Al Khatib HA, Benslimane FM, Elbashir IE, Coyle PV, Al Maslamani MA, Al-Khal A, Al Thani AA, Yassine HM (2020) Within-host diversity of SARS-CoV-2 in COVID-19 patients with variable disease severities. Front Cell Infect Microbiol 10: 575613. https://doi.org/10.3389/fcimb.2020.575613
Astuti I, Ysrafil (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr: Clin Res Rev 14(4): 407–412. https://doi.org/10.1016/j.dsx.2020.04.020
Balasco N, Damaggio G, Esposito L, Villani F, Berisio R, Colonna V, Vitagliano L (2021) A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-021-04147-1
Becerra-Flores M, Cardozo T (2020) SARS-CoV-2 viral spike G614 mutation exhibits higher case fatality rate. Int J Clin Pract 74(8):4–7. https://doi.org/10.1111/ijcp.13525
Bestle D, Heindl MR, Limburg H, van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 3(9):1–14. https://doi.org/10.26508/LSA.202000786
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9:221–236. https://doi.org/10.1080/22221751.2020.1719902
Di Gennaro F, Pizzol D, Marotta C, Antunes M, Racalbuto V, Veronese N, Smith L (2020) Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int J Environ Res Public Health 17(8). https://doi.org/10.3390/ijerph17082690
Elbe S, Buckland-Merrett G (2017) Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Challenges 1(1):33–46. https://doi.org/10.1002/gch2.1018
Elengoe A, Naser MA, Hamdan S (2014) Modeling and docking studies on novel mutants (K71L and T204V) of the ATPase domain of human heat shock 70 kDa protein 1. Int J Mol Sci 15(4):6797–6814. https://doi.org/10.3390/ijms15046797
Gaffar S, Rahmani SAF, Hardianto A (2021) Mutation and phylogenetic analysis of spike glycoprotein of Indonesian isolates of severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2). Majalah Kedokteran Bandung (Bandung Medical Journal) 53(1):38-47. https://doi.org/10.15395/ mkb.v53n1.2230
Ghorbani A, Samarfard S, Eskandarzade N, Afsharifar A, Eskandari MH, Niazi A, Izadpanah K, Karbanowicz TP (2021) Comparative phylogenetic analysis of SARS-CoV-2 spike protein-possibility effect on virus spillover. Brief Bioinform 22(5):1–9. https://doi.org/10.1093/bib/bbab144
Hu Z, Ge Q, Li S, Xiong M (2020) Artificial intelligence forecasting of Covid-19 in China. Int J Educ Excell 6(1):71–94. https://doi.org/10.18562/ijee.054
Kaur SP, Gupta V (2020) COVID-19 vaccine: a comprehensive status report. Virus Res 288: 1–12. https://doi.org/10.1016/j.virusres.2020.198114
Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva TI, Angyal A, Brown RL, Carrilero L, … Montefiori DC (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043
Lurie N, Saville M, Hatchett R, Halton J (2020). Developing covid-19 vaccines at pandemic speed. N Engl J Med 382:1969-1973. https://doi.org/10.1056/NEJMp2005630
Ministry of Health RI (2021) 5M dimasa pandemi Covid 19 di Indonesia. http://www.padk.kemkes. go.id/article/read/2021/02/01/46/5-m-dimasa-pandemi-covid-19-di-indonesia.html
Mlcochova P, Kemp S, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, … Gupta RK (2021) SARS-CoV-2 B.1.617.2 delta variant replication and immune evasion. Nature 599:114-119. https://doi.org/10.1038/ s41586-021-03944-y
Mohammad A, Alshawaf E, Marafie SK, Abu-Farha M, Abubaker J, Al-Mulla F (2021). Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. Int J Infect Dis 103:611–616. https://doi.org/10.1016/j.ijid.2020.10.033
O’Toole Á, Hill V, Pybus OG, Watts A, Bogoch II, Khan K, Messina JP et al. (2021) Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Res 6:121. https://doi.org/10.12688/wellcomeopenres.16661.2
Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus OG (2020) A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 5(11):1403–1407. https://doi.org/10.1038/s41564-020-0770-5
Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T (2021) Emerging SARS-CoV-2 variants: a review of its mutations, its implications and vaccine efficacy. Vaccines 9(10):1–35. https://doi.org/10.3390/VACCINES9101195
Rendana M, Idris WMR (2021) New COVID-19 variant (B.1.1.7): forecasting the occasion of virus and the related meteorological factors. J Infect Public Health 14(10):1320–1327. https://doi.org/10.1016/j.jiph.2021.05.019
Ribeiro MHDM, da Silva RG, Mariani VC, Coelho L. S (2020) Short-term forecasting COVID-19 cumulative confirmed cases: perspectives for Brazil. Chaos, Solitons and Fractals 135. https://doi.org/10.1016/j.chaos.2020.109853
Salo-Ahen OMH, Alanko I, Bhadane R, Bonvin AMJJ, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS, Lescrinier E, Marimuthu P, Mirza MU, Mustafa G, Nunes-Alves A, Pantsar T, Saadabadi A, Singaravelu K, Vanmeert M (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9(1):71. https://doi.org/10.3390/pr9010071.
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020) Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA 117(21). https://doi.org/10.1073/pnas.2003138117
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R (2020) COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 24:91–98. https://doi.org/10.1016/j.jare.2020.03.005
Shiehzadegan S, Alaghemand N, Fox M, Venketaraman V (2021) Analysis of the delta variant B.1.617.2 COVID-19. Clin Pract 11(4):778–784. https://doi.org/10.3390/clinpract 11040093
Starr TN, Greaney AJ, Dingens AS, Bloom JD (2021) Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep Med 2(4):100255. https://doi.org/10.1016/j.xcrm.2021.100255
Tabibzadeh A, Zamani F, Laali A, Esghaei M, Tameshkel FS, Keyvani H, Makiani MJ, Panahi M, Motamed N, Perumal D, Khoonsari M, Ajdarkosh H, Sohrabi M, Ghanbari B, Savaj S, Mosavi-Jarrahi A, Niya MHK (2020) SARS-CoV-2 molecular and phylogenetic analysis in COVID-19 patients: a preliminary report from Iran. Infect Genet Evol 84:104387. https://doi.org/10.1016/j.meegid.2020.104387
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res 178:104792. https://doi.org/10.1016/j.antiviral.2020.104792
Task Force for Handling COVID-19 in Indonesia (2021) Peta Sebaran. https://Covid19.Go.Id/Peta-Sebaran. https://covid19.go.id/peta-sebaran
Volz E, Hill V, McCrone JT, Price A, Jorgensen D, O’Toole Á, Southgate J, Johnson R, Jackson B, Nascimento FF, Rey SM, Nicholls SM, Colquhoun RM, Filipe AS, Shepherd J, Pascall DJ, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L, Siveroni I, Consortium COG-UK, Goodfellow I, Loman NJ, Pybus OG, Robertson DL, Thomson EC, Rambaut A, Connor TR (2021) Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184(1):64-75.e11. https://doi.org/10.1016/j.cell.2020.11.020.
Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao G F (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 8:1–9. https://doi.org/10.1038/ ncomms15092.
Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile T, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri S, Schaffner S, Lemieux JE, Munro J, Rafique A, Barve A, Sabeti PC, Kyratsous CA, Dudkina NV, Shen K, Luban J (2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183(3):739-751.e8. https://doi.org/ 10.1016/j.cell.2020.09.032
Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM, Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372(6541):525–530. https://doi.org/10.1126/science. abf2303.