting a data packet 

and receiving an acknowledgment packet. The TCP sender includes a predicting unit, a 

mobility controller for handling speed and position data, a learner engine for training, and a 

TCP actor for figuring out TCP behaviors. Each element fulfills the following functions:  

Using data from the movement management and transmitters, a learning agent determines the 

size of a network problem, and a prediction determines whether a TCP Retransmission Time 

out (RTO) is a short-term or long-term disconnection based on the acquired data [23]. TCP 

agent manages the Current Window (cwnd_) value depending on the data anticipated by the 

prediction. At the same time, movement management is a component that offers the current 

position details and speed vectors of the TCP transmitter.  

Obstruction and beam misaligned result in intermittent connections being unplugged and 

initializing cwnd_ when a portable Transmitter transmits in the mmWave frequency. If there 

is an obstruction issue, the TCP user's movement will determine how long it takes to get past 

the obstruction and how long it takes to detach if the converse is true. The TCP operator can 

perform the following steps when a timeout occurs due to wireless channels. To keep the data 



throughput from falling after a brief network loss, the length of the cwnd_ is preserved. In the 

reverse situation, the cwnd_ is initiated and starts the congestion control stage. 

The TCP maintains the size of cwnd_ in beam realignment; however, because the beam 

scouring approach is used after 100–250 ms, the networking loss cannot last longer than 100–

250 ms. As a result, the system state is recovered in 100–250 ms, even in transmission errors. 

To put it another way, controlling the size of cwnd_. Nevertheless, when it notices a 

transmission loss occurrence, the standard congestion control activates the length of cwnd_. 

Considering the analyses above, the research arrives at the following conclusion:  

• If the connection problems last longer, the cause is network traffic or signal-

obstructing objects. Therefore, initializing the cwnd_ length is preferable.  

• A brief connectivity issue is a transitory signal disruption that may be quickly 

resolved. Therefore, it is preferable to keep the length of the cwnd_. 

• If the line of sight between the transmitter and the gNB is created and the connection 

still exists, the length of the cwnd_ is increased.  

• When a network congestion event happens, the suggested DLCCA predicts the length 

of the network problems to decide whether to retain the cwnd_ size. 

 

3.2 Congestion control approach 

 

The traffic management method's primary mechanism operates via the transport layer. These 

functionalities are modified according to the network's size [24]. The area allows for a 

detailed examination of the number of endpoints needed to complete specific tasks. 

A broadcaster and a receiver must be connected in the data transfer mechanism. A specific 

endpoint and the host establish a relationship. To monitor cwnd_ and Slow Start Threshold 

(ssthresh_), it sends the original message and awaits acknowledgment (ACK_). Cwnd_ and 

ssthresh_ are recognized when the receiver returns ACK_, and thus overcrowding is 

controlled. The misplaced stage is recovered if the receiver does not perform ACK_. The 

slow-start phase is created if cwnd_ is lower than ssthresh_. The congested mitigation stages 

are run whenever cwnd_ crosses ssthresh_. Until every communication is received, this 

procedure is repeated. 

3.2.1. Mathematical model 

The results of a traditional or original TCP simulation in a 5G scenario revealed that cwnd_ 

rose gradually and linearly. When cwnd_ exceeded ssthresh_, it was believed that cwnd_ 



would after that increase as each ACK_ value increased in line with a predetermined interval. 

Details of the generated model are discussed on how the theoretical architecture is visualized. 

• Enhanced slow start 

The improved Slow-Start (SS) stage is started after a lengthy delay or when data transfer 

begins in an anonymous 5G environment. At this point, the DLCCA begins scanning the 

network to determine the available capacity. Ssthresh_ is thought of as the indication to 

display the accessible ability to prevent methods that use more resources than are available. A 

retransmission timer can identify the slow-start period, which follows the recovery after 

transmission errors. The cwnd_ will be raised after each acknowledgment if it is less than or 

equivalent to ssthresh_.  

