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Abstract 51 

Atmospheric transport is critical to dispersal of microorganisms between habitats and this 52 

underpins resilience in terrestrial and marine ecosystems globally. A key unresolved question 53 

is whether microorganisms assemble to form a taxonomically distinct, geographically 54 

variable, and functionally adapted atmospheric microbiota. Here we characterised inter-55 

continental patterns of microbial taxonomic and functional diversity in air within and above 56 

the atmospheric boundary layer and in underlying soils for 596 globally sourced samples. 57 

Bacterial and fungal assemblages in air were taxonomically structured and deviated 58 

significantly from purely stochastic assembly. Patterns differed with location and reflected 59 

underlying surface cover and environmental filtering. Source-tracking indicated a complex 60 

recruitment process involving local soils plus globally distributed inputs from drylands and 61 

the phyllosphere. Assemblages displayed stress-response and metabolic traits relevant to 62 

survival in air, and taxonomic and functional diversity were correlated with macroclimate and 63 

atmospheric variables. Our findings highlight complexity in the atmospheric microbiota that 64 

is key to understanding regional and global ecosystem connectivity.  65 

 66 

Introduction 67 

Microorganisms occupy central roles in terrestrial and marine ecosystems globally [1, 2]. 68 

Movement of viable cells and propagules between habitats occurs largely through the 69 

troposphere, which is the atmospheric layer closest to Earth [3]. This is critical to recruitment 70 

and turnover that drive ecological resilience of these systems [2–4], as well as influencing 71 

dispersal of pathogens and invasive taxa [5]. There is also a growing awareness that 72 

microorganisms suspended in the atmosphere are potentially capable of in situ metabolic and 73 

biophysical activities that can influence climatic processes [6]. However, despite the central 74 

importance of the atmosphere to these ecological outcomes, assessments of microbial 75 
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diversity in air at broad geographic scales remain limited [7, 8]. As a result, there is little 76 

understanding of how variable the overall microbial composition of the atmosphere may be 77 

on a global scale, the extent to which it may be decoupled from underlying local surface 78 

communities that are the sources and sinks for atmospheric microorganisms, or the 79 

importance of environmental or biotic factors in shaping diversity. The unique role of the 80 

atmosphere as a transport medium for microorganisms has also obscured the question of 81 

whether it supports a functionally adapted microbiome with the potential for metabolic 82 

transformations and cell proliferation [3]. 83 

Previous research has been hampered by lack of consensus for community structures 84 

of atmospheric microbiota due to the different experimental approaches, lack of ecologically 85 

relevant scaling and taxonomic resolution, and the confounding effect of contamination in the 86 

ultra-low biomass atmospheric habitat [9, 10]. Nonetheless, inferred community structure for 87 

air at various locales within the near-ground atmospheric boundary layer where the bulk of 88 

surface-atmosphere interactions occur have described bacterial and fungal communities that 89 

were correlated with local abiotic variables such as temperature and humidity [11] or land use 90 

[8, 12]. Several studies have related variation in communities to different history of sampled 91 

air masses and this suggests combined influence of the different sources and conditions to 92 

which microorganisms are exposed during transit [13–16]. Indirect surveys from ground-93 

deposited desert dust [17] or precipitation [18] have yielded valuable insight on long-range 94 

dispersal across inter-continental scales although they reflect deposition and differ somewhat 95 

to direct estimates from air [15]. Sampling in the free troposphere at higher altitudes above 96 

the atmospheric boundary layer is challenging and scarce data indicates a more restricted 97 

microbial occurrence[19]. The conventional dogma that atmospheric transport is a neutral 98 

process involving ubiquitous distribution of taxa has been challenged by recent theoretical 99 

[20, 21] and experimental advances [18, 22, 23].  Adaptive traits have generally been inferred 100 
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from taxonomy, although laboratory estimates of metabolic activity by atmospheric bacterial 101 

isolates [24], and recovery of RNA from air and cloud water [25, 26], indicate that 102 

atmospheric microorganisms are potentially active in situ. 103 

Here we report findings testing our hypothesis that atmospheric microbial diversity is 104 

distinct from that in underlying surface habitats, is non-randomly assembled, and 105 

environmental filtering and diverse recruitment explain observed patterns. We characterised 106 

taxonomic and functional diversity in a large globally sourced original dataset (n = 596) for 107 

air within the atmospheric boundary layer that delineates the majority of physical interactions 108 

with the Earth’s surface [27] (near-ground air), as well as aircraft sampling of free 109 

tropospheric air at higher altitudes above the atmospheric boundary layer (high-altitude air) 110 

(Fig. 1; Supplementary Information: Fig. S1, Fig. S2, Table S1). We combined this with 111 

concurrent sampling of underlying surface soils and sediments to allow direct air-surface 112 

connectivity comparisons. Importantly we report the first study to conduct and report 113 

extensive decontamination of sequence data in order to provide a confident diversity estimate 114 

where unavoidable sampling and reagent contamination due to the ultra-low biomass 115 

atmospheric system must be mitigated [9, 10]. We provide multiple lines of evidence for a 116 

taxonomically distinct, non-randomly assembled, altitudinally, geographically and 117 

functionally variable atmospheric microbiota that is influenced by a complex suite of biotic 118 

and abiotic drivers.  119 

 120 

Methods  121 

Sample recovery  122 

The sampling campaign retrieved 596 air and soil samples from 18 locations spanning all 123 

major climatic regions and continents plus two oceans.  Several dryland (desert) locations 124 

were incorporated because they comprise the most abundant terrestrial biome on earth and are 125 
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also the single largest natural source of particulate emissions to the atmosphere [62]. The 126 

Southern Hemisphere was sampled during April-May 2019 and the Northern Hemisphere 127 

during June-July 2019 (Supplementary Information: Table S1). The two circumnavigations 128 

encompassed every major climatic biome and included high and low growing seasons. 129 

Oceanic and remote land samples were retrieved during independent voyages (May 2017 – 130 

June 2018) using the same sampling methodology and samples from the two  previously 131 

interrogated locations were re-sequenced for this study [23, 63]. Bulk phase boundary layer 132 

air was sampled at 1.5m above the surface (near-ground air, n = 501) using tripod-mounted 133 

air samplers and also above the boundary layer for surface interactions at 2,000 m above local 134 

surface level using aircraft mounted-air samplers (high-altitude air, n = 11) [27]. Concurrent 135 

sampling of underlying soil immediately after each air sampling was conducted within a 25 m 136 

radius of air sampling devices (soil, n = 84). Ship-board sampling was conducted at 25m 137 

above the ocean surface to avoid sea-spray contamination. Logistical challenges limited high-138 

altitude air sampling to six locations although these were nonetheless able to capture a broad 139 

geographic and climatic range for both hemispheres.   140 

 Recovery of bulk phase air was achieved using three Coriolis µ high-volume 141 

impingement devices (Bertin Instruments, France) operated concurrently. This device has 142 

been shown to perform well against other samplers [64]. All equipment was transported 143 

between locations in sterile containers and bags. Each device was dis-assembled and contact 144 

surfaces soaked for one hour with 1.5% v/v sodium hypochlorite (NaClO) followed by three 145 

washes of Milli-Q H20 prior to and after each sampling in order minimise contamination from 146 

cells or nucleic acids. All apparatus and work surfaces used during sampling and sample 147 

processing were also cleaned in this way prior to use. All operators wore surface sterilised 148 

nitrile gloves during field collections. Randomised collection cones were assembled into the 149 

devices without activating the air pump, and these were used as the negative sampling 150 
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controls at each location. Additional control samples for potential human contamination were 151 

provided via swabs from the inside of anonymised used nitrile gloves (human operator 152 

controls). 153 

Samplers were located 3m apart from each other at each sampling location and all 154 

inlets were aligned facing prevalent local wind direction. Bulk air was recovered at 300 155 

L/min-1 and particulates recovered after cyclonic deceleration into a sterile phosphate-156 

buffered saline (PBS) impingement medium in each collection cone. Samplers were only 157 

approached from downwind during operation. Each device was used to collect discreet 18 m3 158 

air samples as this volume has been shown to result in recoverable environmental DNA [23]. 159 

Samples were recovered hourly between 10:00 – 16:00 hrs daily, and then processed 160 

immediately by syringe filtration onto a 25 mm polycarbonate filter with 0.2 µm pore size 161 

and preserved in 0.5 mL of DNA/RNA Shield (Zymo Research, USA) at ambient temperature 162 

during transit and then frozen at -20° C until processed for DNA extraction in the laboratory.  163 

At each location undisturbed surface soil or sediment samples (upper 2cm soil 164 

captured in sterile 50 mL screw-cap tubes) were also collected from the base of each Coriolis 165 

µ device as well as 25 m away in 120o intervals from the point of sampling. In recognition of 166 

inherent soil heterogeneity each sample comprised five subsamples that were mixed and then 167 

resampled to yield each sample for analysis. For each sample 0.5 g was preserved for DNA 168 

extraction in 0.5 mL of DNA/RNA Shield (Zymo Research, USA) at ambient temperature 169 

during transit and then frozen at -20° C until processed for DNA extraction in the laboratory. 170 

The remaining sample fraction was archived. It was recognised that soil is not the primary 171 

reservoir for terrestrial fungal diversity but in the absence of a practical means to globally 172 

sample the diversity of other fungal substrates we accepted this limitation to the study. 173 

DNA extractions from samples were performed under strict microbiological biosafety 174 

conditions in randomised sample batches, and each with discreet laboratory controls to assess 175 
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potential laboratory or reagent contamination. Each sample tube was processed individually 176 

in order to avoid potential cross-contamination between samples due to micro-droplet 177 

transfer. All sequencing outputs were evaluated for contamination and spatial and temporal 178 

auto-correlation as described in statistical treatments and ecological modelling 179 

(Supplementary Information: Figs S5-S14). Environmental DNA was recovered from filtered 180 

air and soil samples using a CTAB-based manual extraction protocol optimised for low 181 

biomass samples [23]. DNA yield was quantified using the Qubit 2.0 Fluorometer 182 

(Invitrogen, USA) and samples were then stored at -20 °C until processed. 183 

Environmental and climate metadata and modelling 184 

Local climate metadata for each sampling location were retrieved from public databases: 185 

Mean annual precipitation and mean annual temperature [65], Kӧppen-Geiger climate 186 

classifications [66], growing season that defined the time period when photoautotrophy can 187 

occur [67]. Other local variables were recorded using handheld devices: Temperature (°C), 188 

relative humidity (%), wind speed (m/S) and wind direction (Kestrel Meters, USA); 189 

Particulate matter (PM 2.5 and PM 10.0) (HoldPeak, China).  190 

Back trajectories and metadata relevant to the in situ conditions that airborne 191 

microorganisms were exposed to during their transit towards each sampling location was 192 

modelled from National Oceanic and Atmospheric Administration (NOAA) atmospheric 193 

transport and dispersion models [68].  Fourteen day back trajectories of air masses for each 194 

sampling time were generated because this is the estimated maximum residence time for 195 

microorganisms in the troposphere [69]. Data was obtained from the NOAA HYSPLIT-196 

model and long-range trajectories were estimated using the GDAS database 197 

(https://ready.arl.noaa.gov/HYSPLIT.php). Data was processed using ArcGIS Pro, version 198 

2.6 (https:/www.esri.com). The following variables were calculated at intervals along each 199 

tropospheric transport path from the HYSPLIT models: altitude (m above ground level, 200 



9 

 

AGL), wind speed (m/S), direction, temperature (oC), Relative humidity (%), solar irradiance 201 

(W/m2), precipitation events, and transit duration over land or ocean surface. Points were 202 

plotted on WGS 1984 Web Mercator coordinate system with date line wrapping and climate 203 

mapping at 1km resolution [66].  204 

DNA recovery and gene copy number estimation 205 

DNA yield per m3 air or per gram of soil were used as a proxy for total biomass [70], 206 

although estimates between soil and air are not directly comparable due to different substrate 207 

volumes and composition Taxonomic assignment of reads in metagenomes was used to 208 

approximate relative abundance between samples within each kingdom. An additional and 209 

commonly-used estimate of relative abundance using real-time quantitative PCR (qPCR) was 210 

also employed for the most abundant microbial groups (bacteria and fungi) [71].  Primers 211 

used for bacteria targeted the16S rRNA gene V3-V4 hypervariable region (Fwd 341 5′- 212 

