(1) Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020, 8, 990. https://doi.org/10.3389/fbioe.2020.00990.
(2) Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41 (7), 2740–2779. https://doi.org/10.1039/C1CS15237H.
(3) Dong, J.; Carpinone, P. L.; Pyrgiotakis, G.; Demokritou, P.; Moudgil, B. M. Synthesis of Precision Gold Nanoparticles Using Turkevich Method. Kona powder Sci. Technol. Japan 2020, 37, 224. https://doi.org/10.14356/KONA.2020011.
(4) Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11 (0), 55–75. https://doi.org/10.1039/DF9511100055.
(5) Swierczewska, M.; Lee, S.; Chen, X. The Design and Application of Fluorophore–Gold Nanoparticle Activatable Probes. Phys. Chem. Chem. Phys. 2011, 13 (21), 9929. https://doi.org/10.1039/C0CP02967J.
(6) Peng, C.; Xu, J.; Yu, M.; Ning, X.; Huang, Y.; Du, B.; Hernandez, E.; Kapur, P.; Hsieh, J. T.; Zheng, J. Tuning the In Vivo Transport of Anticancer Drugs Using Renal-Clearable Gold Nanoparticles. Angew. Chemie - Int. Ed. 2019, 58 (25), 8479–8483. https://doi.org/10.1002/anie.201903256.
(7) Fuller, M.; Whiley, H.; Köper, I. Antibiotic Delivery Using Gold Nanoparticles. SN Appl. Sci. 2020, 2 (6), 1–7. https://doi.org/10.1007/S42452-020-2835-8/FIGURES/3.
(8) Chen, F.; Ma, K.; Madajewski, B.; Zhuang, L.; Zhang, L.; Rickert, K.; Marelli, M.; Yoo, B.; Turker, M. Z.; Overholtzer, M.; Quinn, T. P.; Gonen, M.; Zanzonico, P.; Tuesca, A.; Bowen, M. A.; Norton, L.; Subramony, J. A.; Wiesner, U.; Bradbury, M. S. Ultrasmall Targeted Nanoparticles with Engineered Antibody Fragments for Imaging Detection of HER2-Overexpressing Breast Cancer. Nat. Commun. 2018, 9 (1). https://doi.org/10.1038/S41467-018-06271-5.
(9) Lei, W. X.; An, Z. S.; Zhang, B. H.; Wu, Q.; Gong, W. J.; Li, J. M.; Chen, W. L. Construction of Gold-SiRNA NPR1 Nanoparticles for Effective and Quick Silencing of NPR1 in Arabidopsis Thaliana. RSC Adv. 2020, 10 (33), 19300–19308. https://doi.org/10.1039/D0RA02156C.
(10) Suen, W. L. L.; Chau, Y. Size-Dependent Internalisation of Folate-Decorated Nanoparticles via the Pathways of Clathrin and Caveolae-Mediated Endocytosis in ARPE-19 Cells. J. Pharm. Pharmacol. 2014, 66 (4), 564–573. https://doi.org/10.1111/jphp.12134.
(11) Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size-Dependent Endocytosis of Nanoparticles. Adv. Mater. 2009, 21 (4), 419–424. https://doi.org/10.1002/ADMA.200801393.
(12) Yu, M.; Xu, J.; Zheng, J. Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angew. Chem. Int. Ed. Engl. 2019, 58 (13), 4112–4128. https://doi.org/10.1002/ANIE.201807847.
(13) Rabiee, N.; Ahmadi, S.; Akhavan, O.; Luque, R. Silver and Gold Nanoparticles for Antimicrobial Purposes against Multi-Drug Resistance Bacteria. Mater. (Basel, Switzerland) 2022, 15 (5). https://doi.org/10.3390/MA15051799.
(14) Dasari, T. S.; Zhang, Y.; Yu, H. Antibacterial Activity and Cytotoxicity of Gold (I) and (III) Ions and Gold Nanoparticles. Biochem. Pharmacol. open access 2015, 4 (6). https://doi.org/10.4172/2167-0501.1000199.