Consequently, an exponential increment will be made to the cwnd_ value. The transmitter 

must adhere to the algorithm's permissible requirements during this stage. Equation (1) 

demonstrates the slow start mechanism in which the sending rate is increased by one for 

every acknowledgment received. 𝑤𝑛𝑑𝑥 = 𝑤𝑛𝑑𝑥−1 + 𝑘         (1) 

The current sending rate is denoted 𝑤𝑛𝑑𝑥, the previous sending rate is denoted 𝑤𝑛𝑑𝑥−1, and 

k is either the preceding recognized remaining information chunk(s) or the Maximum 

Transmitting Units (MTU) of the target. The total amount of the prior pending recognized 

data portions is ACK_. The typical slow-start equation is given in Equation (2).  ∆𝑤𝑛𝑑𝑥 = 𝑚𝑖𝑛{𝐷𝐴𝐶𝐾, 𝑀𝑇𝑈}        (2) 

The maximum sending rate is set based on the total value of acknowledged data and the MTU 

value. The suggested slow-start equation is expressed in Equation (3). ∆𝑤𝑛𝑑𝑥 = 𝑚𝑖𝑛{𝐷𝐴𝐶𝐾, 𝑀𝑇𝑈} + 𝑤𝑛𝑑𝑥/𝑁      (3) 

The data acknowledged is denoted 𝐷𝐴𝐶𝐾, and the number of acknowledgments received in the 

current RTT is indicated N. Based on many performance criteria, the variable N is an integer 

ranging from 1 to 100. These elements include network performance, congested windows, 

number of lost packets, number of transmitted packets per time units, and number of 

packaging retrieved per time. The selection process aims to identify the component that 

significantly impacts the congestion-controlling mechanism. The best N is determined based 

on the RTT value. The results of the efficiency criteria decide what value is optimal. The 

requirements to establish the optimum result are the highest congestion window, optimal 

queue length usage, highest number of accepted and transmitted packets, highest 

performance, and most minor transmission loss. The severity of packet loss increases when N 



is greater than 8. This incident has an impact on the queue length. In an improved slow start, 

the value of N varies from 1 to 100 depending on these factors, the operational component 

findings, and the testing findings. 

• Enhanced congestion avoidance 

When both the cwnd_ level or the volume of transferred data surpasses the threshold, 

Congestion Avoidance (CA) augmentation is established. Therefore, when cwnd_>ssthresh_, 

the congestion minimization will improve cwnd_ by 1(MTU) per RTT [25-27]. The 

transmitter either possesses the cwnd_ quantity or the sent data that exceeds the balance owed 

to the transmission location. Because cwnd_ is constantly checked with ssthresh_, the 

congestion reduction method operates in tandem with slow-start. The slow-start phase will be 

generated if the cwnd_ is below or equivalent to ssthresh_; alternatively, the congestion 

control stage will predominate. But when different cwnd_ pathways allow different phases to 

occupy them, there is communication between these stages. When cwnd_>ssthresh, the MTU 

is calculated by the maximum transfer unit per round trip time. The typical congestion control 

formula is expressed in Equation (4). ∆𝑤𝑛𝑑𝑥 = 𝑀𝑇𝑈 𝑝𝑒𝑟 𝑅𝑇𝑇        (4) 

The incremental count for the next RTT is incremented by only one MTU per RTT. The 

suggested congestion control equation is written in Equation (5). 

 ∆𝑤𝑛𝑑𝑥 = 𝑀𝑇𝑈 𝑝𝑒𝑟 𝑅𝑇𝑇 + 𝑤𝑛𝑑𝑥/𝑁      (5) 

In contrast to the standard congestion management formula, congestion control reduced to 

this level can speed up the congested control procedure. Additionally, the congested control 

is optimized by reducing congestion minimization and increasing slow start. Therefore, as 

stated earlier, the suggested congestion control formula must be changed into a non-

homogeneous procedure. 

• Distinguish random loss from congestion loss 

The queuing length limit N is measured by DLCCA using the constant number A, equal to 

0.55. When the system employs this number, it outperforms some methods in terms of 

throughput, whereas when A values are more significant than 0.55, throughputs are equal. 