CCTACGGGNGGCWGCAG-3′ and Rev 785 5′- GACTACHVGGGTATCTAATCC -3′) 213 

[72, 73], with LightCycler 480 SYBR Green I Master mix (Roche Holding, Switzerland). 214 

Primers for fungi targeted the 18S rRNA gene (FungiQuant-F 5′-215 

GGRAAACTCACCAGGTCCAG-3′ and FungiQuant-R 5′-GSWCTATCCCCAKCACGA-216 

3′) with TaqMan probe FungiQuant-PrbLNA 6FAM-5′-TGGTGCATGGCCGTT-3′-BBQ 217 

[74]. TaqMan Fast Advanced Master Mix was used for qPCR reactions with the following 218 

conditions: denaturing step: 95 °C for 20 s; cycling step: 35 cycles of 95 °C for 1 s and 60 °C 219 

for 20 s [39]. A qPCR standard for each target sequence was developed to estimate gene copy 220 

number using pooled samples. These were amplified using TaqMan Fast Advanced Master 221 

Mix as described above but without fluorescent markers (Applied biosystems, USA) and 222 

quantified using a Bioanalyzer (Agilent Technologies, USA). Serial dilutions of the template 223 

were used to generate standard curves. 224 

Amplicon sequencing  225 
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Targeted high-throughput amplicon sequencing was employed to gain insight into taxonomic 226 

diversity of bacteria and fungi because they comprised the majority of microbial reads in our 227 

metagenomic libraries and have been estimated as the most abundant microorganisms in 228 

aerosols [22]. Amplicon sequence libraries were prepared using Illumina MiSeq v3 600 cycle 229 

chemistry as per manufacturer’s protocol with PhiX positive spike-in controls. All samples 230 

were sequenced to near-asymptote (Supplementary Information). Template DNA in samples 231 

was normalised to 2.5ng/ul prior to two-step PCR amplification for the bacterial 16S rRNA 232 

gene V3-V4 hypervariable region (Fwd 341 5′- CCTACGGGNGGCWGCAG-3′ and Rev 785 233 

5′- GACTACHVGGGTATCTAATCC -3′) [72, 73], and fungal ITS1 region (Fwd ITS1 5′- 234 

CTTGGTCATTTAGAGGAAGTAA  -3′ and Rev ITS2  5′-GCTGCGTTCTTCATCGATGC 235 

-3′) [75, 76]. The amplicon sequence  libraries were first processed with cutadapt v2.7 [77] to 236 

remove primer sequences. Amplicon sequence variants (ASVs [78]) were generated for 16S 237 

rRNA amplicons (truncLen=c(230,220), maxN=0, maxEE=c(2,5), truncQ=2) and ITS 238 

amplicons (minLen=50, maxN=0, maxEE=c(5,8), truncQ=2) dada2 v1.14 [79]. Pseudo-239 

pooling was used in ASV calling to increase sensitivity and accuracy in alpha diversity 240 

estimation. Taxonomic classification was conducted in dada2 with SILVA v138 [80] and 241 

UNITE v7.2 [81] as references. Overall the amplicon sequencing generated 19.5 million 242 

bacterial reads and 1.7 million fungal reads and these resolved to over 200,000 genuine 243 

ASVs. After the decontamination steps, true samples with > 1,000 reads (16S rRNA n = 529, 244 

ITS n = 444) were used for all subsequent analyses.  245 

 The use of high-throughput DNA sequencing for samples from low biomass habitats 246 

such as air raises the issue of confounding signal due to contaminants that are otherwise 247 

indistinguishable in higher biomass samples. We employed an experimental design for 248 

sample recovery and quality filtering of sequence data that embraced recommended best 249 

practice for minimising contaminant signal [10] (Supplementary Information). Diversity 250 
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estimation occurred only after an aggressive decontamination protocol to mitigate putative 251 

contamination in sequence libraries from our ultra-low biomass air and soil samples 252 

(Supplementary Information: Figs S5-S14, Table S2) [9, 10, 82]. This comprised subtractive 253 

filtering steps for ASVs as follows: 1) removal of non-target sequences; 2) Removal of ASVs 254 

with suspicious frequency and/or prevalence; 3) Removal of all ASVs encountered in any of 255 

the sampling, human operator or laboratory controls from all samples (i.e. not just from 256 

controls specific to a given location); 4) A highly aggressive subtractive filtering at genus 257 

level based on a meta-analysis of putative contaminants from other studies of low biomass 258 

samples [9, 10] regardless of whether or not they were also encountered in our controls. 259 

Suspiciously frequent and/or prevalent ASV were identified using the [isContaminant] 260 

function of the R package decontam [83] and removed if they met the stringent statistical 261 

threshold for frequency (0.1) or prevalence (0.5). The prevalence test was used as a further 262 

check on the step for removal of ASV from controls. The genus-level filtering targeted 263 

human-associated bacterial and fungal genera. Overall, the decontamination pipeline for our 264 

ultra-low biomass samples resulted in the removal of 16% soil, 43% NG air and 38% HA air 265 

reads from 16S rRNA gene libraries, and 28% soil, 55% NG air and 61% HA air reads from 266 

ITS libraries, and these values were in line with recommended best practice and encounter 267 

expectations for ultra-low biomass samples [9, 10, 82].  268 

 Downstream analyses were performed on datasets with and without the 269 

decontamination steps for comparison and the community composition was compared at ASV 270 

and genus level as a check for ASV inflation of diversity estimation. Post-hoc analysis of the 271 

pre- and post-decontaminated datasets were employed to estimate the effectiveness of the 272 

multi-step subtractive filtering process and identify any remaining ASVs that may represent 273 

potential residual contaminants, as well as identify any evidence for cross-contamination or 274 

auto-correlation between sample types.  Data were subsampled and rare taxa removed prior to 275 
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analysis performed on genus level taxa. Taxa were assigned pairwise correlation scores using 276 

FastSpar v1.0.0 [84] and heatmaps of correlation scores generated using gplots [85]. Groups 277 

of tightly co-associated taxa with consistent relative abundances were proposed as candidate 278 

artefacts: samples containing these artefacts were checked for correlation to available 279 

metadata such as DNA extraction or sequencing batches, and spatial or temporal sampling 280 

effort. The artefacts identified using this approach in the pre-decontaminated data were 281 

confirmed to have been removed by the decontamination pipeline. The small number of 282 

potential residual artefacts in the post-decontamination dataset are reported in the 283 

Supplementary Information.  284 

Shotgun metagenomics  285 

Independent replicates were pooled by sampling day and device to yield 120 pooled samples 286 

and 3 pooled controls for metagenomics sequencing. Libraries were prepared using a low-287 

input preparation protocol where required [86] and using the Nextera XT library kit and 288 

sequenced (2 × 150 bp paired-end) on an Illumina NextSeq 500 (Illumina, USA). Kneaddata 289 

(v0.7.4, default settings, https://github.com/biobakery/kneaddata) was used to remove low-290 

quality reads and human DNA using the human genome hG37 as reference from raw fastq 291 

files. 292 

Similar to the steps adopted for amplicon sequencing, filtered metagenomics reads 293 

were further processed in a multi-step fashion to systematically identify and remove potential 294 

contaminating nearest taxonomic units (NTU). Filtered reads from the controls were co-295 

assembled into contigs using the “assembly” module of MetaWRAP (v1.2.1) [87]. Reads in 296 

the samples that mapped to the contigs constructed (≥ 1,000 bp) in the controls were 297 

removed using Kneaddata. Next, taxonomic classification for NTU was performed using 298 

Kraken (v2.0.9-beta) [88] based on the PlusPFP database (Dec 2nd, 2020 update) and species-299 

level NTU classification was optimised using Bracken (v2.6.0) [89]. Fungal species were 300 
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identified using FindFungi (v0.23.3) [89]. Species-level information from Kraken2 and 301 

FindFungi were processed to identify potential contaminating taxa using the same steps 302 

applied to our ASV data [83]. Putative contaminants were subsequently removed using the 303 

“extract_kraken_reads.py” command (option --exclude and --include-children) from 304 

KrakenTools (v2.0.8-beta, https://github.com/jenniferlu717/KrakenTools). The percentage of 305 

unassigned reads in metagenomes was 70.34% (s.d. 14.61%), and this compares favourably 306 

with other recent studies of metagenomes from air [39]. Reads cleared of bacterial 307 

contaminants were subjected to another round of contaminant removal using Kneaddata to 308 

discard reads that mapped to representative genomes of the fungal contaminants. Genus-level 309 

subtractive filtering was not applied to archaea or protists, and viruses were poorly 310 

represented in our metagenome libraries although methodological limitations may have 311 

reduced their detection. After all the decontamination steps, a total of 1,498,558,646 high-312 

quality paired-end reads were retained across the entire dataset of 120 metagenomes, 313 

averaging 12,487,988 reads per sample. The aggressive decontamination pipeline resulted in 314 

removal of 6% soil, 8% NG air and 8% HA air filtered reads. Taxonomic profiles (phylum 315 

and species) of the high-quality reads were generated with Kraken2 and Bracken. In addition, 316 

FindFungi was used to identify fungal phyla.  317 

Functional potentials of the metagenomes were queried using HUMAnN 318 

(v3.0.0.alpha.3) [90], generating a total of 1,855,295 unique features, which were 319 

subsequently converted to 10,440 protein families (Pfams). Pfams corresponding to genes 320 

encoding carbon fixation, cold shock response, nitrogen cycle, oxidative stress, phototrophy, 321 

respiration, sporulation, starvation, trace gas metabolism, and UV repair proteins 322 

(Supplementary Information: Table S5) were examined to understand factors shaping the 323 

abundance of metabolic and stress response potentials. Gene abundance data were expressed 324 

in terms of copies per million reads from HUMAnN, which takes into account library size 325 
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differences between samples. For functional gene analysis, differentially more abundant 326 

genes in air versus soil were inversely correlated with biomass and taxonomic richness, they 327 

affiliated with taxa observed as enriched in air, and all values were averaged by location. We 328 

therefore interpreted the elevated abundance of genes in air as reflective of assemblage 329 

composition rather than an artefact of sampling effort. 330 

Statistical treatments and ecological modelling 331 

Statistical analysis: General processing of the community data including the calculation of 332 

relative abundance and estimates of alpha diversity were conducted using the R package 333 

phyloseq [91] and visualised using ggplot2 [92]. Comparative statistical analyses were 334 

performed using R: ANOVA, Kruskal-Wallis, Mann-Whitney test, Mantel test, 335 

PERMANOVA, and Procrustes analysis using vegan [93]; lmPerm (permutation test for 336 

ANOVA) (https://cran.r-project.org/web/packages/lmPerm/index.html), dunn.test (Dunn’s 337 

test for post hoc analysis, P-values were adjusted by the Holm–Bonferroni method) 338 

(https://cran.r-project.org/web/packages/dunn.test/index.html), ANCOMBC (ancombc 339 

differential abundance analysis, P-values were adjusted by the Holm–Bonferroni method) 340 

[94]. Correlations used in compositional analysis of taxonomic data to determine potential 341 

residual contaminants were calculated using FastSpar [84]. Sequence data were rarefied as 342 

appropriate for each analysis. Calculation of geographic distances were performed using R 343 

package geosphere [95] function distGeo with WGS84 ellipsoid. Source tracking was 344 

conducted by fast expectation-maximization using FEAST [44] with data from other studies 345 

(processed using dada2 following the same parameters as this study) as additional 346 

sources/sinks [96–102]  and NCBI BioProject PRJEB42801. For correlation analysis between 347 

abiotic and biotic variables the Pearson correlation coefficient for multiple pairwise 348 

combinations were calculated using the R package corrplot [103], with P-value cut-off of 349 