(15) Suvarna, S.; Nairy, R.; C, S. K. Cytotoxicity Studies of Functionalized Gold Nanoparticles Using Yeast Comet Assay. 2017. https://doi.org/10.4172/2161-0495.1000347.
(16) Vijayakumar, S.; Ganesan, S. In Vitro Cytotoxicity Assay on Gold Nanoparticles with Different Stabilizing Agents. J. Nanomater. 2012, 2012. https://doi.org/10.1155/2012/734398.
(17) Pompa, P. P.; Vecchio, G.; Galeone, A.; Brunetti, V.; Sabella, S.; Maiorano, G.; Falqui, A.; Bertoni, G.; Cingolani, R. In Vivo Toxicity Assessment of Gold Nanoparticles in Drosophila Melanogaster. Nano Res. 2011 44 2011, 4 (4), 405–413. https://doi.org/10.1007/S12274-011-0095-Z.
(18) Sun, P. P.; Lai, C. S.; Hung, C. J.; Dhaiveegan, P.; Tsai, M. L.; Chiu, C. L.; Fang, J. M. Subchronic Oral Toxicity Evaluation of Gold Nanoparticles in Male and Female Mice. Heliyon 2021, 7 (3). https://doi.org/10.1016/J.HELIYON.2021.E06577.
(19) Sani, A.; Cao, C.; Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A Review. Biochem. Biophys. Reports 2021, 26, 100991. https://doi.org/10.1016/J.BBREP.2021.100991.
(20) Gioria, S.; Vicente, J. L.; Barboro, P.; La Spina, R.; Tomasi, G.; Urbán, P.; Kinsner-Ovaskainen, A.; François, R.; Chassaigne, H. A Combined Proteomics and Metabolomics Approach to Assess the Effects of Gold Nanoparticles in Vitro. Nanotoxicology 2016, 10 (6), 736–748. https://doi.org/10.3109/17435390.2015.1121412/SUPPL_FILE/INAN_A_1121412_SM9287.ZIP.
(21) Gioria, S.; Chassaigne, H.; Carpi, D.; Parracino, A.; Meschini, S.; Barboro, P.; Rossi, F. A Proteomic Approach to Investigate AuNPs Effects in Balb/3T3 Cells. Toxicol. Lett. 2014, 228 (2), 111–126. https://doi.org/10.1016/J.TOXLET.2014.04.016.
(22) Tiwari, M.; Krishnamurthy, S.; Shukla, D.; Kiiskila, J.; Jain, A.; Datta, R.; Sharma, N.; Sahi, S. V. Comparative Transcriptome and Proteome Analysis to Reveal the Biosynthesis of Gold Nanoparticles in Arabidopsis. Sci. Reports 2016 61 2016, 6 (1), 1–13. https://doi.org/10.1038/srep21733.
(23) Allen, R. J.; Waclaw, B. Bacterial Growth: A Statistical Physicist’s Guide. Rep. Prog. Phys. 2019, 82 (1), 016601. https://doi.org/10.1088/1361-6633/AAE546.
(24) Chudobova, D.; Dostalova, S.; Blazkova, I.; Michalek, P.; Ruttkay-Nedecky, B.; Sklenar, M.; Nejdl, L.; Kudr, J.; Gumulec, J.; Tmejova, K.; Konecna, M.; Vaculovicova, M.; Hynek, D.; Masarik, M.; Kynicky, J.; Kizek, R.; Adam, V. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus Aureus. Int. J. Environ. Res. Public Health 2014, 11 (3), 3233. https://doi.org/10.3390/IJERPH110303233.
(25) Cookson, N. A.; Cookson, S. W.; Tsimring, L. S.; Hasty, J. Cell Cycle-Dependent Variations in Protein Concentration. Nucleic Acids Res. 2010, 38 (8), 2676. https://doi.org/10.1093/NAR/GKP1069.