According to the standard TCP protocols, independent of the traffic situation for each 

customer separately, the cwnd_ for all senders is changed when several links transmit data. 

As a result, congestion periods for all customers may increase needlessly, lowering the 

number of delivered packets and worsening performance. This is seen with the two 

significant transmitting load that causes obscene network congestion. This prompted the 



network to examine standard TCP variants and think about independently changing the N-

threshold for the queue for each customer. 

The sender measures the minimal and averaged RTT, which DLCCA uses. Therefore, the 

system considers a variable queuing size limit of N based on the receiver's maximum 

advertised window and renders it more accommodating for each responder. This implies that 

the transmitter will calculate the median RTT and that its lowest is observed, resulting in 

various client information transfers. Using the revised limit, DLCCA determines the 

threshold (T) in Equation (6). 𝑇 = 𝑅𝑇𝑇𝑎𝑣𝑔𝑅𝑇𝑇𝑚𝑖𝑛          (6) 𝑅𝑇𝑇𝑎𝑣𝑔 is the aggregate of RTT measurements for all times, and 𝑅𝑇𝑇𝑚𝑖𝑛 is the shortest RTT 

any sender has ever experienced. The congestion control algorithm is shown in Algorithm I 

below. 

#Algorithm I 

If an ACK_ is received at the sender 

     𝑅𝑇𝑇𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑅𝑇𝑇𝑛𝑒𝑤, 𝑅𝑇𝑇𝑜𝑙𝑑} 

     𝑅𝑇𝑇𝑎𝑣𝑔 = ∑ 𝑅𝑇𝑇𝑖𝑁𝑖=1𝑁  

     Compute 𝐿𝑥 = (𝑅𝑇𝑇𝑎𝑣𝑔 − 𝑅𝑇𝑇𝑚𝑖𝑛) ∗ 𝑀 

     Compute 𝐿𝑚𝑎𝑥 = max{𝐿𝑥, 𝐿𝑜𝑙𝑑} 

     Compute 𝑁 = 𝑇 ∗ 𝐿𝑚𝑎𝑥 

     If (𝐿𝑥 > 𝑁 &&𝐴𝑐𝑘𝑚𝑎𝑥 > 𝑆𝑒𝑞𝑚𝑎𝑥) 

          If 𝑤𝑛𝑑𝑥 >  𝑟𝑤𝑛𝑑𝑥/2 

          𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ_ = min(𝑤𝑛𝑑𝑥, 𝑟𝑤𝑛𝑑𝑥) /2 

         Else 𝑤𝑛𝑑𝑥 =  𝑤𝑛𝑑𝑥 + 1 𝑝𝑒𝑟 𝑅𝑇𝑇 

          If 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ_ < 2 ∗ 𝑀𝑇𝑈 



               𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ− = 2 ∗ 𝑀𝑇𝑈 

          End if 

          𝑤𝑛𝑑𝑥 = 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ_ + 3 ∗ 𝑀𝑇𝑈 

          𝑆𝑒𝑞𝑚𝑎𝑥 = max{𝑠𝑒𝑛𝑡 (𝑆𝑒𝑞𝑥)} 

     Else 

          𝑤𝑛𝑑𝑜𝑙𝑑 = 𝑤𝑛𝑑𝑥 

          𝑤𝑛𝑑𝑥 = 𝑤𝑛𝑑𝑥 + 3 ∗ 𝑀𝑇𝑈 

     End else 

     End if 

 

The present transmission rate is denoted 𝑤𝑛𝑑𝑥, and the previous sending rate is denoted 𝑤𝑛𝑑𝑜𝑙𝑑. The previous RTT is denoted 𝑅𝑇𝑇𝑜𝑙𝑑, the minimum RTT is denoted 𝑅𝑇𝑇𝑚𝑖𝑛, the 

average RTT is expressed 𝑅𝑇𝑇𝑎𝑣𝑔, and the next RTT value is denoted 𝑅𝑇𝑇𝑛𝑒𝑤. The 

maximum advertised receiver window is denoted 𝑟𝑤𝑛𝑑𝑥, the current sequence number is 

denoted 𝑆𝑒𝑞𝑥, and the maximum sequence number is denoted 𝑆𝑒𝑞𝑚𝑎𝑥.  