0.05 corrected for multiple tests using Bonferroni correction. To visualise patterns of 350 
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community dissimilarity, two methods were used. Hellinger distances were ordinated with t-351 

distributed stochastic neighbour embedding (tSNE) using R package Rtsne [104]. We also 352 

calculated Jaccard sample pair-wise distances based on the 10,000 most abundant and 353 

frequent ASVs using the R package vegan [93], and tested for locations and habitat (i.e. soil, 354 

near ground air and high elevation air) using PERMANOVA [105]. A preliminary analysis 355 

based on all reads and ASVs showed qualitatively similar patterns but higher noise (i.e. the 356 

amount of variance accounted for by the major ordination axes was relatively low due to a 357 

very high number of ASVs found only at one or two locations). We decomposed the Jaccard 358 

matrix with Principal Coordinate Analysis (PCoA) which provided a quantification of the 359 

variance accounted by each ordination axis [106].  360 

Network null models were employed to detect non-random structure in the microbial 361 

assemblages. A statistical mechanics approach was employed for network construction [31], 362 

and defined our networks as bipartite matrices with two layers: location and taxa. Analyses 363 

were performed at multiple taxonomic ranks: Phylum, Class, Order, Family, Genus, and ASV 364 

to test the expectation that the higher the taxonomic rank the more widespread major taxa are 365 

likely to be, which may result in a random distribution of taxa across locations (i.e. most 366 

phyla are found everywhere, with difference between location due to random sampling errors 367 

and difference in richness between locations). To fully test our hypothesis, we employed 368 

degree sequence constraints to enforce that for each taxon, the total number of locations in 369 

which the taxon was found was a constraint, and for each location the total number of taxa 370 

found in that location, disregarding location or taxa identity, was also a constraint. 371 

Specifically, we used the canonical bipartite configuration model, where the constraint was 372 

enforced on average and we thus we used maximum-likelihood [107, 108] to estimate the 373 

probability distribution that maximised entropy for the canonical ensembles. This approach 374 

resolved the issue encountered with random permutation for very heterogeneous and sparse 375 
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matrices, which cannot be generated and sampled in a statistically unbiased way [109, 110]. 376 

We sampled the resulting probability distribution [107, 108],  to obtain 999 null matrices 377 

representing an unbiased sample of the canonical ensemble of our location by taxa matrices 378 

using the MatLab  routine Max&Sam [111], and imported the null matrices in R for 379 

downstream analyses. We used the R packages bipartite [112] and vegan [93] to calculate the 380 

nestedness metric of NODF and Jaccard dissimilarity on the observed and null matrices. We 381 

then used the standard definition of effect size [113] to quantify the difference between 382 

observed metrics and the null distribution of the metrics. Since the distribution of the 999 null 383 

metrics were approximately normal, an effect size larger than 2 standard errors corresponded 384 

to taxonomic composition that diverged more than expected under purely random assembly 385 

with an approximate P-value < 0.05. We calculated Z‐scores for nestedness to indicate the 386 

number of standard deviations a given data point lay from the mean using the commonly 387 

employed NODF metric [114], and also using Jaccard distance to estimate pair-wise 388 

assemblage dissimilarity and test with the null model if the average dissimilarity deviated 389 

from that expected under random assembly.   390 

 391 

Results 392 

An overview of inter-domain diversity from our metagenomic libraries indicated that 393 

composition was more variable in air than soil (average Bray-Curtis dissimilarity within air 394 

samples = 0.256 vs. within soil samples = 0.038, Mann Whitney U = 8.7 × 107, P = < 2.2 × 395 

10-16, Wendt effect size r =  0.493) (Fig. 1). Bacteria were the most abundant component of 396 

soil and air metagenomes and fungi were the second highest microbial category in near-397 

ground air. Relatively low and patchy contribution was observed for archaea and microbial 398 

eukaryotes. We therefore focused further community profiling effort on bacteria and fungi 399 

with shotgun metagenomics and targeted amplicon sequencing. Sequencing of 596 samples to 400 
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near-asymptote (Supplementary Information: Fig. S3, Fig. S4) was combined with an 401 

unprecedented effort to mitigate against the occurrence of putative contaminant taxa and 402 

cross-contamination that have plagued low-biomass microbiological studies [9, 10] 403 

(Supplementary Information: Figs S5-S16, Table S2). Bacterial and fungal gene copy number 404 

indicated a conserved pattern globally where values were highest per g soil > per  m3 near-405 

ground air > per m3 high-altitude air (Kruskal-Wallis H(2) = 93.019, P < 0.05 and H(2) = 406 

98.825, P < 0.05 respectively, pairwise comparison with post-hoc Dunn’s test (between all 407 

comparisons P < 0.05) (Fig. 2; Supplementary Information: Fig. S17). Although soil and air 408 

within and above the atmospheric boundary layer are not directly comparable in terms of 409 

habitable characteristics, magnitude differences in gene copy number and estimated biomass 410 

occurred between soil and air habitats at all but the most extreme Atacama Desert location 411 

where soils are microbiologically depauperate (Supplementary Information: Fig. S17) [28]. 412 

Our community composition estimation using amplicon sequencing and shotgun 413 

metagenomics were positively correlated (Procrustes: Bacteria m2 =  0.76, correlation = 0.49, 414 

P = 0.001; Fungi m2 = 0.56, correlation = 0.66, P = 0.001) (Supplementary Information: Fig. 415 

S18), and so we focused our fine scale phylogenetic interrogation on amplicon sequence data 416 

because this approach allowed better ecological representation of the targeted assemblages in 417 

terms of sampling depth and taxonomic resolution [29]. We employed the Jaccard distance 418 

matrix to visualise the bacterial and fungal assemblages at sampling locations in three non-419 

overlapping and highly significant two-dimensional (Fig. 2) and three-dimensional 420 

(Supplementary Information: Fig. S19) clusters (PERMANOVA both P = <0.01, R2 = 0.157 421 

and R2 = 0.364 respectively). The clusters corresponded to soil, near-ground air and high-422 

altitude air habitats and this dominated community patterns. We also used Hellinger 423 

transformed Bray-Curtis distances to visualise bacterial and fungal communities grouped by 424 

habitat (soil, near-ground air, high-altitude air) and locations (Supplementary Information: 425 
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Fig. S20). The interaction terms for bacteria and fungi were significant, however, the 426 

dispersions were not homogeneous (betadisper P < 0.05) and so this may also influence 427 

observed patterns. Significant linear distance decay relationships for diversity were observed 428 

for bacterial assemblages (Mantel test, Soil: r = 0.357, P = 0.001; NG air: r = 0.353, P = 429 

0.001; HA air: r = 0.433, P = 0.002) and fungal (Soil: r = 0.507, P = 0.001; NG air: r = 0.482, 430 

P = 0.001; HA air: r = 0.535, P = 0.004 (Supplementary Information: Fig. S21). However, 431 

there was no evidence for a latitudinal gradient in richness and this mirrored observations for 432 

global soil bacterial diversity [30], and also reflected the inclusion of diverse habitats 433 

including deserts, mountains, high latitude and ocean locations in our study.  434 

We then constructed a general null model of the taxa occurrence matrices by habitat 435 

and location to validate our hypothesis that microbial diversity in air is non-randomly 436 

assembled (Supplementary Information: Fig. S22). We used the statistical mechanics of 437 

networks [31] to formulate correct null models for our data set subject to the constraints of 438 

observed taxonomic richness at each location. We calculated two metrics of community 439 

structure on the observed matrix and the ensemble of null model matrices: NODF for 440 

nestedness [32], and the classical Jaccard index for taxonomic compositional dissimilarity 441 

which is a proxy to beta diversity and turnover in taxonomic composition. Bacterial and 442 

fungal assemblages in both near-ground and high-altitude air were significantly less nested 443 

than null models when compared to the confidence interval of the baseline provided by the 444 

models, and therefore identified as taxonomically structured and non-randomly assembled 445 

(Fig. 2) [33]. The specific non-random patterns (i.e. significantly less nested than expected 446 

under random taxonomic composition) implied taxa specificity to habitat and location, and 447 

we interpreted these as indicative of strong filtering for taxa. Bacterial assemblages in soil 448 

were more similar than expected under the null model and this reflects observed global 449 

diversity patterns for soil  bacteria [30]. The highly significant deviations from the null 450 
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models (Null model overall P = <0.01), also at higher altitudes above the atmospheric 451 

boundary layer where abiotic stressors are more pronounced, suggested that the communities 452 

were selected towards non-random taxonomic compositions. The pattern was corroborated by 453 

Jaccard index estimates that showed observed bacterial and fungal assemblages in air were 454 

more dissimilar between locations than expected under the null model (Null model with 455 

overall P = <0.01) (Supplementary Information: Fig. S15, S16). Nestedness patterns 456 

converged towards the null model for all habitats at broader taxonomic ranks and this pattern 457 

has been interpreted as indicative of conserved traits among soil microbial groups, rather than 458 

due to diversification and dispersal over short time scales [33]. The pattern persisted between 459 

hemispheres sampled at peak and low growing season and across major climatic boundaries 460 

and land use types. The non-random distribution of taxa across habitat and locations 461 

suggested that some form of ecological selection (sensu [34]) was operating on the microbial 462 

assemblages. We propose that this was environmental filtering in both near-ground and high-463 

altitude air, combined with dispersal limitation, which most likely operated in terms of local 464 

surface emissions to air. We conclude that this resulted in structured and biogeographically 465 

predictable patterns for bacteria and fungi (i.e., different environmental matrices such as soil 466 

and air, and different locations, display specific, non-random taxonomic compositions).  467 

A detailed analysis of the taxonomic composition of assemblages further confirmed 468 

the macroecological patterns quantified with our null model approach. At broad taxonomic 469 

ranks (phylum-class) a relatively consistent diversity was observed in air globally regardless 470 

of underlying biome or growing season (Fig. 2; Supplementary Information: Fig. S23). A 471 

comparison of Hellinger distances between ASV and Genus defined communities revealed 472 

observations to be highly congruent between the classification methods for bacteria (m2 = 473 

0.239, correlation = 0.872, P = <0.01) and fungi (m2 = 0.187, correlation = 0.902, P = <0.01). 474 

Our amplicon sequence variant (ASV) approach to diversity analysis revealed that at finer 475 
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taxonomic scale (genus-ASV) and after extensive decontamination effort there were 13% of 476 

bacterial and 10% of fungal genera co-occurring among ≥50% of globally distributed air 477 

samples (Supplementary Information: Table S3, Table S4). The only genus with ubiquitous 478 

representation in all air samples was Sphingomonas, a diverse group linked with emissions 479 

from the phyllosphere [12, 35]. Evidence from taxonomic data for environmental filtering of 480 

assemblages in air supported the conclusions of our nestedness analysis. Bacteria enriched in 481 

near-ground air compared to soil were largely accounted for by classes encompassing taxa 482 

with known tolerance to environmental stress (Actinobacteria, Firmicutes [Bacilli, Clostridia, 483 

Limmnochordia, Negativicutes] and Gammaproteobacteria) (ANCOM-BC Holm Adjusted P 484 

= < 0.05; Effect sizes W = -2.00; 0.05; -7.89; -9.59; -3.76; -5.66; -4.09 respectively), although 485 

it cannot be ruled out that this also indicates taxa that possess adaptive traits that favour 486 

aerosolization [36].  At higher altitudes where environmental stress is exacerbated the spore-487 

forming Actinobacteria and Firmicutes were more abundant (ANCOM-BC Holm Adjusted P 488 

= < 0.05; Effect sizes W = NG air-HA air -3.35, NG air-Soil: -2.39; NG air-HA air: -4.67, 489 

NG-Soil: -8.96) (Fig. 2; Supplementary Information: Fig. S23), suggesting selection towards 490 

survival as passive resting stages. Significantly elevated abundance of gammaproteobacterial 491 

taxa at the farm location in South Africa (ANCOM-BC Holm Adjusted P = < 0.05; Effect 492 

size W= <0 for all comparisons) was consistent with emissions of this group from agricultural 493 

surfaces  [37]. In the absence of observed mycelia in air samples we concluded that spores 494 

accounted for much of the fungal signature in air (Supplementary Information: Fig. S23). 495 

This is corroborated by the elevated relative abundance of macrofungi (Agaricomycetes) and 496 

prolific spore-formers (Dothdiomycetes) (Fig. 2). The Agaricomycetes were significantly 497 

more abundant in tropical near-ground air than all other locations globally (ANCOMBC 498 