(26) Sonenberg, N.; Hinnebusch, A. G. Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell 2009, 136 (4), 731. https://doi.org/10.1016/J.CELL.2009.01.042.
(27) Gebauer, F.; Hentze, M. W. Molecular Mechanisms of Translational Control. Nat. Rev. Mol. Cell Biol. 2004 510 2004, 5 (10), 827–835. https://doi.org/10.1038/nrm1488.
(28) Jackson, R. J.; Hellen, C. U. T.; Pestova, T. V. THE MECHANISM OF EUKARYOTIC TRANSLATION INITIATION AND PRINCIPLES OF ITS REGULATION. Nat. Rev. Mol. Cell Biol. 2010, 11 (2), 113. https://doi.org/10.1038/NRM2838.
(29) Kwan, T.; Thompson, S. R. Noncanonical Translation Initiation in Eukaryotes. Cold Spring Harb. Perspect. Biol. 2019, 11 (4), a032672. https://doi.org/10.1101/CSHPERSPECT.A032672.
(30) Sriram, A.; Bohlen, J.; Teleman, A. A. Translation Acrobatics: How Cancer Cells Exploit Alternate Modes of Translational Initiation. EMBO Rep. 2018, 19 (10). https://doi.org/10.15252/EMBR.201845947.
(31) Moll, I.; Engelberg-Kulka, H. Selective Translation during Stress in Escherichia Coli. Trends Biochem. Sci. 2012, 37 (11), 493. https://doi.org/10.1016/J.TIBS.2012.07.007.
(32) Lindholm, D.; Korhonen, L.; Eriksson, O.; Kõks, S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front. Cell Dev. Biol. 2017, 5 (MAY), 48. https://doi.org/10.3389/FCELL.2017.00048/BIBTEX.
(33) Arensdorf, A. M.; Diedrichs, D.; Rutkowski, D. T. Regulation of the Transcriptome by ER Stress: Non-Canonical Mechanisms and Physiological Consequences. Front. Genet. 2013, 4 (DEC). https://doi.org/10.3389/FGENE.2013.00256/ABSTRACT.
(34) Białas, N.; Sokolova, V.; Van Der Meer, S. B.; Knuschke, T.; Ruks, T.; Klein, K.; Westendorf, A. M.; Epple, M.; Duisburg-Essen, N. Bacteria (E. Coli) Take up Ultrasmall Gold Nanoparticles (2 Nm) as Shown by Different Optical Microscopic Techniques (CLSM, SIM, STORM). Nano Sel. 2022, 3 (10), 1407–1420. https://doi.org/10.1002/NANO.202200049.
(35) Lima, S.; Guo, M. S.; Chaba, R.; Gross, C. A.; Sauer, R. T. Dual Molecular Signals Mediate the Bacterial Response to Outer-Membrane Stress. Science 2013, 340 (6134), 837–841. https://doi.org/10.1126/SCIENCE.1235358.
(36) Hews, C. L.; Cho, T.; Rowley, G.; Raivio, T. L. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 313. https://doi.org/10.3389/FCIMB.2019.00313/BIBTEX.
(37) Kreuzer, K. N. DNA Damage Responses in Prokaryotes: Regulating Gene Expression, Modulating Growth Patterns, and Manipulating Replication Forks. Cold Spring Harb. Perspect. Biol. 2013, 5 (11). https://doi.org/10.1101/CSHPERSPECT.A012674.
(38) Battesti, A.; Majdalani, N.; Gottesman, S. The RpoS-Mediated General Stress Response in Escherichia Coli. Annu. Rev. Microbiol. 2011, 65, 189–213. https://doi.org/10.1146/ANNUREV-MICRO-090110-102946.
(39) Hecker, M.; Völker, U. Non-Specific, General and Multiple Stress Resistance of Growth-Restricted Bacillus Subtilis Cells by the Expression of the SigmaB Regulon. Mol. Microbiol. 1998, 29 (5), 1129–1136. https://doi.org/10.1046/J.1365-2958.1998.00977.X.