The findings demonstrate how DLCCA boosts performance when customers transfer various 

quantities of information depending on RTT measures.  

 

3.2.2 Development phase 

The enhanced TCP congestion-controlling technique in the 5G ecosystem is discussed in this 

study. Enhanced slow-start and congestion control methods must be used to accomplish the 

third goal. The limitations of traditional congestion management in the 5G context were 

resolved using the upgraded methodologies. The final form of DLCCA was developed using 

various developmental techniques based on an enhanced congestion control system that takes 

advantage of DL features. Implementing a two-stage assessment with different contexts was 

done to create DLCCA. The congestion controls offered the modified window administration 

in the initial phase. DL method assessment parameters were used: queue length, performance, 



packet drop, and cwnd_. The new methods use slow-start cwnd_ and congestion 

minimization to perform effective window administration.  

 

Fig. 3.  The workflow for the development phase of the DLCCA 

 

The workflow for the development phase of the DLCCA is designed, and the result is shown 

in Fig. 3. Initially, the connection is established between the sender and the receiver, followed 

by the session starting. A packet is sent from the server, and the sender waits for the 

acknowledgment. A slow start or congestion avoidance process is called if the ACK_ is 

received based on the congestion control model and ssthresh_ value. The recovery phase is 

called if ACK_ is not received within the RTO. The session and connection are closed when 

all the packets are transmitted from the sender.  

All potential experiments, including associated situations, have been explored and provided 

at this stage. Two investigations were planned and constructed based on these steps. The 



following section goes into the specifics of these tests. The enhanced congestion management 

techniques use modified strategies linked to slow-start and congestion mitigation systems.  

3.3 Applying the deep learning approach 

J48 is produced during this stage of model development. Numerous sectors employ deep 

learning techniques (such as grouping) for tasks, including categorizing student academic 

achievement and improving the achievement of network components. The DL method has 

more responsibilities than other data mining techniques. According to earlier research that 

used the method in various disciplines, including healthcare, e-government, wireless sensor 

networks, mobile multifactor authentication, and penetration testing, the DL technique has 

encouraging results as a component of computer vision. 

 

 

Fig. 4. The deep learning architecture 

The deep learning architecture for the congestion control algorithm is shown in Fig. 4. The 

architecture consists of input, output, and multiple hidden layers. The DL method creates an 

orientated tree network based on learning information for categorization and prediction. The 

root component of a tree graph grows into a subtree and terminates with a leaf node. The 

features that reflect the dataset's properties are encountered on the route from the roots to the 

leaf component. This route might be considered for the forecast of upcoming instances. The 

resultant tree is constructed and translated using IF condition expressions. The system can use 

the reliable and practical deep learning technique to uncover hidden connections in small and 



extensive databases. A tree is built in three phases: building, data gain calculation, and 

trimming. The following fundamental actions are part of the building phase:  

• Check to see whether all concerns fall under the same category. As a result, a leaf 

with a classifier is a tree.  

• Determine the data gain and the data for one attribute's component.  

• Find the best dividing characteristic based on the current selecting criteria. 

The splitting will result in a tiny, effective tree if it is predicated on high profit. A pruning 

strategy is used in the concluding stage to deal with classifiers and misfits. Measurements 

with weakly specified instances can be classified through pruning. Trimming is divided into 

two categories. Trimming is done when a tree is created, and post-pruning is done after the 

tree is built. The separate-and-conquer rule structure provides the foundation for pruning 

execution. The simulation outcomes of the proposed DLCCA are analyzed and discussed in 

the next section.  