Holm Adjusted P = < 0.05, Effect size W = 12.83) and this likely reflected global patterns for 499 

terrestrial fungi [38]. In near-ground air the abundance of common fungal agricultural 500 
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pathogens (Ustilaginomycetes) was significantly elevated in temperate Northern Hemisphere 501 

locations sampled during peak growing season (ANCOMBC P = < 0.05, Holm Adjusted P = 502 

< 0.05; Effect size W = 8.66), as opposed to reduced abundance in Southern Hemisphere 503 

samples collected at the end of the growing season. Based on this observation, we suggest 504 

that seasonality in land use on a global scale is among decisive factors impacting diversity of 505 

atmospheric fungi. Previous studies at individual near-ground locales have concluded that 506 

inter-seasonal variation may variously be absent [39], weak [13], pronounced for some taxa 507 

[14] or stochastic [15]. Elevated fungal diversity in ultra-low biomass high-altitude air was 508 

indicative of persistent fungal propagules that are tolerant to extreme, prolonged UV and 509 

thermal stress. This is consistent with typically extended residence time for airborne cells at 510 

high altitudes, and this necessitates effective tolerance to these stressors during potentially 511 

long-distance dispersal [40]. Overall, our combined ecological and taxonomic data provided 512 

strong evidence that contrary to long-held dogma in microbial ecology that microbial 513 

transport in air is ubiquitous and neutral to dispersal outcomes [11, 23, 40], instead the 514 

atmospheric microbiota exhibit a pronounced biogeographic distribution.  515 

In order to further interrogate possible explanations for the observed patterns, we 516 

conducted source tracking analysis to assess the likely origin of bacteria and fungi 517 

encountered in the air. First, a connectivity analysis revealed that near-ground air displayed 518 

greatest taxonomic connectivity with local soil at any given location and less connectivity 519 

with soil from different locations (two-way ANOVA with permutation test [5,000 iterations] 520 

P = <2.2 × 10-16) (Fig. 3). Assemblages in high-altitude air displayed significantly fewer 521 

shared taxa with underlying near-ground air or soil (two-way ANOVA with permutation test 522 

[5,000 iterations] P = <2.2 × 10-16). The shapes of the curves demonstrate the ASVs shared 523 

among all samples in a habitat type, with shared ASVs co-occurring the most in soil>near-524 

ground air>high-altitude air (Supplementary Information: Fig. S24). Both bacterial and fungal 525 
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communities in high-altitude air showed much lower overall ASVs than other sample types, 526 

and displayed an obvious proximity to their lower asymptotes, suggesting more distinct and 527 

less connected communities at higher altitudes. Aerosolization of microorganisms not only 528 

occurs from soil but also from different terrestrial and aquatic surfaces, e.g. ocean surface 529 

waters [16, 22], the phyllosphere [35, 41] and desert dust events [42, 43]. We therefore 530 

employed fast expectation-maximization source tracking (FEAST) [44], to estimate 531 

recruitment to air microbiota from the surface habitats of different climatic regions (Fig. 3; 532 

Supplementary Information: Fig. S25). We matched exact ASV taxa rather than a more 533 

general operational taxonomic unit (OTU) approach based on 97-99% sequence similarity 534 

that has been previously applied to atmospheric source-tracking, and this resulted in a large 535 

volume of taxa with unexplained source but may also reflect that it is impossible to 536 

exhaustively sample potential sources. For most locations local soil was the major explained 537 

source of bacteria and fungi in air, and bacteria were sourced in a more cosmopolitan manner 538 

than fungi (Supplementary Information: Fig. S25). Many sampled air masses had significant 539 

transit over oceans and yet marine sources were a relatively minor contributor to observed 540 

diversity in air above terrestrial locations. This reflects that fewer microorganisms occur 541 

above the oceans than over land [22], and also the limited number of oceanically sourced 542 

sequence libraries for comparison. Clear patterns for terrestrial sources were apparent. 543 

Dryland soils (dry deserts, polar/alpine and dry continental locations) were pronounced 544 

sources for bacteria globally (Mann-Whitney U = 73, P = 2.937 × 10-5; Wendt effect size r = 545 

0.70) and this may reflect the more readily aerosolised non-cohesive soils typical of these 546 

biomes [43]. This expands the influence of deserts to global-scale atmospheric microbiota 547 

beyond the well-defined intercontinental desert dust transit routes for microbial dispersal [42]. 548 

For the fungi, polar and alpine soils were major sources and this is congruent with the notion 549 

that permanently cold surface substrates in these environments have been proposed to act as 550 
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long-term reservoirs for inactive fungal propagules [23]. The phyllosphere was a pervasive 551 

contributor to bacterial diversity globally, and the relatively minor contribution to fungal 552 

sources likely reflects the lack of available comparative data and broad diversity in host 553 

surfaces. This may emerge as a more significant source as the inventory of phyllosphere 554 

microbiomes increases. For high-altitude air, significant major sources of bacteria were dry 555 

deserts and polar/alpine sources (Mann-Whitney U = 1, P = 0.018, Wendt effect size r = 556 

0.93), and this likely reflects in part the adaptive advantages that taxa from these habitats 557 

have in air, e.g. UV repair and desiccation tolerance [43]. The ability to become aerosolised 558 

may vary between taxa in marine [36] and terrestrial [45] systems and so deterministic biotic 559 

drivers may also be relevant to recruitment from sources, as well as selective deposition 560 

during transit [46]. Overall, the source tracking demonstrated that atmospheric diversity is 561 

driven by a complex recruitment process involving cell emissions from local soils and 562 

transport from more distant sources, and particularly from drylands and the phyllosphere. 563 

To generate further insight into possible biotic drivers of the observed diversity 564 

patterns we conducted a functional metagenomic analysis for 120 metagenomes of selected 565 

metabolic and stress-response genes relevant to the atmospheric habitat [47, 48] (Fig. 4; 566 

Supplementary Information: Fig. S10). We targeted bacteria because they likely comprise any 567 

active fraction of the atmospheric microbiota [25]. Distribution of marker genes in air broadly 568 

reflected that for underlying soil at terrestrial locations and this supported our identification of 569 

soil as a major source for atmospheric bacteria. Traits were widely distributed globally and 570 

those for stress tolerance were notably more abundant in bacterial assemblages in air above 571 

dry and polar/alpine regions (Mann Whitney U = 2.1 x 104 P = 0.02, Wendt effect size r = 572 

0.12), thus further supporting our hypothesis that microorganisms from these surface 573 

environments are adapted to survival of the stressors encountered in air [49]. Compared to 574 

soil, air communities possessed higher abundance of the oxidative stress gene msrQ (Mann 575 
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Whitney U = 2,061, P = 0.02, Wendt effect size r = 0.22), UV-repair gene phrB (Mann 576 

Whitney U = 2,114, P = 0.01, Wendt effect size r = 0.25), and starvation gene slp (Mann 577 

Whitney U =1916.5, P = 0.01, Wendt effect size r = 0.24) (Extended Data Fig. 10). High 578 

abundance for stress-response genes in air above ocean locations may indicate that the low 579 

biomass and taxonomic richness above marine surfaces reflects strong environmental 580 

filtering. This may arise during long-distance transport from largely terrestrial sources, as 581 

well as during recruitment of bacteria from the sea surface micro-layer [50]. Metabolic 582 

marker genes for respiration were widespread, and notably for the ccoN proteobacterial 583 

cytochrome oxidase that correlated with elevated proteobacteria in air versus soil. Markers for 584 

the metabolism and fixation of a variety of gaseous atmospheric substrates including carbon 585 

dioxide, hydrogen, methane, nitrogen and isoprene, as well as phototrophy were also 586 

abundant in air. Elevated occurrence in air of the coxL gene associated with carbon monoxide 587 

metabolism was indicative of the potential for interaction with anthropogenic emissions [51]. 588 

This limited functional interrogation provided a much-needed glimpse into the potential for 589 

an active and stress-adapted atmospheric microbiome. Our data indicates that there is capacity 590 

for greater metabolic plasticity than the existing inventory from molecular genetics [26, 45] 591 

and transformation of substrates by atmospheric isolates under laboratory conditions currently 592 

suggests [52, 53].   593 

 We examined possible interactions between the taxonomic and functional diversity of 594 

assemblages and abiotic variables relevant to survival in air and soil (Fig. 5). These included 595 

both location-specific macroclimate variables, and a novel geospatial analysis approach to 596 

capture environmental conditions encountered by microorganisms during transit in air 597 

(Supplementary Information: Fig. S2). Significant correlations were revealed between both 598 

local macroclimate and transit abiotic variables and community metrics of taxonomic and 599 

functional diversity in air (P = 0.005 after Bonferroni correction). Relatively strong negative 600 
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correlations for bacterial and fungal richness and relative abundance with solar radiation and 601 

altitude provided further evidence for UV exposure as a strong selective force on global 602 

bacterial and fungal diversity.  Functional genes were most strongly correlated with mean 603 

annual precipitation, and this likely reflects niche differentiation of source communities in 604 

underlying soil at different climatic locations since we have shown they are coupled to 605 

diversity in local air. Transit variables were less influential on functional diversity and this 606 

was consistent with our hypothesis that most microorganisms in air are inactive. The 607 

correlations between occurrence of phototrophy and carbon fixation genes and several abiotic 608 

variables suggested photoautotrophic bacteria may be subject to greater selective pressure 609 

than other groups, but also likely reflects source climate because emissive dryland surfaces 610 

are typically dominated by photoautotrophic microbial soil crusts compared with plant cover 611 

in temperate and tropical climates [43]. For soil communities the correlations with 612 

macroclimate variables were broadly congruent with those observed for other global studies 613 

of soil microbial diversity [54], and this provided triangulation for our approach. These data 614 

highlight that although variables at a specific location are important, the conditions to which 615 

microorganisms are exposed during transit are a significant but previously overlooked factor 616 

affecting with taxonomic and functional diversity and are influential to dispersal outcomes.  617 

 618 

Discussion   619 

Overall we have demonstrated that atmospheric microbiota from different continents and 620 

climatic zones are non-randomly assembled, display geographic and altitudinal biogeography 621 

across large spatial scales, are recruited from a complex combination of local and distant 622 

sources, and display functional attributes favourable to survival in the atmosphere. A major 623 

strength of our study is the unprecedented attention to mitigation of confounding factors 624 

associated with sampling and bioinformatics processing of microbial diversity data from the 625 
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ultra-low biomass atmospheric environment.  We have demonstrated that standardised 626 

sampling and careful attention to decontamination of environmental sequence data from ultra-627 

low biomass atmospheric samples can reveal clear biogeographic patterns.  628 

 Based upon these findings, we envisage a global system where for any ecological 629 

region highly filtered and taxonomically structured microbial communities assemble across 630 

multiple spatial and temporal scales, which are fundamentally affected by cell survival due to 631 

environmental filtering as well as flux from source habitats. Underlying surface habitats serve 632 

as key local sources although it is clear from our findings that aerosolization and residence in 633 

air exert strong environmental filtering. It is not possible to clearly delineate between these 634 

two drivers given current understanding in microbial ecology, but we envisage selective 635 

emissions from different microbial habitats are important over short timescales whereas for 636 

longer residence times in air environmental filtering becomes more influential. We identified 637 

that atmospheric diversity is punctuated by long-distance transport of taxa primarily sourced 638 

from drylands and from the phyllosphere. Drylands support microorganisms that can be 639 

regarded as pre-adapted to atmospheric survival in view of the similar environmental 640 

stressors, namely xeric and osmotic stress and photo-oxidative stress [55]. The phyllosphere 641 

is a major source of microorganisms [41], and a bioprecipitation feedback  has been proposed 642 

that links atmospheric and phyllosphere microbiota via their involvement in ice nucleation 643 

that influences precipitation and vegetation patterns [56]. Our data suggests the influence of 644 

this feedback may extend across a broad geographic range.  Future research that integrates 645 

spatial and temporal scales will yield further insight on atmospheric microbial biogeography.  646 