(40) Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide Dismutase Nanozymes: An Emerging Star for Anti-Oxidation. J. Mater. Chem. B 2021, 9 (35), 6939–6957. https://doi.org/10.1039/D1TB00720C.
(41) Sugai, R.; Shimizu, H.; Nishiyama, K. I.; Tokuda, H. Overexpression of GnsA, a Multicopy Suppressor of the SecG Null Mutation, Increases Acidic Phospholipid Contents by Inhibiting Phosphatidylethanolamine Synthesis at Low Temperatures. J. Bacteriol. 2004, 186 (17), 5968–5971. https://doi.org/10.1128/JB.186.17.5968-5971.2004/ASSET/380C65FA-5F4E-4511-8F11-4D013715A258/ASSETS/GRAPHIC/ZJB0170439680003.JPEG.
(42) Mohanty, B. K.; Kushner, S. R. Polynucleotide Phosphorylase Functions Both as a 3′ → 5′ Exonuclease and a Poly(A) Polymerase in Escherichia Coli. Proc. Natl. Acad. Sci. 2000, 97 (22), 11966–11971. https://doi.org/10.1073/PNAS.220295997.
(43) Pérez, J. M.; Arenas, F. A.; Pradenas, G. A.; Sandoval, J. M.; Vásquez, C. C. Escherichia Coli YqhD Exhibits Aldehyde Reductase Activity and Protects from the Harmful Effect of Lipid Peroxidation-Derived Aldehydes. J. Biol. Chem. 2008, 283 (12), 7346–7353. https://doi.org/10.1074/JBC.M708846200.
(44) Chow, K. C.; Tung, W. L. Overexpression of DnaK/DnaJ and GroEL Confers Freeze Tolerance to Escherichia Coli. Biochem. Biophys. Res. Commun. 1998, 253 (2), 502–505. https://doi.org/10.1006/BBRC.1998.9766.
(45) Saulou-Bérion, C.; Gonzalez, I.; Enjalbert, B.; Audinot, J. N.; Fourquaux, I.; Jamme, F.; Cocaign-Bousquet, M.; Mercier-Bonin, M.; Girbal, L. Escherichia Coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses. PLoS One 2015, 10 (12), e0145748. https://doi.org/10.1371/JOURNAL.PONE.0145748.
(46) Hui, C. Y.; Guo, Y.; He, Q. S.; Peng, L.; Wu, S. C.; Cao, H.; Huang, S. H. Escherichia Coli Outer Membrane Protease OmpT Confers Resistance to Urinary Cationic Peptides. Microbiol. Immunol. 2010, 54 (8), 452–459. https://doi.org/10.1111/j.1348-0421.2010.00238.x.
(47) Choi, E.; Hwang, J. The GTPase BipA Expressed at Low Temperature in Escherichia Coli Assists Ribosome Assembly and Has Chaperone-like Activity. J. Biol. Chem. 2018, 293 (47), 18404–18419. https://doi.org/10.1074/JBC.RA118.002295.
(48) Bae, W.; Xia, B.; Inouye, M.; Severinov, K. Escherichia Coli CspA-Family RNA Chaperones Are Transcription Antiterminators. Proc. Natl. Acad. Sci. U. S. A. 2000, 97 (14), 7784–7789. https://doi.org/10.1073/PNAS.97.14.7784/ASSET/AAB8C1BE-5ECF-448A-8710-312DD7B8F783/ASSETS/GRAPHIC/PQ1301919004.JPEG.
(49) El Khoury, W.; Nasr, Z. Deregulation of Ribosomal Proteins in Human Cancers. Biosci. Rep. 2021, 41 (12). https://doi.org/10.1042/BSR20211577.