 

4. Simulation outcomes and findings  

The research assesses the suggested DL-performance TCPs in this section using the mmWave 

NS-2 simulator. The forecasting efficiency of the suggested DLCCA is first evaluated. The 

simulation area is 1000m x 1000m. In the architecture, the gNB and the UAV are connected; 

every 100–250 ms, the gNB automatically sweeps the beam. Furthermore, it presumptively 

considered that UAV's velocity is uniformly distributed between 54 and 90 km/h. The 

research gathered Signal to Noise Ratio (SNR) information for around a day to get training 

information. 



 

Fig. 5. Average throughput comparison over traffic connections 

The average throughput comparison of the DLCCA with the existing New Reno, Cubic, 

Compound, and Westwood over traffic connections are shown in Fig. 5. The number of 

traffic connections is varied from 4 to a maximum of 40 with a step count of 4 traffic 

connections. As the traffic connections increases, the respective throughput of the congestion 

control algorithm increases. The proposed DLCCA outperforms the existing models with the 

assistance of a deep learning algorithm. The throughput is increased at the highest traffic 

conditions because there may be the possibility of sending more number packets at a time.  

 



 

Fig.6. End-to-end delay comparison over traffic connections 

The end-to-end delay comparison over different traffic connections is analyzed, and the result 

is shown in Fig. 6. As the number of traffic connections increases, the respective end-to-end 

delay increases because there may be a possibility of buffer build-up in the intermediate 

nodes. The compound exhibits higher delay because the congestion control model focuses 

only on higher throughput but fails to reduce the end-to-end delay. The DLCCA with deep 

learning reduces the end-to-end delay and enhances the throughput. The end-to-end latency at 

the lower traffic conditions is more minor because the possibility of queue build-up in the 

intermediate nodes is slight. Thus, the overall delay reduces.  



 

Fig.7. Packet delivery ratio comparison over traffic connections 

The packet delivery ratio comparison of the different traffic connections is measured, and the 

experimental findings are shown in Fig. 7. The proposed DLCCA results are compared with 

the existing TCP models, such as New Reno, Cubic, Compound, and Westwood. The 

experiment is done under lesser traffic conditions to higher traffic conditions. As the traffic 

condition increases, the respective packet delivery ratio also increases. The packet delivery 

ratio is indirectly related to the total packet drops in the environment. As the traffic 

conditions increases, there may be a possibility of buffer buildup and the chance of packet 

drop. The proposed deep learning model enhances the overall outcomes by analyzing and 

predicting the traffic network. 

 



 

Fig.8. Bandwidth utilization ratio comparison over traffic connections 

The bandwidth utilization ratio analysis of the proposed DLCCA model is done, and the 

results are compared with the existing congestion control algorithms in Fig. 8. The bandwidth 

utilization is directly related to the number of traffic connections. When the traffic 

connections exceed a maximum threshold, the bandwidth utilization reduces because there 

may be a possible buffer build-up and more packet drops. This leads to a more frequent 

sending rate reduction and thus reduces bandwidth utilization. The proposed deep learning 

model analyses and predicts the network conditions and helps to attain higher bandwidth 

utilization which helps increase throughput. 

 



 

Fig.9. Fairness comparison over traffic connections 

The fairness is computed in how the congestion control algorithm deals with traffic 

connections. The fairness comparison of the proposed DLCCA model with the existing 

models is analyzed and plotted in Fig. 9. The respective fairness also increases in the 

proposed DLCCA model with the assistance of the deep learning algorithm with respect to 

the growth in traffic connection. The existing models need to give importance to lower and 

higher bandwidth traffic. They blankly reduce the congestion window, and thus, the lower 

bandwidth users are affected. But the proposed DLCCA model understands the maximum 

capacity of the user and accordingly reduces when congestion occurs.  

The proposed DLCCA model is designed, and the outcomes are computed in this section. The 

performance comparison exhibits the impact of the proposed deep learning-based DLCCA 

model in increasing network performance and reducing end-to-end delay and packet loss. The 

deep learning algorithm helps analyze and predict the network conditions and act 

accordingly, which is helpful in disaster conditions.  