Our findings also point towards an atmospheric microbiota that is enriched in stress 647 

adaptation and metabolic traits that may allow microbial activity in the atmosphere. This has 648 

important implications for consideration of the atmosphere as a true microbial habitat as 649 

opposed to a transit medium, and several laboratory studies have demonstrated primary 650 
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metabolism by atmospheric isolates, e.g. [53, 57], as well as evidence for potential metabolic 651 

activity in clouds, e.g. [58, 59]. It is important to recognise that opportunity for metabolic 652 

transformations by bacteria or fungi in air are likely to be very limited due to short residence 653 

times in air and highly heterogeneous conditions. Whether sufficient moisture, temperature, 654 

substrate availability and stress avoidance for cell homeostasis and reproduction are 655 

energetically feasible, or only quasi-dormancy within the short timeframe of favourable 656 

conditions offered during atmospheric transport remains unexplored.  657 

  Given the physicochemical and dynamic complexity of the atmosphere and the broad 658 

range of correlations we observed between taxonomic and functional diversity and abiotic 659 

factors, a chaotic system of interplay may emerge that influences atmospheric microbial 660 

ecology as envisaged for highly dispersed marine larvae [60]. Taken together we anticipate 661 

these findings will be valuable in future hypothesis-driven research both to identify 662 

interactions between surface habitats across multiple ecological scales which are mediated by 663 

the atmospheric microbiota, and to test models of recruitment, turnover, functionality and 664 

resilience. Given that the atmosphere is also a sink for a large fraction of anthropogenic 665 

emissions [51], it is timely that an accurate global inventory of microbial diversity is provided 666 

in order to present a baseline for measuring future responses to change. Finally, the study 667 

complements efforts to inventory global soil [30, 33, 54] and oceanic microbiomes [61] and 668 

expands the scope of the pan-global microbiota. 669 
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 1003 

Figure Legends  1004 

Fig 1 | A globally distributed survey of microbial communities in the atmospheric 1005 

boundary layer, free troposphere and underlying soil. a) Locations are indicated by green 1006 

boxes where: 1, Canada; 2, Mongolia; 3, Spain; 4, Japan; 5, California, USA; 6, Kuwait; 7, 1007 

Hilo, Hawaii, USA; 8; Mauna Kea, Hawaii, USA; 9, Singapore; 10, Coral Sea; 11, Namibia; 1008 

12, Chile; 13, South Africa; 14, Australia; 15, Uruguay; 16, New Zealand; 17, Southern 1009 

Ocean; 18, Antarctica. Meta-data for each location are shown in Supplementary Information. 1010 

Back trajectories are shown for near-ground air (blue lines) and high-altitude air (red lines), 1011 

The survey comprised 596 biologically independent replicates. b) Inter-domain abundance of 1012 

reads for metagenomes (n=120). Other eukaryotes included all microbial eukaryotes, viruses 1013 

were not a specific target of our study and so this likely includes only cell-associated viruses, 1014 

HA air denotes high-altitude air; NG air denotes near-ground air. 1015 

 1016 

Fig.  2 | Bacterial and fungal assemblages are taxonomically structured. a) Relative 1017 

abundance of bacterial classes in soil (n = 79), near-ground air (NG air) (n = 437) and high-1018 

altitude air (HA air) (n = 13). b) Alpha diversity metrics for bacteria. c) Bacterial assemblage 1019 

dissimilarity (Jaccard Index) by location (3-D visualizations are presented in Supplementary 1020 

Information). d) Modelled nestedness estimates for bacteria were based upon networks 1021 

constructed for each habitat and location (Fig. S22). e) Relative abundance of fungal classes 1022 

in soil (n = 79), near-ground air (NG air) (n = 437) and high-altitude air (HA air) (n = 13). f) 1023 

Alpha diversity metrics for fungi. g) Fungal assemblage dissimilarity (Jaccard Index) by 1024 
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location (3-D visualizations are presented in Fig. S19). h) Modelled nestedness estimates for 1025 

fungi were based upon networks constructed for each habitat and location (Fig. S22).  1026 

 1027 

Fig. 3 | Bacterial and fungal assemblages are recruited from local and global sources. a) 1028 

Shared bacterial and fungal taxa among habitat types within and between locations. b) Source 1029 

contribution by climate for observed bacterial and fungal diversity in air, values averaged for 1030 

each source to mitigate sample size effects (Bacteria n=529, Fungi n=444). Locations: 1, 1031 

Canada; 2, Mongolia; 3, Spain; 4, Japan; 5, California, USA; 6, Kuwait; 7, Hilo, Hawaii, 1032 

USA; 8; Mauna Kea, Hawaii, USA; 9, Singapore; 10, Coral Sea; 11, Namibia; 12, Chile; 13, 1033 

South Africa; 14, Australia; 15, Uruguay; 16, New Zealand; 17, Southern Ocean; 18, 1034 

Antarctica. HA air denotes high-altitude air; NG air denotes near-ground air. 1035 

 1036 

Fig. 4 | Assemblages possessed stress response and metabolic genes relevant to survival 1037 

in the atmosphere. a) Heatmap summarising functional metagenomic profiling of targeted 1038 

stress-response and metabolic genes by habitat type (n = 120). Full data for all replicates at 1039 

each sample-location combination is shown in Fig. S26. b) b) Distribution of stress-response 1040 

and metabolic genes by climatic region, with all locations globally pooled by climate (n = 1041 

120).  Oxid. Stress denotes oxidative stress; Trace gas met. denotes trace gas metabolism. HA 1042 

air, high-altitude air; NG air, near-ground air.  1043 

 1044 

Fig. 5 | Atmospheric taxonomic and functional diversity are correlated with 1045 

macroclimate and atmospheric transit abiotic variables. a) Correlation of location-1046 

specific macroclimate factors and abiotic stressors during transit (Supplementary 1047 

Information) with biotic traits of atmospheric assemblages. b)  Correlation of location-1048 
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specific macroclimate factors with biotic traits of soil assemblages. Blue circles denote 1049 

positive correlations and red circles denote negative correlations. Circle colour intensity and 1050 

size denote magnitude of correlation. Correlations were significant at P = <0.05. Asterisks 1051 

denote correlations that were significant after Bonferroni Correction (single asterisk P = 0.05, 1052 

double asterisk P = 0.003). MAT, mean annual temperature; MAP, mean annual 1053 

precipitation; RH, relative humidity; UV, ultraviolet radiation. Abundance, qPCR estimated 1054 

gene copy number; Richness, Chao1 estimation from rRNA gene diversity. 1055 
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Field sampling 
 

Table S1 | Globally distributed sampling locations included in the study. Locations are ordered by latitude 

from north to south. Full metadata for each sampling location and event are available upon request at 

http://atmospheric-microbiome.com/. 

 
Location 

No 

GPS 
(decimal degrees) 

Atmospheric 

cell^ 

Climate+ Altitude 
(m AMSL) 

Country/Ocean Surface cover 

1 

 

69.131, -105.057 N Polar Polar (EF) 50 Canada Arctic tundra 

2 

 

44.573, 105.648 N Ferrel Dry (BWk) 1,235 Mongolia Steppe 

3 

 

40.825, -3.961 N Ferrel Continental (Dsb) 1,830 Spain Grassland,  Sierra 

de Guadarrama 

National Park* 

4 

 

37.308, 137.232 N Ferrel Temperate (Cfa) 6 Japan Coastal forest 

5 

 

35.142, -116.104 N Ferrel Dry (BWk) 300 USA, California Mojave Desert 

6 

 

28.951, 48.192 N Hadley Dry (BWh) 0 Kuwait Kuwait Desert 

7 

 

19.703, -155.090 N Hadley Tropical (Af) 120 USA,  Hawaii (Hilo) Coastal forest 

8 

 

19.823, -155.478 N Hadley Polar (ET) 4,200 USA, Hawaii (Mauna Kea) Mountain 

9 

 

1.306, 103.772 Equatorial Tropical (Af) 19 Singapore Tropical forest, 

suburban 

10 

 

-20.827, 153.067 S Hadley Tropical ocean 10 Coral Sea Ocean 

11 

 

-23.603, 15.038 S Hadley Dry (BWh) 380 Namibia Namib Desert 

12 

 

-24.105, -70.016 S Hadley Dry (BWh) 90 Chile Atacama Desert 

13 

 

-25.753, -28.258 S Hadley Temperate (Cwb) 1,380 South Africa Livestock and 

arable farmland 

14 

 

-32.898, 116.906 S Ferrel Temperate (Csa) 320 Australia Grassland and 

arable 

15 

 

-34.354, -57.235 S Ferrel Temperate (Cfa) 10 Uruguay Rural wooded 

grassland 

16 

 

-36.916, 174.646 S Ferrel Temperate (Cfb) 61 New Zealand Wooded suburban 

17 

 

-60.288, 171.424 S Polar Polar ocean 10 Southern Ocean Ocean 

18 

 

-75.520, 163.949 S Polar Polar (EF) 98 Antarctica Polar desert 

^ Atmospheric cells describe the prevailing air movement in latitude-defined cells: Polar Cells occur at 60o and 

higher latitudes, Ferrel Cells at mid-latitudes between 30-60o, and Hadley Cells at latitudes of 30o and below.   

+ Climate codes follow the Kӧppen climate classification, major delineations were: A, tropical; B, dry; C, 

temperate; D, continental, E, polar[1]. 

*This location was affected by a Sahara Desert atmospheric dust intrusion during sampling. 
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Fig. S1 | Mean transit altitudes for sampled air.  Blue denotes ground sampling, red denotes aircraft samples, 

bar indicates altitude of sampling location. Values were estimated based upon the NOAA HYSPLIT model. 

Locations: 1, Canada; 2, Mongolia; 3, Spain; 4, Japan; 5, California, USA; 6, Kuwait; 7, Hilo, Hawaii, USA; 8; 

Mauna Kea, Hawaii, USA; 9, Singapore; 10, Coral Sea; 11, Namibia; 12, Chile; 13, South Africa; 14, Australia; 

15, Uruguay; 16, New Zealand; 17, Southern Ocean; 18, Antarctica. HA air denotes high-altitude air; NG air 
denotes near-ground air. 
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Fig. S2 | Atmospheric variables encountered by microorganisms during transit to each sampling location. 

a, Temperature. b, Solar flux. c, Relative humidity. d, Transit over land/ocean. e, Transit altitude. f, Transit 

velocity. Data was obtained from the NOAA HYSPLIT-model, and long-range trajectories and abiotic variables 

were estimated using the GDAS database. 
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Sampling effort for amplicon and metagenome sequencing 

Fig S3 | Rarefaction curves for amplicon sequencing. a, Bacteria (soil (n = 79), near-ground air (NG air) (n = 

437) and high-altitude air (HA air)). b, Fungi (soil (n = 70), near-ground air (NG air, n = 363) and high-altitude 

air (HA air, n = 11)). 
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Fig S4 | Rarefaction curves for Metagenomes (n = 120). NG air denotes near-ground air and HA air denotes 

high-altitude air. 
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Decontamination of environmental sequence data 

 
Here we present supporting evidence to demonstrate our decontamination pipeline resulted in effective removal 

of contaminants and did not adversely impact the observed ecological patterns for our data. Our approach to 

decontamination adopted and fully reports a thorough multi-step decontamination protocol as recommended in 

landmark meta-analyses and methods papers [2, 3]. The decontamination of our sequence data was an integral 

part of our wider approach to careful sampling of ultra-low biomass atmospheric samples and soils (Fig. S5).  

 

Fig S5 | Summary of steps taken to minimise contamination during environmental DNA recovery and 

sequencing from low biomass air and soil samples. QC denotes quality control, ASV denotes amplicon 

sequence variant, NTU denotes nearest taxonomic unit used for taxa assignment from metagenomes. 

 

 

 
 

 

Our close attention to careful field sampling and laboratory workflow resulted in very low read numbers for our 

control samples compared to environmental samples (Fig. S6). A very small number of 16S rRNA gene 

sequencing controls (n   = 3) with higher reads did not identify significantly more ASVs for removal, rather they 

largely comprised higher read numbers of ASVs that also occurred in other controls. We regard this as an 

important part of the heterogeneity encountered in environmental microbiology and so we retained these 

controls in our decontamination pipeline. Due to our careful attention to randomization and replication the 

higher reads in the small number of controls did not impact the ecological patterns presented for the filtered 

data. 
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Fig. S6 | Sequencing read depth for controls and environmental samples. a, Bacteria read depth (controls: n 

= 35; samples: n = 529). b, Fungi read depth (controls: n = 35; samples: n = 444). c, Metagenomes read depth 

for controls (n = 3, pooled by type from 35 independent control samples) and samples (n = 120). Boxplots 

indicate median (line) and interquartile range (boxes). 