(50) Ko, M. J.; Seo, Y. R.; Seo, D.; Park, S. Y.; Seo, J. H.; Jeon, E. H.; Kim, S. W.; Park, K. U.; Koo, D. B.; Kim, S.; Bae, J. H.; Song, D. K.; Cho, C. H.; Kim, K. S.; Lee, Y. H. RPL17 Promotes Colorectal Cancer Proliferation and Stemness through ERK and NEK2/β-Catenin Signaling Pathways. J. Cancer 2022, 13 (8), 2570–2583. https://doi.org/10.7150/JCA.69428.
(51) Dong, J.; Aitken, C. E.; Thakur, A.; Shin, B. S.; Lorsch, J. R.; Hinnebusch, A. G. Rps3/US3 Promotes MRNA Binding at the 40S Ribosome Entry Channel and Stabilizes Preinitiation Complexes at Start Codons. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (11), E2126–E2135. https://doi.org/10.1073/PNAS.1620569114/SUPPL_FILE/PNAS.1620569114.SAPP.PDF.
(52) Ferreira-Cerca, S.; Pöll, G.; Gleizes, P. E.; Tschochner, H.; Milkereit, P. Roles of Eukaryotic Ribosomal Proteins in Maturation and Transport of Pre-18S RRNA and Ribosome Function. Mol. Cell 2005, 20 (2), 263–275. https://doi.org/10.1016/J.MOLCEL.2005.09.005.
(53) Hong, M.; Kim, H.; Kim, I. Ribosomal Protein L19 Overexpression Activates the Unfolded Protein Response and Sensitizes MCF7 Breast Cancer Cells to Endoplasmic Reticulum Stress-Induced Cell Death. Biochem. Biophys. Res. Commun. 2014, 450 (1), 673–678. https://doi.org/10.1016/J.BBRC.2014.06.036.
(54) Landry, D. M.; Hertz, M. I.; Thompson, S. R. RPS25 Is Essential for Translation Initiation by the Dicistroviridae and Hepatitis C Viral IRESs. Genes Dev. 2009, 23 (23), 2753. https://doi.org/10.1101/GAD.1832209.
(55) Guo, Y. L.; Kong, Q. S.; Liu, H. S.; Tan, W. Bin. Drug Resistance Effects of Ribosomal Protein L24 Overexpression in Hepatocellular Carcinoma HepG2 Cells. Asian Pac. J. Cancer Prev. 2014, 15 (22), 9853–9857. https://doi.org/10.7314/APJCP.2014.15.22.9853.
(56) Zhang, Y.; Lin, Z.; Wang, M.; Lin, H. Selective Usage of Isozymes for Stress Response. ACS Chem. Biol. 2018, 13 (11), 3059–3064. https://doi.org/10.1021/ACSCHEMBIO.8B00767.
(57) Pacheco, A.; Pereira, C.; Almeida, M. J.; Sousa, M. J. Small Heat-Shock Protein Hsp12 Contributes to Yeast Tolerance to Freezing Stress. Microbiology 2009, 155 (Pt 6), 2021–2028. https://doi.org/10.1099/MIC.0.025981-0.
(58) Kürsteiner, O.; Dupuis, I.; Kuhlemeier, C. The Pyruvate Decarboxylase1 Gene of Arabidopsis Is Required during Anoxia But Not Other Environmental Stresses. Plant Physiol. 2003, 132 (2), 968. https://doi.org/10.1104/PP.102.016907.
(59) Scott, M.; Gunderson, C. W.; Mateescu, E. M.; Zhang, Z.; Hwa, T. Interdependence of Cell Growth and Gene Expression: Origins and Consequences. Science 2010, 330 (6007), 1099–1102. https://doi.org/10.1126/SCIENCE.1192588.
(60) Chen, Y.-L.; Wen, J.-D. Translation Initiation Site of MRNA Is Selected through Dynamic Interaction with the Ribosome. 2022. https://doi.org/10.1073/pnas.
(61) Lamming, D. W. Inhibition of the Mechanistic Target of Rapamycin (MTOR)–Rapamycin and Beyond. Cold Spring Harb. Perspect. Med. 2016, 6 (5). https://doi.org/10.1101/CSHPERSPECT.A025924.