 

5. Conclusion and the findings 

One of the best models for quick catastrophe reactions is the 5G mmWave system. The loss 

in signal intensity caused by the impediments and beam misaligned can be a component in 



dampening TCP effectiveness because of the features of the mmWave spectrum. This study 

proposes a Deep-Learning-oriented Congestion Control Approach for the 5G mmWave 

frequency spectrum in disaster conditions. Depending on node movement data and signal 

strength, the deep learning algorithm of the research calculates the channel disconnecting 

duration and forecasts the link disconnecting duration when there is a loss in the network. By 

executing correct sending window size management according to the projected time, which 

was proven using NS-2-based simulations, DLCCA was created to run without wasting 

mmWave capacity. The purpose of DLCCA is to enhance wireless networking efficiency 

when there are numerous connections and unexpected link failures. The two primary 

objectives of DLCCA are to reduce bottleneck congestion and distinguish between accidental 

loss and congestion losses. These two main objectives were achieved, and varied network 

systems topologies showed excellent throughput efficiency. The suggested model is not an 

innovative way to prevent connection errors because it is a loss-based TCP algorithm in 

which a packet failure occurs. Therefore, the deep-learning system in this research uses 

beam-reflecting technologies to eliminate intrusions in the 5G frequency band and beam 

management systems to offer a smooth connection atmosphere. The research will use the 

deep learning algorithm to study further reducing errors in the 5Grange. 

 

References 

 

1. Mayor, V., Estepa, R., Estepa, A., & Madinabeitia, G. (2019). Deploying a reliable 

UAV-aided communication service in disaster areas. Wireless Communications and 

Mobile Computing, 2019. 

2. Oktari, R. S., Munadi, K., Idroes, R., & Sofyan, H. (2020). Knowledge management 

practices in disaster management: Systematic review. International Journal of Disaster 

Risk Reduction, 51, 101881. 

3. Abbas, K., Afaq, M., Ahmed Khan, T., Rafiq, A., Iqbal, J., Ul Islam, I., & Song, W. 

C. (2022). An efficient SDN‐based LTE‐WiFi spectrum aggregation system for 

heterogeneous 5G networks. Transactions on Emerging Telecommunications 

Technologies, 33(4), e3943. 

4. Alzahrani, B., Oubbati, O. S., Barnawi, A., Atiquzzaman, M., & Alghazzawi, D. 

(2020). UAV assistance paradigm: State-of-the-art in applications and challenges. 

Journal of Network and Computer Applications, 166, 102706. 



5. Choksi, M., & Zaveri, M. A. (2019). Multiobjective based resource allocation and 

scheduling for postdisaster management using IoT. Wireless Communications and 

Mobile Computing, 2019. 

6. Siriwardhana, Y., Porambage, P., Liyanage, M., & Ylianttila, M. (2021). A survey on 

mobile augmented reality with 5G mobile edge computing: architectures, 

applications, and technical aspects. IEEE Communications Surveys & Tutorials, 

23(2), 1160-1192. 

7. Lorincz, J., Klarin, Z., & Ožegović, J. (2021). A Comprehensive Overview of TCP 

Congestion Control in 5G Networks: Research Challenges and Future Perspectives. 

Sensors, 21(13), 4510. 

8. Mahendrakumar Subramaniam, Chunchu Rambabu, Gokul Chandrasekaran & 

Neelam Sanjeev Kumar (2022). A Traffic Density-Based Congestion Control Method 

for VANETs, Wireless communications and mobile computing, Volume 2022, Article 

ID 7551535.  

9. Mahendrakumar, S and Guna Sekar, T. (2019) An Analyzing of Cross Layer Design 

for Implementing Adaptive Antenna Technique in Mobile Ad-Hoc Networks , Journal 

of Testing and Evaluation, 2019, Vol. 47. No. 6.. 