 

 

 

 

We report the removal of reads at each of the aggressive decontamination steps for our amplicon sequence data 

as per recommended best practice (Table S2) [3]. Sequencing studies of dilution series for mock communities 

have shown that there is an unavoidable increase in contaminant signal as starting template decreases [4]. This 

and other studies, e.g. [2], indicate that the percentage of contaminants detected during dilution series to obtain 

template DNA levels similar to those in our study were comparable or higher (approx. 50-80% in mock 

communities) to those we observed for our environmental samples, thus supporting that the level of 

contaminants we reported was not unexpectedly high for the ultra-low biomass habitats we interrogated. 

Furthermore, the proportion of reads removed from our dataset is consistent with the range in published reports 

for other ultra-low biomass environmental studies where numbers have been disclosed, i.e. Kiledal et al. (2021) 

removed 85% of amplicon reads during decontamination [5]; Els et al. (2019) removed 40% of amplicon OTUs 

during decontamination [6]. 

 We report the diversity of ASV removed at each stage of our decontamination process (Fig. S7). 

Untargeted sequence removal included reads affiliated with chloroplasts, mitochondria and other non-target 

organisms. The R package decontam was applied using a stringent statistical threshold for frequency (0.1) 

and/or prevalence (0.5) as described in the Methods. Control removal included any taxa occurring in any of the 

field blanks, laboratory blanks or swabs of human operator gloves being filtered from all samples. Finally, the 

filtering of named genera targeted any  remaining taxa commonly reported as human-associated (n = 21 genera) 

contaminants in published meta-analyses of ultra-low biomass microbiomes [2, 3]. 
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Table S2 | Total percentage of sequenced reads removed from each step of the decontamination process.  

 

16S rRNA gene sequencing decontamination (% of total reads removed from previous step) 

 Soil NG air HA air 

Untargeted (%) 0.71 10.84 6.35 

Decontam (%)+ 9.67 21.65 21.24 

Control removal (%)# 4.99 9.57 8.43 

Genus-level filtering (%)^ 0.22 0.9 1.58 

Total removed (%) 15.58 42.98 37.60 

ITS sequencing decontamination (% of total reads removed from previous step) 

 Soil NG air HA air 

Untargeted (%) 1.0 0.07 0.05 

Decontam (%)+ 23.28 42.98 51.25 

Control removal (%)# 3.24 12.39 10.09 

Genus-level filtering (%)^ 0.13 0.06 0.03 

Total removed (%) 27.55 55.49 61.44 

+ The removal of suspiciously frequent and/or prevalent ASVs using the R package decontam resulted in higher 

numbers of removed ASVs from near-ground air and high-altitude air samples due to the ultra-low biomass of 

samples and unavoidable increase in contaminant signal [2, 3].  

# ASVs occurring in any of the field sampling controls, human operator controls or laboratory reagent controls 

were removed from all samples regardless of whether they were encountered in location-specific or habitat-

specific controls where a given sample was recovered.  

^ Whilst our decontam and control removal steps removed most common human and reagent contaminants, we 

also applied an additional subtractive filter to remove any remaining suspected human-associated contaminants.  

We targeted the following bacterial genera: Bacteroides, Bifidobacterium, Corynebacterium, 

Cutibacterium/Propionibacterium, Escherichia, Faecalibacterium, Haemophilus, Klebsiella, Lactobacillus, 

Listeria, Moraxella, Neisseria, Porphyromonas, Prevotella, Shigella, Salmonella, Staphylococcus, 

Streptococcus and Veillonella.  We also removed ASV affiliating with the human-associated fungal genera 

Candida and Malassezia. We acknowledge that some of these genera, e.g. Klebsiella, Lactobacillus, Listeria, 

Candida (together approx. 0.1% reads in our study) may also support environmental taxa but we chose to take a 

cautious approach and remove all ASVs in the genus because most in our study affiliated to human-associated 

taxa or it was uncertain if they were genuine environmental taxa.  

A similarly rigorous process was applied to our metagenomes: 

Shotgun metagenome decontamination (% of total reads removed from previous step) 

 Soil NG air HA air 

Contaminant contig mapping (%) 4.86 5.33 4.21 

Decontam (Bacteria) (%) 0.29 1.03 1.5 

Genus-level filtering (Bacteria) (%) 0.61 1.56 1.13 

Decontam (Fungi) (%) 0.069 0.47 1.52 

Genus-level filtering (Fungi) (%) 0.0002 0.0008 0.014 

Total removed(%) 5.83 8.39 8.38 
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Fig. S7 | Taxonomic identity of reads removed during the decontamination process. Taxonomic 

composition of removed reads for the 10 most abundant classes at each decontamination step (a) and overall (b) 

bacterial amplicon data; Taxonomic composition of removed reads for the 10 most abundant classes at each 

decontamination step (c) and overall (d) fungal amplicon data. Note: Cyanobacteria removed reads affiliated to 

chloroplasts, a portion of Alphaproteobacteria reads removed affiliated to mitochondria. 

 

 
 

 

We next performed a post-hoc analysis of our filtered dataset after decontamination to estimate the effectiveness 

of the multi-step subtractive filtering process and identify any remaining ASVs that may represent potential 

residual contaminants, as well as identify any evidence for cross-contamination between sample types.  In order 

to focus on unequivocal contamination events, we subsampled the data to 1000 reads per sample and removed 

taxa that were present in fewer than 10 samples. FastSpar correlation scores and their P values were determined 

for genus-level taxa and then heatmaps were used to visualise clusters indicative of potential artefacts (Fig S8). 

Next, taxonomic composition of each cluster were checked for frequency and prevalence of the taxa throughout 

the dataset. For a cluster to be identified as an artefact suitable for subtraction we applied the following criteria: 

i) It should align with metadata such as processing batch, sequencing batch, or reagent lot numbers, ii) It should 

be implausibly consistent between samples, for example if it spans multiple ecological locations, iii) it should be 

extremely rare beyond the artefact itself.   

 The analysis revealed a small number of clusters in the bacterial and fungal datasets and weak 

correlation blocks overall. This indicates a low possibility of exogenous contaminant since taxa arising from a 

common source would correlate more strongly than real ecological associations. There was no evidence for 

batch effects (i.e. correlation blocks did not match up with processing batch, sequencing batch, or reagent lot 

numbers) but a small number of genera displayed clustering indicative of potential residual contamination. A 

cluster comprising Ampullimonas, Rhizobacter, Tardiphaga, Variovorax, and unclassified Methylophilaceae 

appeared to form a tightly correlating pattern that was not tied to geographic origin and so they are likely to be 

residual contaminants. Additional weak clusters yielded inconclusive evidence for potential residual 
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contamination from Acidovorax, Bradyrhizobium Pseudomonas, Ralstonia, and Sphingomonas.  The latter 

genera contain ASVs that were removed during our decontamination steps but they also contain known 

environmental taxa and so removing them at genus level was deemed imprudent. For the fungi a single 

correlation block affecting 88 samples was identified as worthy of further scrutiny, but since these samples all 

originated from marine and maritime locations in the southern hemisphere it was concluded this likely 

represented a valid separation from other samples geographically and by ocean-land site separation. 

 

Fig. S8 | Post-decontamination check for residual contaminants. Heatmaps visualise taxon correlation clustering 

for a) bacterial and b) fungal genera. 
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We identified all ASVs in our filtered bacterial dataset that affiliated within the genera identified as potentially 

suspicious from this analysis (Fig. S9). Most of these formed a very low percentage of overall diversity with the 

exception of Ralstonia, where a small number of ASVs occurred with higher frequency in some high-altitude air 

samples. In view of the overall low number of potential residual contaminants, that they affiliated with genera 

that have known environmental taxa as well as commonly encountered contaminants, and in order to preserve 

the clear step-wise decontamination process was applied identically across samples; we chose not to perform 

further removal of these ASVs, although we report their taxonomic affiliation so that this can be used to nuance 

our data.  The filtered fungal dataset revealed no potential residual contaminants. 

 

Fig. S9 | Taxonomic composition of potential residual contaminants. Data shown as a fraction of the filtered 

bacterial datasets from different habitats. NG Air = near-ground air, HA Air = high-altitude air. 

 
We further analysed our data to examine the potential for batch effects (cross contamination) because this is of 

particular importance when sampling habitats with highly differing biomass such as air and soil. We also 

examined our data for potential signals of temporal or spatial auto-correlation.  

 

Several steps were taken to minimise the potential for cross contamination:  

1. Soil and air were sampled separately in time (i.e. soil was collected immediately after each air 

sampling) and in terms of potential cross-contact (i.e. separate field equipment and processing for soil 

and air). All samples (i.e. both soil and air) entered the laboratory in the same state in separate sealed 

and surface-sterilised sample tubes as a mixture in nucleic acid preservative solution (i.e. no free soil 

particulates were introduced to the laboratory). 

2. The processing of all samples was fully randomised for location and habitat type. The randomised 

workflow involved some batches where both air and soil samples were processed in the same batch and 

others where air samples only were processed, but we conducted two very important steps to check for 
potential cross contamination: i) We adopted a workflow where for every batch, each sample tube was 

processed individually within a BSL2 flow hood. This means that at any given time during laboratory 

work only a single sample tube was opened during processing to reduce the chance of cross-

contamination (the main source of cross-contamination is thought to be micro-fluid splashes between 

samples). No multiplexing was employed during pipetting. We believe this was a necessary although 

extremely laborious step to avoid cross-contamination. ii) We conducted statistical tests to determine 

batch-type did not result in significantly different estimates, i.e. there was no evidence for cross-

contamination between soil and air samples. Matching samples (from same location and same sample 

types but differing in sequencing batches which had either air samples only or with air and soil 

samples) showed significant concordance and low sum of squared errors, thus high goodness of fit 

(Bacteria: n = 250, m2 = 0.043333, P = 0.001; Fungi n = 186, m2 = 0.049571, P = 0.001) between their 
ordination coordinates (PCoA with Hellinger distance) (Fig. S10). This suggests low influence within 

each sequencing batch (the dissimilarities of the communities were preserved regardless of other 
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samples in the sequencing batches). This was also supported by a Mantel test of the community 

distances (Bacteria: n = 250, r = 0.818, P = 0.001; Fungi n = 186, r = 0.915, P = 0.001). These findings 

were also supported by our post-decontamination correlation analysis above (Fig. S8), where there it 

was clear that cross contamination between air and soil samples had been successfully avoided. 

3. In addition, controls were included at all sampling and lab processing stages and these were included in 
the randomised workflow to check for sampling and laboratory reagent contamination (i.e. controls 

were randomly incorporated into each batch). We also employed other stringent measures to avoid 

contamination such as full PPE for operators, bleach-sterilization of all laboratory surfaces and 

equipment contact surfaces, and UV illumination of workstations when not in use. 

4. Our amplicon and metagenome sequencing devices were located in different laboratories and yielded 

comparable diversity trends across all samples, which we confirmed statistically using Procrustes 

analysis (Bacteria M2 =  0.76, correlation = 0.49, p = 0.001; Fungi M2 = 56, correlation = 0.66, p =  

0.001). This provided evidence that cross-contamination during sequencing was highly unlikely due to 

our randomised workflow.  

 

Matching samples (from same location and same sample types but differ in sequencing batches which had either 

air sample only or with air and soil samples) showed significant concordance and low sum of squared errors, 

thus high goodness of fit (Bacteria: n = 250, m2 = 0.043333, P = 0.001; Fungi n = 186, m2 = 0.049571, P = 

0.001) between their ordination coordinates (PCoA with Hellinger distance). This suggests low influence within 

each sequencing batch (the dissimilarities of the communities were preserved regardless of other samples in the 

sequencing batches). This was also supported by a Mantel test of the community distances (Bacteria: n = 250, r 

= 0.818, P = 0.001; Fungi n = 186, r = 0.915, P = 0.001). It was clear from ordinations that sampling date did 

not affect location and habitat-specific clustering and so temporal auto-correlation was discounted as a 

confounding factor (Bacteria n =449, Fungi n =365) (Fig. S10). We also performed checks using PCNM to 

discount the effects of spatial auto-correlation on our findings [7, 8]. Our sampling design was dominated by 

very large distances that separated the main locations across the major biomes and continents we sampled across 

the globe. Due to the lack of hierarchical structure this design was not intended to account for smaller spatial 

scales such as within continents or between locations within the same continent. Because of this reason, when 

we applied PCNMs to our dataset, the results indicated that latitude and longitude were the major spatial 

correlates of the multivariate distribution displayed, as shown in the Results where samples clearly clustered by 

geographic location. The simple linear effect of latitude and longitude thus dominated as a simple expression of 

the large distance between our sampling locations, and the resulting PCNMs (eigenvectors) extractable from our 

distance matrix accounted for such a small amount of variance that we eventually excluded these vectors after 

our preliminary check for auto-correlation. We therefore also calculated and reported distance decay and co-

occurrence analysis in the main manuscript to add another layer of support that spatial auto-correlation was not a 

significant confounding factor on our observations.  Our post-decontamination correlation plot for location at 

genus level (Fig. S8) also revealed no patterns that support the existence of strong spatial auto-correlation 

independent of the differences expected and observed due to different climate and habitat. 
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Fig. S10 | Evaluation for batch effects and temporal auto-correlation in samples. Hellinger distance for 

global bacterial (a) and fungal (b) assemblages, decomposed as weighted community diversity-abundance using 

tSNE.  Processing batch type (batches with air samples only versus batches with air and soil samples) and 

sampling date (temporal variation) are visualised.  
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We then plotted visualisations of our data to illustrate ASV removed from each location and habitat type (Fig. 

S11), and the diversity of filtered ASV in all samples pre- and post-decontamination (Fig. S12, Fig. S13). 

 

Fig. S11 | Taxonomic identity of reads removed during the decontamination process by location and 

habitat type. Taxonomic profile of putative contaminants removed from bacterial amplicon (a) and 

metagenome (c) data averaged by location. Taxonomic profile of putative contaminants removed from fungal 

amplicon (b) and metagenome (d) data averaged by location. NG air = near-ground air, HA air = high-altitude 

air. Relative abundance indicates occurrence as a percentage of all contaminant ASV and not the occurrence of 

legitimate sample ASV. Locations: 1, Canada; 2, Mongolia; 3, Spain; 4, Japan; 5, California, USA; 6, Kuwait; 

7, Hilo, Hawaii, USA; 8; Mauna Kea, Hawaii, USA; 9, Singapore; 10, Coral Sea; 11, Namibia; 12, Chile; 13, 

South Africa; 14, Australia; 15, Uruguay; 16, New Zealand; 17, Southern Ocean; 18, Antarctica. Location 

metadata are shown in Supplementary Information. 
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Fig. S12 | Comparison of bacterial diversity estimation pre- and post-decontamination. Taxonomic 
composition for bacteria (for classes ≥0.1% mean relative abundance) for raw data (a) and post 

decontamination pipeline (b). 

 

Fig. S13 | Comparison of fungal diversity estimation pre- and post-decontamination. Taxonomic 

composition for fungi (for classes ≥0.1% mean relative abundance) for raw data (a) and post 

decontamination pipeline (b).  
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We then tested that our robust decontamination protocol did not have a significant impact on the strong 

ecological patterns by habitat type and location as highlighted in our manuscript (Fig. 2, Extended Data Figs 3 

& 4). We performed ordinations (tSNE based on Hellinger Distances) for the community separately for raw and 

filtered data (i.e. pre- and post-decontamination) (Fig. S14). This was confirmed with strong and significant 

correlations for both Procrustes and Mantel tests based on Pearson’s product-moment correlation for congruence 

for bacteria (Procrustes m2 = 0.089, correlation = 0.955, P = <0.01 and confirmed by Mantel statistic r = 

0.744, P = <0.01); and fungi (Procrustes m2 = 0.083, correlation = 0.958, P = <0.01 and confirmed by Mantel 

statistic r = 0.901, P = <0.01). 

 

Fig. S14 | Comparison of community clustering pre- and post-decontamination. Ordinations (tSNE based 

on Hellinger Distances) for bacteria raw data (a), bacteria post-decontamination pipeline (b); Fungi raw data (c) 

and fungi post-decontamination pipeline (d). We tested that our robust decontamination protocol did not have a 

significant impact on the strong ecological patterns by habitat type and location as highlighted in the manuscript 

(Fig. 2, Extended Data Figs 3 & 4). We performed ordinations (tSNE based on Hellinger Distances) for the 

community separately for raw and filtered data (Fig. 6). This was confirmed with strong and significant 

correlations for both Procrustes and Mantel tests based on Pearson’s product-moment correlation for congruence 

for bacteria (Procrustes m2 = 0.089, correlation = 0.955, P = <0.01 and confirmed by Mantel statistic r = 

0.744, P = <0.01); and fungi (Procrustes m2 = 0.083, correlation = 0.958, P = <0.01 and confirmed by Mantel 

statistic r = 0.901, P = <0.01). 
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Supplementary discussion on use of Null models in the study 

 
Models 

Null models are widely used by ecologists to detect non-random patterns in data matrices These models 

generally require a randomization of observed data subjected to some constraints. The constraints should reflect 

the hypotheses under investigation [9–11]. The typical data matrix analysed by ecologists are species by site 

tables and tables that represent interactions between different groups of species (for example plant-pollinator or 

plant-root symbiont networks). Classical ecological null models are constructed by constrained permutations, 

which usually fix some general property of the data matrix such as the column or row margins [11–13]. A 

metric quantifying the pattern under investigation is then calculated both on the observed data matrix and the 

randomly generated matrices. Using the logic of null models, the difference between the observed metrics and 

the metrics in the randomised null matrices is expressed as the z-score of the metric, say metric 𝑋, as:  

𝑧! =
𝑋(𝑶) − 〈𝑋〉

𝜎(𝑋) = 𝑋∗ − 〈𝑋〉
𝜎(𝑋)  

Where O is the observed data matrix, 𝑋∗	is the observed value of the metric and 〈𝑋〉 and 𝜎(𝑋) are the expected 

value and standard deviation in the ensemble of the permuted matrices. If 〈𝑋〉 and 𝜎(𝑋) describe a normal 

distribution, the probability of observing a difference beyond two standard deviations just by chance would be 

roughly 0.05, but if the distribution is not normal an operational p-value < 0.05 can be calculated following 

classical null modelling [9]. As explained in the main methods, we did not use permutations of the raw data to 

construct our null models. The reason is that producing a large number of randomly rewired matrices using 

permutations leads to a set of biased null model matrices, if the original matrix is heterogeneous (e.g. some taxa 

are much more widespread than others) and sparse [14, 15]. Local randomization algorithms risk sampling the set 

of null, random matrices non-uniformly, which means that the estimates of the metrics measured on the data 

matrix is not guaranteed to correspond to the correct theoretical expectation. Given all these issues, which would 

likely affect a classical null model analysis of our data set, we used the so-called network canonical ensemble, a 

model belonging to the set of methods known as the statistical mechanics of network. The most complete reference 

for our approach is in the book by Squartini & Garlaschelli 2017 [16]. Briefly, we interpreted the taxon by location 

data matrix as a binary bipartite network that describes the occurrence of each taxon at each location. We used 

the number of taxa at each location or, conversely, the number of locations in which each taxon was found as the 

constraining vector for the construction of the null model ensemble. The null model matrices will thus be fully 

random in terms of which taxon is found at each location, which is central to hour hypothesis of a non-randomly 

structured air microbiome. At the same time, the number of taxa per location and also the number of locations in 

which each taxon is found is, on average, the same in the null models and in the observed matrices. This is 

important, because it means that deviations of observed data from the null models will be affected solely by the 

taxonomic composition of the assemblage. As it can be easily shown following the derivations [16], the 

Hamiltonian of the graph corresponding to our model would then be 

H(𝐀, 𝛉) =0θ#k#(𝐀)
#

=00(θ# + θ#)a#$
$%##

 

for a general binary matrix, and the probability distribution of each occurrence in the matrix 

P(𝐀|𝛉) =77	p
#$

&!"

$%#

91 − p#$;'(&!"
#

.	 

This solution can easily be reparametrized to describe a binary bipartite graph [17]. The probability distribution 

P(𝐀|𝛉) is the correct (i.e. it maximises entropy) probability distribution for each taxon randomly occurring in 

each location, subject to the constraints given by the number of locations in which that taxon can be found, and 

the number of taxa found in each location. The parameters of the distribution can be estimated using maximum 

likelihood methods [18] (described in the Methods). The probability distribution is then sampled [19], to generate 

the desired number of randomised matrices (we sampled 999 matrices) and construct the null model. As the 

probability distribution is analytically derived for each of the three types of samples we analysed (soil, near ground 

and high elevation air), each type of sample (soil, NG air and HA air) has its own baseline or null model.  
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Metrics  

The metrics we tested in the null models were NODF, a metric of nestedness, and the Jaccard index. There is a 

vast, and often lively debated literature on the property of nestedness. Nested pattern have been defined as 

(quote) “[nested patterns] are those in which the species composition of small assemblages is a nested subset of 

larger assemblage” [20]. This applies also to randomly assembled communities and so a null model is needed to 

test whether nestedness pattern are not random. Assume the microbial composition at each location is 

completely random and just reflects recruitment of the most abundant taxa from the regional pool. Then, any 

local community that randomly recruits a relatively small number of taxa will form a subset of the local 

communities that randomly happen to recruit a relatively large number of taxa. However, if different groups of 

local communities or, also, individual local communities, are characterised by a particular and unique taxonomic 

composition, with some taxa that specifically occur only at certain locations and others that occur at other 

locations, observed nestedness will be much lower than expected under a null model that fully randomise taxa 

composition.  

 Our second metrics, the Jaccard index on presence/absence data, quantifies pairwise community 

dissimilarity. The higher the index the lower the number of taxa shared by the two compared locations. One can 

thus calculate the average dissimilarity of a taxon by location matrix, which we did both for the observed and 

null model matrices.  Our results (Fig. 2) showed that bacterial (Fig. S15) and fungal communities (Fig. S16) in 

air were more dissimilar than expected under the null model. Fungi in soil showed the same difference. Instead, 

bacteria in soil were more similar than expected under the null model.  

 
Fig. S15 | Jaccard network null model for bacterial ASV. 
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Fig. S16 | Jaccard network null model for fungal ASV. 

 

There are several possible explanations for convergence and divergence of taxonomic composition relative to 

the baseline provided by a stochastic null model (e.g. [21–25]). Soil appeared to have “homogenised” ASV and 

also at higher rank community composition (not shown) relative to the null model. This could be due to 

selection forces such as environmental filtering combined with limited dispersal, as discussed in the main text. 

In contrast, Air made ASV and also higher rank taxa composition more heterogeneous than in the null model. 

This type of compositional divergence, too, can be due to selective forces but with the environmental conditions 

of the locations varying to a large extent between locations, which diversifies the composition of communities 

across locations. The explanations we are offering for these patterns of compositional dissimilarity observed in 

air and soil remain hypotheses to be tested in the future but the Jaccard pattern, together with NODF 

demonstrates the non-random structure of the air microbiome in terms of the distribution of taxa across the 

network of locations of this study. 
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Inventory of taxa 

Table S3 | List of bacterial genera prevalent in ≥ 50% of soil and/or air samples.  