10. Meng, H., Shafik, W., Matinkhah, S. M., & Ahmad, Z. (2020). A 5g beam selection 

machine learning algorithm for unmanned aerial vehicle applications. Wireless 

Communications and Mobile Computing, 2020. 

11. Basnayake, V., Mabed, H., Jayakody, D. N. K., Canalda, P., & Beko, M. (2022). 

Adaptive Emergency Call Service for Disaster Management. Journal of Sensor and 

Actuator Networks, 11(4), 83. 

12. Yao, Z., Cheng, W., Zhang, W., & Zhang, H. (2021). Resource allocation for 5G-

UAV-Based emergency wireless communications. IEEE Journal on Selected Areas in 

Communications, 39(11), 3395-3410. 

13. Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: a new TCP-friendly high-speed TCP 

variant. ACM SIGOPS operating systems review, 42(5), 64-74. 

14. Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M. Y., & Wang, R. (2001, July). TCP 

Westwood: Bandwidth estimation for enhanced transport over wireless links. In 

Proceedings of the 7th annual international conference on Mobile computing and 

networking (pp. 287-297). 



15. Brakmo, L. S., & Peterson, L. L. (1995). TCP Vegas: End-to-end congestion 

avoidance on a global Internet. IEEE Journal on Selected Areas in communications, 

13(8), 1465-1480. 

16. Poorzare, R., & Augé, A. C. (2021). FB-TCP: a 5G mmWave-friendly TCP for urban 

deployments. IEEE Access, 9, 82812-82832. 

17. Jung, J., Lee, C., Baik, J., & Chung, J. M. (2022). REVeno: RTT Estimation Based 

Multipath TCP in 5G Multi-RAT Networks. IEEE Transactions on Mobile 

Computing. 

18. Kim, G. H., & Cho, Y. Z. (2022). mmS-TCP: Scalable TCP for Improving 

Throughput and Fairness in 5G mmWave Networks. Sensors, 22(10), 3609. 

19. Hagos, D. H., Engelstad, P. E., Yazidi, A., & Kure, Ø. (2018, April). A machine 

learning approach to TCP state monitoring from passive measurements. In 2018 

Wireless Days (WD) (pp. 164-171). IEEE. 

20. Han, K., Lee, J. Y., & Kim, B. C. (2019, January). Machine-learning-based loss 

discrimination algorithm for wireless TCP congestion control. In 2019 International 

Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-2). 

IEEE. 

21. Kim, G. H., & Cho, Y. Z. (2022). mmS-TCP: Scalable TCP for Improving 

Throughput and Fairness in 5G mmWave Networks. Sensors, 22(10), 3609. 

22. Zhang, T., & Mao, S. (2020). Machine learning for end-to-end congestion control. 

IEEE Communications Magazine, 58(6), 52-57. 

23. Polese, M., Giordani, M., Zugno, T., Roy, A., Goyal, S., Castor, D., & Zorzi, M. 

(2020). Integrated access and backhaul in 5G mmWave networks: Potential and 

challenges. IEEE Communications Magazine, 58(3), 62-68. 

24. Sim, M. S., Lim, Y. G., Park, S. H., Dai, L., & Chae, C. B. (2020). Deep learning-

based mmWave beam selection for 5G NR/6G with sub-6 GHz channel information: 

Algorithms and prototype validation. IEEE Access, 8, 51634-51646. 

25. Ding, L., Tian, Y., Liu, T., Wei, Z., & Zhang, X. (2021). Understanding commercial 

5G and its implications to (Multipath) TCP. Computer Networks, 198, 108401. 

26. Xiao, F. (2022). Congestion and Computer Program Control Algorithm Strategy for 

Wireless Sensor Networks Based on Cloud Model. Wireless Communications and 

Mobile Computing, 2022. 

27. Tahir, M. N., & Katz, M. (2021). ITS performance evaluation in direct short-range 

communication (IEEE 802.11 p) and cellular network (5G)(TCP vs. UDP). In 



Towards Connected and Autonomous Vehicle Highways (pp. 257-279). Springer, 

Cham. 

 