Prevalent in soil only Prevalent in both Prevalent in air only 

Acidovorax Abditibacterium, Actinoplanes, 

Adhaeribacter, Allorhizobium-

Neorhizobium-Pararhizobium-Rhizobium, 

Altererythrobacter, Arthrobacter, Bacillus, 

Bdellovibrio, Belnapia, Blastocatella, 

Blastococcus, Bryobacter, 

Candidatus_Alysiosphaera, 

Candidatus_Udaeobacter, Cellulomonas, 

Chthoniobacter, Conexibacter, Devosia, 

Ellin6055, Flaviaesturariibacter, 

Flavisolibacter, Flavobacterium, 

Friedmanniella, Gaiella, Gemmata, 

Gemmatimonas, Geodermatophilus, 

Haliangium, Hymenobacter, Lautropia, 

Luteitalea, Lysobacter, Marmoricola, 

Massilia, Methylobacterium-

Methylorubrum, Micromonospora, 

Microvirga, Modestobacter, 

Mycobacterium, Nocardioides, 

Noviherbaspirillum, Novosphingobium, 

Oligoflexus, Pedobacter, Peredibacter, 

Pirellula, Pontibacter, Pseudomonas, 

Pseudonocardia, Psychroglaciecola, 

Quadrisphaera, Ramlibacter, RB41, 

Rhizobacter, Rhodocytophaga, 

Roseisolibacter, Roseomonas, 

Rubellimicrobium, Rubrobacter, 

Segetibacter, Skermanella, Solirubrobacter, 

Sphingomonas, Spirosoma, 

Stenotrophobacter, Steroidobacter, 

Streptomyces, Subgroup_10, Sumerlaea, 

Truepera, Variovorax, YC-ZSS-LKJ147 

 

Acidibacter 

Acinetobacter Amaricoccus 

Ammoniphilus Archangium 

Aquabacterium Aridibacter 

Atopostipes Caenimonas 

Bhargavaea Caulobacter 

Chryseobacterium CL500-29_marine_group 

Clostridium Crossiella 

Cnuella Edaphobaculum 

Craurococcus-Caldovatus Ellin517 

Deinococcus Ellin6067 

Domibacillus Ferruginibacter 

Georgenia Fimbriiglobus 

Kineococcus Flavitalea 

Kocuria Herpetosiphon 

Limnobacter Iamia 

Longimicrobium JGI_0001001-H03 

Luteimonas Leptothrix 

Lysinibacillus Mesorhizobium 

Microbacterium MND1 

Oceanobacillus Nitrosospira 

Ornithinimicrobium Nitrospira 

Paenibacillus Opitutus 

Paeniclostridium Pajaroellobacter 

Pantoea Pedomicrobium 

Paracoccus Phaselicystis 

Planococcus Phenylobacterium 

Planomicrobium Pir4_lineage 

Pseudarthrobacter Reyranella 

Rufibacter Rhodopirellula 

Salinicoccus Rhodoplanes 

Salinimicrobium Sporocytophaga 

Solibacillus Tepidisphaera 

Sporosarcina TM7a 

Tumebacillus 
 

Turicibacter 
 

UCG-005 
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Table S4 | List of fungal genera prevalent in ≥ 50% of soil and/or air samples.  

Prevalent in soil only Prevalent in both Prevalent in air only 

Acremonium Alternaria Exophiala 

Agaricus Aspergillus Knufia 

Botrytis Bipolaris Mortierella 

Ceriporia Chaetomium Oedocephalum 

Cladosporium Coprinellus Powellomyces 

Dioszegia Coprinopsis Rhizophlyctis 

Ganoderma Curvularia Saitozyma 

Gymnopus Didymella Stagonosporopsis 

Mycosphaerella Filobasidium Westerdykella 

Neoascochyta Fomitopsis 
 

Nigrospora Fusarium 
 

Paradendryphiella Gibberella 
 

Paraphaeosphaeria Naganishia 
 

Phellinus Neocamarosporium 
 

Phlebiopsis Papiliotrema 
 

Psathyrella Penicillium 
 

Resinicium Peniophora 
 

Sarocladium Periconia 
 

Selenophoma Phaeococcomyces 
 

Spegazzinia Phaeosphaeria 
 

Torula Phanerochaete 
 

Toxicocladosporium Phlebia 
 

Trametes Preussia 
 

Tranzscheliella Pseudopithomyces 
 

Tulostoma Vishniacozyma 
 

Udeniomyces 
  

Ustilago 
  

Wallemia 
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Metagenomics functional gene targets 
 

Table S5 | Functional genes targeted in the metagenomics inquiry of air and soil. A suite of respiratory 

genes was used as a general marker of potential for metabolically active taxa, and targeted metabolic and stress 

response genes were selected based upon substrates and stressors encountered in the atmospheric habitat. No 

hits were recorded for ina genes and this likely reflects low homology between taxa. 

 
 

Trait Protein Gene 

Respiration ATP synthase atpA 

Cytochrome cbb3 oxidase ccoN 

Cytochrome aa3 oxidase coxA 

Cytochrome bd oxidase cydA 

Cytochrome bo3 oxidase cyoA 

NADH-ubiquinone oxidoreductase subunit F nuoF 

Succinate dehydrogenase/fumarate reductase sdhA/frdA 

Carbon fixation Ribulose 1,5-bisphosphate carboxylase/oxygenase rbcL 

Nitrogen fixation Nitrogenase nifH 

Phototrophy Photosystem I reaction centre protein psaA 

Photosystem II reaction centre protein psbA 

Microbial rhodopsin RHO 

Atmospheric trace gas metabolism 
(carbon monoxide, hydrogen, methane, 

isoprene) 

Aerobic carbon monoxide dehydrogenase coxL 

Hydrogenase Fe 

Hydrogenase FeFe 

Isoprene oxidation gene isoA/mmoX 

Soluble methane monooxygenase mmoX 

Particulate methane monooxygenase pmoA 

cold-shock Cold shock  protein A cspA 

Cold shock  protein B cspB 

Cold shock  protein G cspG 

Cold shock  protein I cspI 

Oxidative stress Protein-methionine sulfoxide reductase msrP 

Protein-methionine sulfoxide reductase msrQ 

Sporulation Sporulation protein 0A spo0A 

Starvation/stationary phase DNA-protection during starvation protein dps 

Outer membrane protein slp 

UV response/repair Deoxyribodipyrimidine photo-lyase phrB 

UvrABC system protein A uvrA 

UvrABC system protein B uvrB 

UvrABC system protein C uvrC 

Ice nucleation Ice nucleation protein A inaA 

Ice nucleation protein X inaX 

Ice nucleation protein W inaW 

Ice nucleation protein Z inaZ 
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Supplementary data analysis 

Fig. S17 | Global patterns in alpha diversity for bacteria and fungi in air and soil. a) DNA yield from air 

and soil samples, note that values are not directly comparable between soil and air. b) Bacterial alpha diversity 

metrics (n = 529). c) Fungal alpha diversity metrics (n = 444). Abbreviations: MK, Mauna Kea; NZ, New 

Zealand; SA, South Africa; SO, Southern Ocean; HA air, high-altitude air; NG air, near-ground air.  
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Fig. S18 | Comparison of diversity estimation using shotgun metagenomics and amplicon sequencing of 

air and soil. a) Relative abundance of twenty most abundant bacterial phyla estimated from metagenomes (n = 

120). b) Relative abundance of twenty most abundant bacterial phyla estimated from amplicon sequencing (n = 

529). c) Relative abundance of fungal phyla estimated from metagenomes (n = 120). d) Relative abundance of 

fungal phyla estimated from amplicon sequencing (n = 444). Community composition estimation using 

amplicon sequencing and shotgun metagenomics were positively correlated (Procrustes: Bacteria m2 =  0.76, 

correlation = 0.49, P = 0.001; Fungi m2 = 0.56, correlation = 0.66, P = 0.001), and so we focused our fine scale 

phylogenetic interrogation on amplicon sequence data because this approach allowed better ecological 

representation of the targeted assemblages in terms of sampling depth and taxonomic resolution. Locations: 1, 

Canada; 2, Mongolia; 3, Spain; 4, Japan; 5, California, USA; 6, Kuwait; 7, Hilo, Hawaii, USA; 8; Mauna Kea, 

Hawaii, USA; 9, Singapore; 10, Coral Sea; 11, Namibia; 12, Chile; 13, South Africa; 14, Australia; 15, 

Uruguay; 16, New Zealand; 17, Southern Ocean; 18, Antarctica. HA air, high-altitude air; NG air, near-ground 

air; NA, no taxonomy assigned. 
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Fig. S19 | Dissimilarity of assemblages by habitat type and location. Jaccard Index for global bacterial (a) 

and fungal (b) assemblages, decomposed using PCoA. Clustering by habitat type (green, soil; blue, NG air; red, 

HA air) was also conserved when analysis was reiterated using only locations where concurrent sampling for all 

habitat types occurred to mitigate against potential sample-size effects.  
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Fig. S20 | Phylogenetic distance of assemblages by habitat type and location. Hellinger Distance for global 

bacterial (a) and fungal (b) ASV-defined assemblages, decomposed as weighted community diversity-

abundance using tSNE. HA air, high-altitude air; NG air, near-ground air. Separation by location is evident 

except for a cluster of the regionally proximal New Zealand, Southern Ocean and Antarctic locations (Bacteria n 

= 529; Fungi n = 444). To ensure that classifications were appropriate to provide accurate ecological insight we 

also conducted a Procrustes analyses comparing PCoA with Hellinger distances between ASV and Genus 

defined communities. This found the observations to be highly congruent between the classification methods for 

bacteria (m2 = 0.239, correlation = 0.872, P = <0.01) and fungi (m2 = 0.187, correlation = 0.902, P = <0.01). 
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Fig. S21 | Global-scale distance decay plots for bacteria and fungi in air and soil. Shaded area surrounding 

line of best fit indicates 95% confidence intervals. HA air, high-altitude air; NG air, near-ground air. Significant 

linear distance decay relationships for diversity were observed for bacterial (Mantel test, Soil: r = 0.357, P = 

0.001; NG air: r = 0.353, P = 0.001; HA air: r = 0.433, P = 0.002) and fungal (Mantel test, Soil: r = 0.507, P = 

0.001; NG air: r = 0.482, P = 0.001; HA air: r = 0.535, P = 0.004) assemblages. The pattern for  near-ground air 

was fairly pronounced compared to that for underlying soil and this reflects that soil habitats and their microbial 

diversity were markedly more diverse. Limited inference could be made for the pattern in high-altitude air due 

to lower sample numbers.  
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Fig. S22 | Null model networks for bacterial and fungal assemblages in air and soil. a) High-altitude air. b) 

Near-ground air. c) Soil.  For nestedness estimates from phylum to family level all taxa were used, and for 

genus and ASV level the 1,000 most prevalent taxa. The null models were based upon statistical mechanics 

reconstruction of the taxa by location bipartite network. Maximum-likelihood was used to estimate the 

probability distribution that maximised the entropy function of the null network conditional on the constraint of 

the observed degree sequence, which was enforced as an average vector (Canonical ensemble). 
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Fig. S23 | Taxonomic composition of bacterial and fungal assemblages in air and underlying soil.  

Estimates shown are for ASV-defined assemblages for a) bacteria n = 529) and b) fungi (n = 444). Arrows 

indicate locations where aircraft sampling of high-altitude air was undertaken. A taxa filtering criteria of <0.1% 

mean relative abundance was used for these plots and so incomplete bars for some samples indicates taxa with 

very low abundance rather than unidentified taxa.  
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Fig. S24 | Co-occurrence of bacterial and fungal taxa in globally distributed air and soil. The scatterplots 

show number of ASVs (Y-axis) shared among ≥ number of samples (X-axis). Generally, fewer ASVs were 

shared across larger number of samples. Shared ASVs were determined by simple presence/absence of a given 

ASV between two assemblages (Bacteria, n = 529; Fungi n = 444). 
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Fig. S25 | Source contribution to observed diversity in air. a) Estimated contribution of aquatic, phyllosphere 

and soil sources to bacterial diversity. b) Estimated contribution of aquatic, phyllosphere and soil sources to 

fungal diversity. Location 3 (Spain) was impacted by a minor intrusion of Sahara Desert atmospheric dust 

during sampling. HA air, high-altitude air; NG air, near-ground air. Top row: green shading indicates source 

locations sampled in this study, grey boxes indicate data from other studies employed in the meta-analysis. 

Bottom and right: coloured boxes correspond with climate as shown in Fig. 3. Numbers in each box indicate the 

estimate proportion of contribution from a given source (top row) in each sink community (left). 
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Fig. S26 | Functional metagenomics profiling of targeted stress-response and metabolic genes by habitat 

type. Abundance values for selected genes of the included stress-response and metabolic pathways are 

expressed on the heatmap as copies per million reads. The illustrated values represent all samples (total n = 120) 

within each air and soil sample group. HA air, high-altitude air; NG air, near-ground air.  
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